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11/°’0Oumuamua as an N2 ice fragment of an exo-Pluto surface: I. size and compositional
constraints

Alan P. Jackson, Steven J. Desch % The origin of the interstellar object 11/’Oumuamua has defied explanation. We perform
calculations of the non-gravitational acceleration that would be experienced by bodies composed of a range of different ices and
demonstrate that a body composed of N2 ice would satisty the available constraints on the non-gravitational acceleration, size
and albedo, and lack of detectable emission of CO or CO2 or dust. We find that 'Oumuamua was small, with dimensions 45
m x 44 m x 7.5 m at the time of observation at 1.42 au from the Sun, with a high albedo of 0.64. This albedo is consistent

with the N2 surfaces of bodies like Pluto and Triton. We estimate ’Oumuamua was ejected about 0.4-0.5 Gyr ago from a
young stellar system, possibly in the Perseus arm. Objects like ’Oumuamua may directly probe the surface compositions of

a hitherto-unobserved type of exoplanet: "exo-plutos". In a companion paper (Desch & Jackson, 2021) we demonstrate that
dynamical instabilities like the one experienced by the Kuiper belt, in other stellar systems, plausibly could generate and eject
large numbers of N2 ice fragments. ’Oumuamua may be the first sample of an exoplanet brought to us.
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Rearranging Equation 1 we then obtain the mass loss rate,
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Figure 1. A plausible history for ‘Oumuamua as a collisional fragment of N ice, as hyothesized
in this paper and the companion paper by Jackson and Desch (2021). Credit: Sue Selkirk.



Modeling chemistry during star formation: Water deuteration in dynamic star-forming
regions

S. S. Jensen, J. K. Jgrgensen, K. Furuya, T. Haugbglle, Y. Aikawa % Recent observations of the HDO/H2O ratio
toward protostars in isolated and clustered environments show an apparent dichotomy, where isolated sources show higher D/H
ratios than clustered counterparts. Establishing which physical and chemical processes create this differentiation can provide
insights into the chemical evolution of water during star formation and the chemical diversity during the star formation process
and in young planetary systems. Methods: The evolution of water is modeled using 3D physicochemical models of a dynamic
star-forming environment. The physical evolution during the protostellar collapse is described by tracer particles from a 3D
MHD simulation of a molecular cloud region. Each particle trajectory is post-processed using RADMC-3D to calculate the
temperature and radiation field. The chemical evolution is simulated using a three-phase grain-surface chemistry model and
the results are compared with interferometric observations of HoO, HDO, and D20 in hot corinos toward low-mass protostars.
Results: The physicochemical model reproduces the observed HDO/H20O and D2O/HDO ratios in hot corinos, but shows no
correlation with cloud environment for similar identical conditions. The observed dichotomy in water D/H ratios requires
variation in the initial conditions (e.g., the duration and temperature of the prestellar phase). Reproducing the observed D/H
ratios in hot corinos requires a prestellar phase duration ¢ ~1-3 Myr and temperatures in the range T ~ 10-20 K prior to collapse.
This work demonstrates that the observed differentiation between clustered and isolated protostars stems from differences in
the molecular cloud or prestellar core conditions and does not arise during the protostellar collapse itself.
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The complex organic molecular content in the L1498 starless core

Izaskun Jimenez-Serra, Anton I. Vasyunin, Silvia Spezzano, Paola Caselli, Giuliana Cosentino, Serena Viti %
Observations carried out toward starless and pre-stellar cores have revealed that complex organic molecules are prevalent in these
objects, but it is unclear what chemical processes are involved in their formation. Recently, it has been shown that complex
organics are preferentially produced at an intermediate-density shell within the L1544 pre-stellar core at radial distances of
4000 au with respect to the core center. However, the spatial distribution of complex organics has only been inferred toward
this core and it remains unknown whether these species present a similar behaviour in other cores. We report high-sensitivity
observations carried out toward two positions in the L1498 pre-stellar core, the dust peak and a position located at a distance
of 11000 au from the center of the core where the emission of CH30H peaks. Similarly to L1544, our observations reveal that
small O-bearing molecules and N-bearing species are enhanced by factors 4-14 toward the outer shell of LL1498. However, unlike
L1544, large O-bearing organics such as CH3CHO, CH30OCH3 or CH30OCHO are not detected within our sensitivity limits. For
N-bearing organics, these species are more abundant toward the outer shell of the L1498 pre-stellar core than toward the one in
LL1544. We propose that the differences observed between O-bearing and N-bearing species in L1498 and L1544 are due to the
different physical structure of these cores, which in turn is a consequence of their evolutionary stage, with L1498 being younger

than [L.1544.
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Stars with Photometrically Young Gaia Luminosities Around the Solar System (SPY-
GLASS) I: Mapping Young Stellar Structures and their Star Formation Histories

Ronan Kerr, Aaron C. Rizzuto, Adam L. Kraus, Stella S. R. Offner % Young stellar associations hold a star formation
record that can persist for millions of years, revealing the progression of star formation long after the dispersal of the natal
cloud. To identify nearby young stellar populations that trace this progression, we have designed a comprehensive framework
for the identification of young stars, and use it to identify ~3x10* candidate young stars within a distance of 333 pc using Gaia
DR2. Applying the HDBSCAN clustering algorithm to this sample, we identify 27 top-level groups, nearly half of which have
little to no presence in previous literature. Ten of these groups have visible substructure, including notable young associations
such as Orion, Perseus, Taurus, and Sco-Cen. We provide a complete subclustering analysis on all groups with substructure,
using age estimates to reveal each region’s star formation history. The patterns we reveal include an apparent star formation
origin for Sco-Cen along a semicircular arc, as well as clear evidence for sequential star formation moving away from that arc
with a propagation speed of ~4 km s™' (~4 pc Myr~—'). We also identify earlier bursts of star formation in Perseus and Taurus
that predate current, kinematically identical active star-forming events, suggesting that the mechanisms that collect gas can
spark multiple generations of star formation, punctuated by gas dispersal and cloud regrowth. The large spatial scales and long
temporal scales on which we observe star formation offer a bridge between the processes within individual molecular clouds and
the broad forces guiding star formation at galactic scales.
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ATOMS:ALMA Three-millimeter Observations of Massive Star-forming regions — 111:

Catalogues of candidate hot molecular cores and Hyper/Ultra compact HII regions

ATOMS survey - Hong-Li Liu et al. % We have identified 453 compact dense cores in 3 mm continuum emission maps in
the ATOMS (ALMA Three-millimeter Observations of Massive Star-forming regions) survey, and compiled three catalogues of
high-mass star forming cores. One catalogue, referred to as H/UC-HII catalogue, includes 89 cores that enshroud hyper/ultra
compact (H/UC) HII regions as characterized by associated compact H40alpha emission. A second catalogue, referred to as pure
s-cHMC, includes 32 candidate Hot Molecular Cores (HMCs) showing rich spectra (N>20lines) of complex organic molecules
(COMs) but not associated with H/UC-HII regions. The third catalogue, referred to as pure w-cHMC, includes 58 candidate
HMCs with relatively low levels of COM richness and not associated with H/UC-HII regions. These three catalogues of dense

cores provide an important foundation for future studies of the early stages of high-mass star formation across the Milky Way.
We also find that nearly half of H/UC-HII cores are candidate HMCs. From the number counts of COM-containing and H/UC-

HII cores, we suggest that the duration of high-mass protostellar cores showing chemically rich features is at least comparable
to the lifetime of H/UC-HII regions. For cores in the H/UC-HII catalogue, the width of the H40alpha line increases as the

core size decreases, suggesting that the non-thermal dynamical and/or pressure line-broadening mechanisms dominate on the
smaller scales of the H/UC-HII cores.
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Membership of Stars in Open Clusters using Random Forest with (Gaia Data

Md Mahmudunnobe, Priya Hasan, Mudasir Raja, S N Hasan % Membership of stars in open clusters is one of the
most crucial parameters in studies of star clusters. Gaia opened a new window in the estimation of membership because of its
unprecedented 6-D data. In the present study, we used published membership data of nine open star clusters as a training set
to find new members from Gaia DR2 data using a supervised random forest model with a precision of around 90%. The number
of new members found is often double the published number. Membership probability of a larger sample of stars in clusters is
a major benefit in determination of cluster parameters like distance, extinction and mass functions. We also found members
in the outer regions of the cluster and found sub-structures in the clusters studied. The color magnitude diagrams are more
populated and enriched by the addition of new members making their study more promising.
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