Credits: Credits: NASA, ESA, CSA, STScl; https://www.nasa.gov/feature/goddard/2022/ nasa-s-webb-takes-star-filled-portrait-of-pillars-of-creation

ジェームズ・ウェッブ宇宙望遠鏡によるEagle nebulaの画像 Joseph DePasquale (STScl), Anton M. Koekemoer (STScl), Alyssa Pagan (STScl)

東京大学理学系研究科 鈴木昭宏

講義のアウトライン

- ・ 第 1 回: 天文学への導入と様々な時間・空間スケールの天体
- 第2回: 電磁波による宇宙の観測
- 第3回: 太陽系内天体と天体の運動
- ・ 第4回: 天体の距離、明るさ、色
- 第5回:恒星1-恒星のエネルギー源と核反応-

講義のアウトライン

- 第6回: 恒星2 恒星の分類と進化-
- 第7回: 星の誕生と星間物質
- ・ 第8回:銀河1-銀河系の構成要素-
- ・ 第9回: 銀河2-銀河の分類と進化-
- ・第10回: 超新星爆発と元素の起源

講義のアウトライン

- 第11回: 白色矮星、中性子星、ブラックホール
- ・ 第12回: ニュートリノ天文学と高エネルギー天体
- ・ 第13回: 重力波天文学と中性子星・ブラックホール
- 第14回: 宇宙膨張の発見と宇宙の歴史
- 第15回: 系外惑星の世界

第7回: 星の誕生と星間物質

- ・星間物質と分子雲
- 星が生まれる過程
- ・星間空間での物質の循環

星が生まれるとは

- ・前回は、現在の太陽(主系列段階)から赤色 巨星を経て白色矮星までの進化を学習し た
- その"前"は?
- ・星が生まれる場所がどこかにあるはず
- それはどこか?今もあるのか?

credit: NASA, Solar Dynamics Observatory(SDO)

星が生まれるとは

- ・現在の太陽は、重力的に集まった水素ガス . 平均密度 $\bar{\rho} = 3M_{\odot}/(4\pi R_{\odot}^3) = 1.4 \times 10^3 [\text{kg m}^{-3}]$
- 一方で、銀河系の星がない部分の密度は?
- 1cm³あたり、たったの水素原子1個
- $1.6 \times 10^{-27} [\text{kg}]/1 [\text{cm}^3] \simeq 10^{-21} [\text{kg} \text{m}^{-3}]$

credit: NASA, Solar Dynamics Observatory(SDO)

どうやって20桁以上も物質が集まったのか? 集まる前の物質はどこに?

暗黒星雲の発見

- ・ウィリアム・ハーシェル(1738-1822)
- ・ "A hole in the sky(天空の穴)"
- その天域にだけ星が少ない
- ・どういうことなのか?

ref. : Steinicke (2016)

Journal of Astronomical History and Heritage 19, p. 305-326 https://ui.adsabs.harvard.edu/abs/2016JAHH...19..305S/abstract

暗黒星雲 Bernard 68の可視光画像 credit: ESA https://astronomy.swin.edu.au/cosmos/d/Dark+Nebula

暗黒星雲の発見

- ・ウィリアム・ハーシェル(1738-1822)
- ・ "A hole in the sky(天空の穴)"
- その天域にだけ星が少ない
- ・どういうことなのか?

ref. : Steinicke (2016)

Journal of Astronomical History and Heritage 19, p. 305-326 https://ui.adsabs.harvard.edu/abs/2016JAHH...19..305S/abstract

馬頭星雲(暗黒星雲)とHII領域の可視光画像 credit: AAO/David Malin https://astronomy.swin.edu.au/cosmos/d/Dark+Nebula

暗黒星雲の発見

- ・暗黒星雲(dark nebula): 星間塵(ダスト) を多量に含むガス塊で、分子なども含む
- ・ガス雲に含まれるダストが背景にある星の 光などを吸収するため可視光で見えない
- ・つまり、銀河には星だけでなくガス状の物 質や、星の光をブロックするぐらい集まっ たガス雲も存在している(星間物質: interstellar medium)

星間物質(interstellar medium)

・暗黒星雲として観測される成分のほか、密 度・温度の異なるいくつかの状態(相)を総合 してこう呼ぶ

	密度 [原子/cm ³]	温度 [K]	-
分子雲	10 ² - 10 ⁵	10 - 50	
中性水素ガス	10 ⁰ - 10 ²	数10 - 10 ³	
HII領域	102 - 104	104	同日
コロナガス	10 ⁻³ - 10 ⁻²	106	同日

- 分子雲や中性水素ガスは温度が星よりも
 かなり低い
- ・星は温度が低いといっても数10³K程度
 (赤外線)
- もっと低温のガスは暗黒星雲として見えるだけ → 情報が得られない
- ・赤外線よりももっと長い波長の光(電波) を使おう

data source: Pickles (1998) PASP 110 Issue 749, pp. 863-878.

- 分子雲や中性水素ガスは温度が星よりも かなり低い
- ・星は温度が低いといっても数10³K程度
 (赤外線)
- もっと低温のガスは暗黒星雲として見えるだけ → 情報が得られない
- ・赤外線よりももっと長い波長の光(電波) を使おう

暗黒星雲 Bernard 68の可視光画像 credit: ESA https://astronomy.swin.edu.au/cosmos/d/Dark+Nebula

- ・分子雲や中性水素ガスは温度が星よりも かなり低い
- ・星は温度が低いといっても数10³K程度 (赤外線)
- もっと低温のガスは暗黒星雲として見え るだけ → 情報が得られない
- ・赤外線よりももっと長い波長の光(電波) を使おう

B, I, K

暗黒星雲B68の赤外線画像 credit: ESO https://www.eso.org/public/images/eso0102c/

- ・分子雲や中性水素ガスは温度が星よりも かなり低い
- ・星は温度が低いといっても数10³K程度 (赤外線)
- もっと低温のガスは暗黒星雲として見え るだけ → 情報が得られない
- ・赤外線よりももっと長い波長の光(電波) を使おう

M. Nielbock et al. (2012) A&A, 547, A11 https://doi.org/10.1051/0004-6361/201219139

- ・分子雲や中性水素ガスは温度が星よりも かなり低い
- ・星は温度が低いといっても数10³K程度 (赤外線)
- もっと低温のガスは暗黒星雲として見え るだけ → 情報が得られない
- ・赤外線よりももっと長い波長の光(電波) を使おう

- ・分子雲や中性水素ガスは温度が星よりも かなり低い
- ・星は温度が低いといっても数10³K程度 (赤外線)
- もっと低温のガスは暗黒星雲として見え るだけ → 情報が得られない
- ・赤外線よりももっと長い波長の光(電波) を使おう

- ・様々な波長の電磁波による銀 河中心方向の観測
- 可視光(optical)で黒く隠され ていた部分が電波(や赤外線)で は明るく見える
- ・銀河円盤に沿って、分子ガスや 中性水素ガスが多数存在する

可視光での天の川銀河中心の姿 credit: Serge Brunie https://apod.nasa.gov/apod/ap051004.html

- ・様々な波長の電磁波による銀 河中心方向の観測
- 可視光(optical)で黒く隠され ていた部分が電波(や赤外線)で は明るく見える
- ・銀河円盤に沿って、分子ガスや 中性水素ガスが多数存在する

多波長での天の川銀河中心の姿 credit: NASA, https://asd.gsfc.nasa.gov/archive/mwmw/

- 可視光で暗黒だった部分が電波では光っ て観測される
- ・暗黒星雲B68の例: 一酸化炭素分子 12C16Oの電波強度(回転遷移)
- ・様々な分子からの放射を手掛かりにし て、可視光では見えない物質の物理状態 を調べる

B, V, 1 B, I, K

M. Nielbock et al. (2012) A&A, 547, A11 https://doi.org/10.1051/0004-6361/201219139

- 可視光で暗黒だった部分が電波では光っ て観測される
- ・おうし座分子雲の例:一酸化炭素分子の 同位体¹³C¹⁶Oの電波強度(110GHz)
- ・様々な分子からの放射を手掛かりにし て、可視光では見えない物質の物理状態 を調べる

おうし座分子雲の可視光(上)と電波(下)での観測 credit: 名古屋大学、理科年表オフィシャルサイト https://www.rikanenpyo.jp/kaisetsu/tenmon/tenmon_009_2.html

星間物質(interstellar medium)

・暗黒星雲として観測される成分のほか、密 度・温度の異なるいくつかの状態(相)を総合 してこう呼ぶ

	密度 [原子/cm ³]	温度 [K]	-
分子雲	10 ² - 10 ⁵	10 - 50	
中性水素ガス	10 ⁰ - 10 ²	数10 - 10 ³	
HII領域	102 - 104	104	同日
コロナガス	10 ⁻³ - 10 ⁻²	106	同日

- ・中性な原子の状態で存在している水素の集まり(T=数10-10³K)
- 水素はやはり銀河にたくさん存在している (太陽の化学組成参照)ので見つかりやすい

太陽表面(光球: photosphere) での化学組成(Asplund et al. 2009)

Solar photospheric abundance Asplund et al. (2009)

- ・中性な原子の状態で存在している水素の集まり(T=数10-10³K)
- 水素はやはり銀河にたくさん存在している
 (太陽の化学組成参照)ので見つかりやすい
- ・水素の21cm線 (21cm hydrogen line): 水素原子に特徴的な放射
- ・中性水素ガスの分布:銀河の円盤に沿って
 存在

21cm線の放射機構の模式図

- ・中性な原子の状態で存在している水素の集 まり(T=数10-10³K)
- ・水素はやはり銀河にたくさん存在している (太陽の化学組成参照)ので見つかりやすい
- 水素の21cm線 (21cm hydrogen line): 水素原子に特徴的な放射
- ・中性水素ガスの分布:銀河の円盤に沿って 存在

21cm線の放射機構の模式図

- ・中性な原子の状態で存在している水素の集 まり(T=数10-10³K)
- ・水素はやはり銀河にたくさん存在している (太陽の化学組成参照)ので見つかりやすい
- 水素の21cm線 (21cm hydrogen line): 水素原子に特徴的な放射
- ・中性水素ガスの分布:銀河の円盤に沿って 存在

銀河系の中性水素マップ, Nakanishi&Sofue(2016), PASJ, 68, 5 https://ui.adsabs.harvard.edu/abs/2016PASJ...68....5N/abstract

- さらに温度が低いガスでは様々な分子が存 在する(T=10-数10K)
- H₂, CO, SO, SO₂, HCO+,…
- 分子の観測を通して分子雲の物理量や化学 組成が推定されている

オリオン星雲の分子輝線スペクトル Blake et al.(1987), ApJ, 315, 621 https://ui.adsabs.harvard.edu/abs/1987ApJ...315..621B/

・分子雲も銀河の中に普遍的に存在している

CO輝線による銀河面のCOサーベイ観測 Dame et al.(2001), ApJ, 547, 792 https://ui.adsabs.harvard.edu/abs/2001ApJ...547..792D/

- ・どんな分子がみつかっているのか?
- H₂,COのような単純な分子から複雑 な分子まで様々
- ・ 有機分子(炭素化合物)も見つかって いる

Table 1.2 Molecules found in interstellar clouds

Simple neutral molecules

H₂, CH, CN, CO, HCl, NH, NO, NS, OH, PN, SO, SiO, SiS, CS, HF, O₂, SH, CH₂, HCN, HCO, H₂O, H₂S, HNC, HNO, N₂O, OCS, SO₂, CO₂, NH₂, HO₂, NH₃, H₂CO, H₂CS, CH₃, H₂O₂, CH₄

Ionic species

(Cation)

CH⁺, CO⁺, SO⁺, CF⁺, OH⁺, SH⁺, HCl⁺, ArH⁺, HCO⁺, HCS⁺, HOC⁺, N₂H⁺, H₃⁺, H₂O⁺, H₂Cl⁺, OH_3^+ , $HCNH^+$, HCO_2^+ , C_3H^+ , H_2COH^+ , NH_4^+ , H_2NCO^+ , HC_3NH^+

(Anion)

 C_4H^-, C_6H^-, C_8H

Carbon-chain molecules and their isomers

C₂, C₃, C₂H, C₂O, C₂S, c-C₃H, I-C₃H, C₃N, C₃O, C₃S, C₂H₂, C₅, C₄H, I-C₃H₂, c-C₃H₂, HC₃N, HCCNC, HNC₃, C₅H, 1-C₄H₂, C₅N, C₆H, CH₃CCH, HC₅N, CH₃C₃N, C₆H₂, CH₂CCHCN, CH₃C₄H, HC₇N, CH₃C₅N, HC₉N, CH₃C₆H, HC₁₁N

Complex organic molecules

HCOOH, CH₂CO, CH₃CN, CH₃NC, CH₃OH, CH₃SH, HC₂CHO, c-C₃H₂O, CH₂CNH, HNCHCN, CH₂CHCN, CH₃CHO, CH₃NH₂, c-C₂H₄O, H₂CCHOH, HCOOCH₃, CH₃COOH, CH₂OHCHO, CH₂CHCHO, NH₂CH₂CN, CH₃CHNH, CH₃CH₂CN, (CH₃)₂O, CH₃CH₂OH, CH₃CONH₂, C₃H₆, CH₃CH₂SH, (CH₃)₂CO, (CH₂OH)₂, CH₃CH₂CHO, C₂H₅OCHO, CH₃OCOCH₃, C₂H₅OCH₃, n-C₃H₇CN

Other molecules

FeO, HNCO, HNCS, H₂CN, HCNO, HOCN, HSCN, CH₂CN, H₂CNH, NH₂CN, HCOCN, HNCNH, CH₃O, NH₂CHO

Note: Based on the Cologne Database for Molecular Spectroscopy (CDMS) (Muller et al. 2001, 2008). The classification of molecules is arbitrary

これまでに見つかっている分子のリスト

S. Yamamoto (2017) "Introduction to Astrochemistry"

- ・どんな分子がみつかっているのか?
- H₂,COのような単純な分子から複雑 な分子まで様々
- ・ 有機分子(炭素化合物)も見つかって いる
- ・生命の材料になる物質(例えばアミノ 酸)はあるのか?

Table 1.2 Molecules found in interstellar clouds

Simple neutral molecules

H₂, CH, CN, CO, HCl, NH, NO, NS, OH, PN, SO, SiO, SiS, CS, HF, O₂, SH, CH₂, HCN, HCO, H₂O, H₂S, HNC, HNO, N₂O, OCS, SO₂, CO₂, NH₂, HO₂, NH₃, H₂CO, H₂CS, CH₃, H₂O₂, CH₄

Ionic species

(Cation)

CH⁺, CO⁺, SO⁺, CF⁺, OH⁺, SH⁺, HCl⁺, ArH⁺, HCO⁺, HCS⁺, HOC⁺, N₂H⁺, H₃⁺, H₂O⁺, H₂Cl⁺, OH_3^+ , $HCNH^+$, HCO_2^+ , C_3H^+ , H_2COH^+ , NH_4^+ , H_2NCO^+ , HC_3NH^+

(Anion)

 C_4H^-, C_6H^-, C_8H

Carbon-chain molecules and their isomers

C₂, C₃, C₂H, C₂O, C₂S, c-C₃H, I-C₃H, C₃N, C₃O, C₃S, C₂H₂, C₅, C₄H, I-C₃H₂, c-C₃H₂, HC₃N, HCCNC, HNC₃, C₅H, 1-C₄H₂, C₅N, C₆H, CH₃CCH, HC₅N, CH₃C₃N, C₆H₂, CH₂CCHCN, CH₃C₄H, HC₇N, CH₃C₅N, HC₉N, CH₃C₆H, HC₁₁N

Complex organic molecules

HCOOH, CH₂CO, CH₃CN, CH₃NC, CH₃OH, CH₃SH, HC₂CHO, c-C₃H₂O, CH₂CNH, HNCHCN, CH₂CHCN, CH₃CHO, CH₃NH₂, c-C₂H₄O, H₂CCHOH, HCOOCH₃, CH₃COOH, CH₂OHCHO, CH₂CHCHO, NH₂CH₂CN, CH₃CHNH, CH₃CH₂CN, (CH₃)₂O, CH₃CH₂OH, CH₃CONH₂, C₃H₆, CH₃CH₂SH, (CH₃)₂CO, (CH₂OH)₂, CH₃CH₂CHO, C₂H₅OCHO, CH₃OCOCH₃, C₂H₅OCH₃, n-C₃H₇CN

Other molecules

FeO, HNCO, HNCS, H₂CN, HCNO, HOCN, HSCN, CH₂CN, H₂CNH, NH₂CN, HCOCN, HNCNH, CH₃O, NH₂CHO

Note: Based on the Cologne Database for Molecular Spectroscopy (CDMS) (Muller et al. 2001, 2008). The classification of molecules is arbitrary

これまでに見つかっている分子のリスト

S. Yamamoto (2017) "Introduction to Astrochemistry"

HI領域 (HII region)

- 冷たいガスもあれば熱いガスもある
- ・HII領域(HII region):明るい星(大質量) 星)によって照らされたガス
- ・大質量星と同じくらいの高温に熱せら れている(T≒104K)
- ・様々な原子の輝線
- ・HII領域があると最近の星形成活動を示 唆する

ハッブル宇宙望遠鏡によるM33のHII領域NGC603の画像 Credits: Hui Yang (University of Illinois) and NASA/ESA https://esahubble.org/images/opo9627c/

HI領域 (HII region)

- 冷たいガスもあれば熱いガスもある
- ・HII領域(HII region):明るい星(大質量 星)によって照らされたガス
- ・大質量星と同じくらいの高温に熱せら れている(T≒104K)
- ・様々な原子の輝線
- ・HII領域があると最近の星形成活動を示 唆する

ジェームズ・ウェッブ宇宙望遠鏡によるEagle nebulaの画像

Credits: Credits: NASA, ESA, CSA, STScl; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI) https://www.nasa.gov/feature/goddard/2022/ nasa-s-webb-takes-star-filled-portrait-of-pillars-of-creation

HI領域 (HII region)

- 冷たいガスもあれば熱いガスもある
- ・HII領域(HII region):明るい星(大質量 星)によって照らされたガス
- ・大質量星と同じくらいの高温に熱せら れている(T≒104K)
- ・様々な原子の輝線
- ・HII領域があると最近の星形成活動を示 唆する

コロナガス (coronal gas)

- もっと熱いガスもある
- 超新星残骸(supernova remnant): 星が最期に大爆発した残骸
- ・爆風(衝撃波)が周りのガスを温める $(T \sim 10^{6} K)$
- 主にX線で光る

超新星残骸Cassiopaire AのX線と可視光の複合画像 Credits: X-ray: NASA/CXC/RIKEN/T. Sato et al.; Optical: NASA/STScl https://chandra.harvard.edu/photo/2019/firstlight/

第7回: 星の誕生と星間物質

- ・星間物質と分子雲
- 星が生まれる過程
- ・星間空間での物質の循環

星が生まれる効率

- ・ 星は今も銀河系内で作られている(星形成銀河)
- ・銀河系の中にある星の数 = 1000-4000億
- ・銀河系には100億歳を超えているだろうと推 測されている星が存在する
- ・おおざっぱに銀河系を100億歳とすると…

credit: ESA/Gaia/DPAC, CC BY-SA 3.0 IGO

初期質量関数(Initial mass function)

- · 数1000億個/100億年 = 数10個/年
- どのくらいの質量が星になるのか?
- 初期質量関数(Initial mass function): 生 まれる星の質量の頻度分布
- ・星の質量として一番頻度が高いのは約 0.1-1M_● (重たい星は非常に稀)

初期質量関数の例 (Kroupa 2001)

その質量の星が生まれる相対頻度

初期質量関数(Initial mass function)

- · 数1000億個/100億年 = 数10個/年
- どのくらいの質量が星になるのか?
- 初期質量関数(Initial mass function): 生 まれる星の質量の頻度分布
- ・星の質量として一番頻度が高いのは約 0.1-1M_● (重たい星は非常に稀)
- ・星形成の効率の概算値: 1-数10M●/yr

初期質量関数の例 (Kroupa 2001)

その質量の星が生まれる相対頻度

- ・数10個/年ということで、探せば星を作って いる現場がありそう
- ・例: オリオン大星雲(2000M_☉, 数1000個の 星からなる若い星の集団 + 星形成領域)
- ・できたばかりの星やできかけの星を観測し、 星形成のシナリオを構築する

ハッブル宇宙望遠鏡によるオリオン大星雲の画像 credit: NASA, ESA, M. Robberto (STScl) and the Hubble Space Telescope Orion Treasury Project Team

- 分子雲: ~10pc, 10² [cm⁻³]
- ・分子雲コア:~1pc,104 [cm-3]
- Young Stellar Object(YSO)
- 原始星
- Tタウリ型星

~20pc

おうし座分子雲のCOマップ Goldsmith et al. (2008) ApJ, 680, 428 https://iopscience.iop.org/article/10.1086/587166

- 分子雲: ~10pc, 10² [cm⁻³]
- ・分子雲コア:~1pc,104 [cm-3]
- Young Stellar Object(YSO)
- 原始星
- Tタウリ型星

おうし座分子雲のフィラメント Hacar et al. (2013) A&A, 554, A55 http://dx.doi.org/10.1051/0004-6361/201220090

~20pc

- 分子雲: ~10pc, 10² [cm⁻³]
- ・分子雲コア:~1pc,104 [cm⁻³]
- Young Stellar Object(YSO)
- 原始星
- Tタウリ型星

おうし座分子雲のフィラメント Hacar et al. (2013) A&A, 554, A55 http://dx.doi.org/10.1051/0004-6361/201220090

arcsec)

 $\Delta\delta$

42

- 分子雲: ~10pc, 10² [cm⁻³]
- ・分子雲コア:~1pc,104 [cm⁻³]
- Young Stellar Object(YSO)
- 原始星
- Tタウリ型星

おうし座分子雲のフィラメント Hacar et al. (2013) A&A, 554, A55 http://dx.doi.org/10.1051/0004-6361/201220090

arcsec)

 $\Delta\delta$

- 分子雲: ~10pc, 10² [cm⁻³]
- ・分子雲コア:~1pc,104 [cm⁻³]
- Young Stellar Object(YSO)
- 原始星
- Tタウリ型星

おうし座分子雲のフィラメント Hacar et al. (2013) A&A, 554, A55 http://dx.doi.org/10.1051/0004-6361/201220090

arcsec)

 $\Delta\delta$

- ・分子雲:~10pc, 10² [cm⁻³]
- ・分子雲コア:~1pc,104 [cm⁻³]
- Young Stellar Object(YSO)
- 原始星
- Tタウリ型星

・分子雲コアが自分の重力で収縮する

第1コアの形成

- ・水素分子の解離(H₂→2H)
- 第2コアの形成
- · 主質量降着期
- ・前主系列収縮期(Tタウリ型星など)

- ・分子雲コアが自分の重力で収縮する
- 第1コアの形成
- ・水素分子の解離(H₂→2H)
- 第2コアの形成
- · 主質量降着期
- ・前主系列収縮期(Tタウリ型星など)

- ・分子雲コアが自分の重力で収縮する
- 第1コアの形成
- ・水素分子の解離(H₂→2H)
- 第2コアの形成
- · 主質量降着期
- ・前主系列収縮期(Tタウリ型星など)

- ・分子雲コアが自分の重力で収縮する
- 第1コアの形成
- ・水素分子の解離(H₂→2H)
- ・第2コアの形成
- · 主質量降着期
- ・前主系列収縮期(Tタウリ型星など)

- ・分子雲コアが自分の重力で収縮する
- 第1コアの形成
- ・水素分子の解離(H₂→2H)
- ・第2コアの形成
- · 主質量降着期
- ・前主系列収縮期(Tタウリ型星など)

- ・分子雲コアが自分の重力で収縮する
- 第1コアの形成
- ・水素分子の解離(H₂→2H)
- ・第2コアの形成
- 主質量降着期
- ・前主系列収縮期(Tタウリ型星など)

- ・分子雲コアが自分の重力で収縮する
- 第1コアの形成
- ・水素分子の解離(H₂→2H)
- 第2コアの形成
- · 主質量降着期
- ・前主系列収縮期(Tタウリ型星など)

第7回: 星の誕生と星間物質

- ・星間物質と分子雲
- 星が生まれる過程
- ・星間空間での物質の循環

星間空間での物質循環

惑星状星雲

Credits: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration

超新星残骸

credit: X-ray: NASA/CXC/RIKEN/ T. Sato et al.; Optical: NASA/STScl

分子雲コア

credit: C.Burrows, J.Hester, .Morse, NASA

credit: NASA, Solar Dynamics Observatory(SDO) credit: ALMA(ESO/NAOJ/NRAO) /E. O'Gorman/P. KervellaMA