astro-ph GA & EP 2024-09-20 to 2024-09-26 #1 - 66

麻生 有佑(KASI) 2024/10/07

Water in protoplanetary disks with JWST-MIRI: spectral excitation atlas, diagnostic diagrams for temperature and column density, and detection of disk-rotation line br-CITau AS205N FZTau SR4 DoAr25 GOTau ANDREA BANZATTI,¹ COLETTE SALYK,² KLAUS M. PONTOPPIDAN,³ JOHN CARR,⁴ KE ZHANG,⁵ NIC HTLup Elias27 WSB52 L. ILSEDORE CLEEVES,⁷ JOAN NAJITA,⁸ KARIN I. ÖBERG,⁹ ILARIA PASCUCCI,¹⁰ GEOFFREY AS209 HPTau IOTau RULup DoAr33 SEBASTIAAN KRIJT,¹² CARLOS E. MUÑOZ-ROMERO,⁹ EDWIN A. BERGIN,¹³ LUCAS A. CIEZA,¹⁴ H₂O 1500/6000 K H₂O 3600/6000 K H_2O FENG LONG,^{10,*} PATRICK MALLANEY,¹ CHENGYAN XIE,¹⁰ AND THE JDISCS COLLAB(10-ClTau FZTau AS205N SR4 DoAr25 GOTau HTLup Elias27 WSB52 :850 K (0.9 mM) H+W5: 400 K (18 mM) CITau 122U2N FZTau AS209 HPTau IOTau ClTau +W1: 400 K (2.2 mM) H+W1+C1: 170 K (11 mM) SR4 RULup DoAr33 DoAr₂ -SR4 CITau FZTau AS205N H₂O 1500/6000 K H₂O 3600/6000 K H_2O +W2: 400K (4.4 mM) H+W2+C2: 170 HTLup SR4 DoAr25 GOTau AS209 +W2(Tk): 400 K (44 mM) H+W3+C3: 170 HTLup Elias27 WSB52 RULup AS209 HPTau lQTau +W3: 400 | H₂O 1500/6000 K H₂O • VZCha RULup DoAr33 H: 850 K (0.9 µM_⊕) H+W5: 400 K (18 μM_®) H+W1: 400 K (2.2 μM_@) +C1: 170 K (11 μM_@) +W4: 400 | H₂O 1500 K H₂O 3600 K H₂C.⊇ H+W2: 400K (4.4 μM_⊕) +C2: 170 K (22 μM_@) 60 20 20 H+W2(Tk): 400 K (44 μM_@) 3+C3: 170 K (45 uM_@) Disk inclination (deg -W3: 400 K (8.9 µM_⊕) H+W4+C4: 170 K (68 μM_⊕) H+W4: 400 K (13 μM_⊕) H+W5+C5: 170 K (90 μM_Φ) Log (L_{ac},/L_☉) O 1500 K H₂O 1500 K CITau SR4 🔺 🔵 DoAr25 🗮 HTLup AS209 GQLup HPTau GKTau 1.5 2.0 RULup DoAr33 Disk inclination (deg) Log (R_{disk}/au) Log (L_{acc}/L_o) /Lup H₂O 1500/6000 K H₂O 3600/6000 K H₂O 1500/3600 K H₂O 3340 K b/a , H₂O 334 0/3600 K Elias27 Lup 盤+463-60決まるHaO 3340 K b/a AS205N H₂O 1500/6000 K TECHONE CODO.K Tau **WSB52** Ar25 Ar33 **VZCha** Elias20 Disk -

Stellar frame (km/s)

JWST Observations of Young protoStars (JOYS)

HH 211: the textbook case of a protostellar jet and outflow

A. Caratti o Garatti¹, T.P. Ray², P.J. Kavanagh³, M.J. McCaughrean⁴, C. Gieser⁵, T. Giannini⁶, E.F. van Dishoeck^{5,7}, K. Justtanont⁸, M.L. van Gelder⁷, L. Francis⁷, H. Beuther⁴, Łukasz Tychoniec^{7,9}, B. Nisini⁶, M.G. Navarro⁶, R. Devaraj², S. Reyes⁴, P. Nazari⁷, P. Klaassen¹⁰, M. Güdel^{11,12}, Th. Henning⁴, P.O. Lagage¹³, G. Östlin¹⁴, B. Vandenbussche¹⁵, C. Waelkens¹⁵, G. Wright¹⁰

Class 0では原子ジェットの質量放出率が分子ジェットより1桁低く、原子ジェットがアウトフローを駆動 するClass IIと異なる→ジェットの進化を示唆。 ジェット中のダストは円盤風で運ばれるのか、そこでできるのか。 Perseus (d=321 pc)の若い (0.1 Myr) Class 0、HH211をJWST MIRI-MRS (5-28 μm)で観測。

われる。*M*_{jet}/*M*_{acc}の個性やepisodicの影響も。

Strong turbulence and magnetic coherent structures in the interstellar medium

Evangelia Ntormousi^{1,2}, Loukas Vlahos³, Anna Konstantinou^{2,4} and Heinz Isliker³

|δB|>|B₀|の強磁気乱流ではMagnetic Coherent Structure (MCoS)が断続的に現れる。 強磁気乱流はISMに現れるのか、ISMでMCoSの分裂は強磁気乱流を生むのか。

RAMSES, AMR, H2分子形成と乖離、初期条件は天の川銀河、乱流無し、100 kpc box, 最高24 pcを分解。 初期トロイダル磁場のモデルTとランダム磁場のモデルR。 H2の量で星形成とし、超新星爆発と銀河の差動回転が乱流を生む。

Model T

 $\log (\sigma/km/s)$

初期に磁場が整列したモデルTでも強磁気乱流が起きる。 銀河渦状腕で磁場変動が見られ、天の川銀河の観測に一致。 近年提案されている、断続的で高曲率な磁場による宇宙線散乱の研究にも役立つ。