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The basic result of this investigation may be formulated as follows. Consider the set of natural
numbers in which the following relationship is introduced: n; precedes ns (n1 < ns) if for any
continuous mapping of the real line into itself the existence of a cycle of order ng follows from
the existence of a cycle of order n;. The following theorem holds.

Theorem. The introduced relationship transforms the set of natural numbers into an ordered
set, ordered in the following way:

3<5<7<9<11<-+-<3-2<5-2=<-.-<3.2225.22 <... <23 <22 <2<1.

Every continuous function of a real variable f(z), —co < z < o0, generates a continuous map
T of the line into itself: z — f(z). The properties of the map T are basically determined
by the structure of the set of its fixed points.

Recall that a point « is called a fized point of order k of the map T if T*a = o and
T/o # a for 1 < j < k. The points Ta, T?a,..., T* la are also fixed points of order k,
and together with o they form a cycle of order k.

In this paper we study the problem of the dependence between the existence of cycles
of various orders.

The main result of this paper may be stated as follows. Consider the set of natural
numbers, in which the following relation has been introduced: n; precedes ns (n; < ng) if
for every continuous map of the line into itself the existence of a cycle of order n; implies
the existence of a cycle of order ny. This relation is clearly reflexive and transitive and,
consequently, the set of natural numbers with this relation is a quasi-ordered set.! We prove
the following result.

Theorem. This relation turns the set of natural numbers into an ordered set, which is
ordered in the following way:

3<5<7=<9<11<--<3-2<5-2<---<3-22<5-22<...<

<28 <22 <2<1. (%)

*Translated by J. Tolosa.

tThe format of the original paper has been retained for historical reasons.

'G. Birkhoff, Lattice Theory, Amer. Math. Soc., New York, 1948.

(©Ukrainian Mathematical Journal Vol. xvi, No. 1, Mathematics Institute, 1964
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The terminology of ordered sets will not be used in the sequel. The proofs of the
theorems actually rely only on Bolzano-Cauchy’s intermediate value theorem.

The continuity of T immediately implies that if the map T has a cycle of order k > 1
then it also has a fized point of first order.

Theorem 1. If the map T has a cycle of order k > 2 then it also has a cycle of second
order.?

Let o, ag,..., ax be the points of the cycle, with To; = a1, 1 =1,2,..., k-1,
Toag = 1. Assume that oy < o; (4 # 1) and a, > a; (¢ # r). Consider the interval (a1,
ar—1) (we assume that 7 > 2; if » = 2 one must take the interval (ak,0r)). According to
whether (a1, ar_1) contains fixed points of first order or not, we denote by 3 either the fixed
point of first order closest to a-—; or the point a; (if (a1, ar—1) contains fixed points of first
order, the nearest point to ar—; exists by the continuity of T'). Since Ta,—1 = a, > a,_1,
then Tz > z for x € (8, ar—1]. If B is a fixed point of first order then, as can be easily seen,
for every integer 7 > 0 there is a neighborhood of 3 such that T7z > z for every x > f3
in this neighborhood. If § = a1 then 798 = aj11 > oy = B for 0 < j < k. On the other
hand, TF"*20,_; = oy < ar—1. Therefore, by the continuity of T, there is a point v on
(B, ar—1) such that T%~"*+2y = 4. Since Ty # v, then v is a fixed point of order I, where
1<1<k—-r+2<k. Andsince there is always a fixed point of order smaller than k, but
bigger than one, then there is always a fixed point of second order.

The statements and proofs of the subsequent assertions will be preceded by the following
rather trivial lemmas, whose proof is given only for the sake of completeness.

Lemma 1. If TPa = «a and a is a fized point of order k of the map T, then p is a multiple
of k.

Indeed, if « is a fixed point of order k¥ then T*a = o and TVa # o for j < k. Let
p=ks+r,r <k. If we assume that r # 0 then T"a # a and TPa =T"T*... T* o +# q.

stimes

Lemma 2. If T has a fized point a of order k = 2™, with | odd, then for the map S = T?™
the point o is a fized point of order

{2"—mz, ifn>m,
q=

l, ifn<m.

Proof. By Lemma 1, TPa = « only for p = ki, i = 1, 2,... Assuming that « is a fixed
point of S, let us find its order ¢. We have S% = o and Sia # a for 1 < j < q. Since
S? = T?"9 then S% = « if and only if 2™g = ki, where ¢ is a natural number. Hence,
qg= 2%2'. The least value of 7 for which the right-hand side is an integer corresponds to the
desired value of g. Indeed, for this ¢ we have, as one can easily see, S%q = o and S7a #a
when j < q.

If k = 2", with | odd, then ¢ = 2"™j. For n 2 m we have i = 1 and, therefore,
g =2"""l. For n < m we have i = 2™™" je. qg=1.

Corollary. Under the assumptions of Lemma 2, if 1 > 1 then the fired point o of
the map S has order higher than two.
A ~—— N
2 VRE
Lemma 8. A point a is a fized point of order 2™ of the map T if and only if T a = o
and T*" 'a # q.

*This assertion is in Sharkovskii {1960]. Here we give a more accurate proof.
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The condition is clearly necessary; let us show it is sufficient. If Tfma = a then a may
be a fixed point of order 27, j =0, 1,..., m (Lemma 1). Since sz_ a # a then we also
have T? a # a for every j < m — 1, since T2" ' =TZ (T¥(-..T%)...).

~—

2m=i—1 times
Thus, « is a fixed point of order 2™.

Theorem 2. If the map T has a cycle of order 2™, n > 1, then T has cycles of order 2
for everyi=1,2,...,n—1.

Let o be a fixed point of order 2. We show that T has a fixed point of order 2™ for
1<m<n.

Set T?™ ™' = S. By Lemma 2, o is a fixed point for S of order 2*~™*1, i.e., of order
higher than two. By Theorem 1, S has a fixed point 3 of second order: S?3 = B and
S8 # B. Consequently, 72" 8 = 8 and T*""' 8 # 8.

The following theorem is proved analogously.

Theorem 3. If the map T has a cycle of order k and k is not a power of two then T has
cycles of orders 2* for i =1, 2, 3,...

Let a be a fixed point of order k. We show that T has a fixed point 3 of order 2™,
where m > 1.

Set T2"~' = S. By the corollary to Lemma 2, « is a fixed point of order higher than
two for S. By Theorem 1, S has a fixed point 8 of second order. Thus, S?3 = § and
SB# B, ie, T B=LFand T B # 5.

From Theorem 3 it follows that there are maps having cycles of arbitrarily high order,
since it is always easy to construct a map having a cycle of a prescribed order — in particular,
an order different from a power of two.

Theorem 3 also shows that it suffices to specify the function f(z), defining the map
T, at finitely many points (forming a cycle), for example, at three points, and there will
exist infinitely many cycles, independently of the way we (continuously) change the values
of f(z) at the remaining points of the line.

Let us consider the set of fixed points in one cycle. Assume that the points o1, ay =
Toy,..., ar = Tag—1 form a cycle of order k. Let us divide the points of the cycle into
two sets M; and M> so that a; € M; if a; < To; and o; € My if a; > Ta;. Let oM =
MaXgeenm, @ and ap, = Mmingenm, ;. We have two possibilities: either o™ < apy, or
aM > Qap,-

Lemma 4. If o™ > ayy, then the map T has cycles of any order.

Among all the points belonging to M; and bigger than az, let us chose one at which
the value of the function f(z) defining the map T is the largest. Denote it by 8. Since
Tapy, < apm, and TG > B3, the set of all fixed points of first order on the interval (aarg, B)
is nonempty and closed (by the continuity of T'). Let v be the greatest fixed point of first
order on this interval. Then Ty = v and Tz > z on (v, B]. The interval (v, T3] has been
chosen so that it contains fixed points of the given cycle (for example, 3 and T3). Since
applying T repeatedly to any point of the cycle one must close the cycle, then (v, T3] must
contain at least one point § of the cycle such that either T6 > T8 or T6 < «. The first
inequality is impossible. Indeed, if § € M then T6 < § < T8, and if 6 € M; then T§ < T3
by our choice of 8. Thus, on (v, T3] there is a point § of the cycle for which T¢ < v (it is
possible that § = T'3). Since Tz > z on (v, 3] then 6§ € (8, TS]. The scheme thus obtained
(Fig. 1): Ty =+, Tz >z on (v, B, 6 € (3, TH], and Té < ~ (we shall call it an L-scheme)
guarantees the existence of cycles of all orders.

3The statements of Theorems 2 and 3 are in Sharkovskif [1961].
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Indeed, T'(v, 8] 2 (v, TA]* and, consequently, (7, B] contains a closed nonempty set of
points that is mapped by T, in one step, into the point §. Denote by 6, the smallest of
these points. Analogously, since T'(y, 6] = (7, 8], then (v, 6] contains a nonempty closed
set of points that are carried by T, in one step, into ;. Denote by 8, the smallest of these
points. Clearly, v < 6, < 6; and T (v, 6a] = (7, 61]. Continuing the process of construction
of the points §;, we obtain a sequence § > 61 >8> >8_1>6 > >+, such that
T6; = 6;_1. Evidently, Ti(Si_l =T§ and Tiéi = §. Thus, T’}S,- > 6; and T"6i_1 < 6;_1, so
that by the continuity of T* there is at least one point p; on (8;, 6;—1) such that T%p; = p;.
Since T7(v, &i—1] = (v, 6i—;_1] C (v, 6] for j <i—1and Tz > z on (v, 6], then TV > z
on (v, §;—1] for 1 < j < i. Hence, T7p; # pi when 1 < j < 1, ie., p; is a fixed point of
order i.

This finishes the proof of the lemma.

Remark. If there is a fixed point of first order that is less than oM (but greater than
Qmin = Min;=1 2, 0;) then, as before, the map T contains an L-scheme. Hence it follows
that, independently of the distribution of the points of the cycle, T has cycles of any order.

If there is a fixed point of first order that is greater than oy, (but smaller than ap,,, =
max;—1 2, . % ¢;) then T has a scheme representing the reflection of an L-scheme with respect
to the point 7 as a center. As in the proof of Lemma 4, one shows that this scheme also
guarantees the existence of cycles of all orders.

Let us consider the case when aM! < am,. We have the following result.

Lemma 5. If o™ < aM, and there is a point a € My such that To € M as well, then
the map T has cycles of odd orders greater than k and cycles of all even orders.

The lemma also holds for @ € M, and Ta € M,. \
Let us start by singling out a scheme that will lead to the proof of the lemma.

Let n = min ,; ¢<a J and let B be the £ at which this minimum is attained (or one
EEM,E>Ta

of them, if there are several such points). Thus, T"3 = v < « and T8 > a for i < n. Let
us consider the sequence T3, T?3, T34, ... Let T'3 be the first point belonging to M;. It
is easy to see that T'8 < To. Indeed, if we had T'8 > Ta (it is clear that T'8 # Ta) then
the min j indicated earlier would be less than n. Since TP > B >Tathen TB € M, and,
consequently, [ > 2. Denote the point T%~13 by 8. Then § € (8, TH) and T8 < Ta. This
discussion leads to the picture shown in Fig. 2. We shall call such a scheme, an M-scheme.

Consider the interval [, 6] (Fig. 3). Let n be the greatest of the points z of this
interval for which Tz = T8 (it is possible that 5 = B). On (n, 8) we have Tz < TS. Since
Tn=TB > 6 and Té < Ta < 7 then on (m, 8) there is at least one point ¢ such that

“By T(v, 8] we mean the set of images of points belonging to (v, 4].
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T¢ = 7. If there are several such points on [7, §], we shall assume that ¢ is the smallest of
them. Thus, Tnp =TS8, T¢ =1, and n < Tx < TP for every z € (7, {). Further, let us
choose the point € in [n, ¢] that is the largest of all z for which Tz = ¢. For every = € (¢, ¢)
we have n < Tz < (.

In order to better illustrate the subsequent arguments, let us construct an approximate
graph of the function f(f(z)) on [¢, ¢] (Fig. 4).

We have T2 =7 < €, T?( =TS > (,and < T?x < TS on (£, (). Let w; < ws be
respectively the smallest and the largest of the points of [¢, ¢] for which T?z = z. Clearly,
Twi; = we and Twy = wi, that is, w; and we form a cycle of order two, or, if w; = w2 = w,
then w is a fixed point of first order.> Moreover, T(£, w1) = (w2, ¢) and T (w2, &) = (1, w1).

As we did earlier for the L-scheme, let us construct a sequence { = 6y > 61 > 0,
> ..+ > wy such that T26; = 6;_1, T?*(ws, 6;) = (w2, :—1), and a sequence £ = kg < K1 <
Ky < -+ < wp such that T?k; = k-1 and T?(k;, w1) = (ki—1, w1). Consequently,
T2 (wy, 8;) = (n, w1) and T?+2(k;, wi) = (7, wi).

Indeed, Twy > wy, since T?(Twz) = Tw, and, hence, Twy ¢ (£, w1). Analogously, Tw; < wa. Therefore
T[¢, wi] 2 [we, ¢] and on [€, w1] there is a point x such that Tx = wsz. For every z € [, w1] we have
T?z < z. Thus, x > T?x = Twa > x, whence T?x = x, i.e., x = w1.
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Since Ta < n and Tn = TS > (, on the interval (a, ) there are points at which the
value of f(z) is equal to wy, wy, 7, 6;, and &; (i =0, 1, 2, .. .). We can always find points
A1, A2, po, V-1 € (q n) such that TXA; = wi, Thy = wo, Tpo =60y = ¢, Tv_y = 1, and
T(v-1, A1) = (n, w1), T(A2, wo) = (ws, ¢). Further, we can find points s, ¢t = 1, 2,...
such that Tp; = 0;, T(Aq, pi) = (w2, 6;), and points v;, i = 0, 1, 2,... such that Tv; = &,
T(vi, A1) = (ki w1). Clearly, T**2u; = 5, T?+2()y, ;) = (n, wy), and T%+3y; = 1,
T*+3(v;, M) = (n, wr).

Since Tn = T3, we have T"n = v (n is the least positive integer such that T"8 < a).
To pass from one point to the cycle to another we need no more than k — 1 steps, and
therefore n < k — 1. It is not hard to see that if ¥ = o and B=Tathenn =k —1.

Let us show that the map T has fixed points of odd order greater than k. Let n be
even. In this case, n+2i+3 (i > 0) is odd and there is a fixed point of order s = n+2:+3.
Indeed, T°A1 = w; > Ay, Ty = v < y; and, consequently, on (v;, A;) there are points z
such that T°z = z. Let p, be the largest of these points. We claim that ps is a fixed point
of order s. Since s is odd, p, can only be a fixed point of odd order (Lemma 1). Assume
that p, is a fixed point of order r, where r < s is odd. We have Tps € (ki, w1), and there
is a point 7’ € (ch_,;_r, w1) such that T°~"n' = Tp,. Since we have T2z <  on (Kj, w1),
7=0,1,23,...and T*7" = T*(T?(---T?)...), then Tpps < 7 < w. There is a point 7"

—
s—r

75— times .
such that p; < 7" < A; and Tn” = /. Thus, p; < 7 < A\; and T7" = Tr=1Ts—"Tzp! =
T T =T Tp, = T"p, = ps < 7" and, therefore, on (7, A;) there is a point p/, at
which T°p, = p}; but ps < p}, which contradicts the fact that ps is the largest of the points
x € (v, A1) such that T°z = z. The odd number s = n + 3 (¢ = 0) is never bigger than the
smallest odd number bigger than k and, therefore, for n even, we have proved the existence
of fixed points of odd order bigger than k. ~

If n were odd, one would have to use the sequence of points u; instead of the sequence
{vi}.

Now we prove that the map T has fixed points of arbitrary even order. Let n be even.
In this case one must use the sequence {u:}. Set s = n +2i +2; then T*\g = wy > A2,
T*p; = v < p; and, therefore, on ()3, p;) there are points z such that Tz = z. Let o be
one such point. We claim that for s > 2k — 2, o, is a fixed point of order s. Indeed, since
T?cs = 05, then oy is either a fixed point of order s or a fixed point of smaller order r, and
s is a multiple of 7 (Lemma 1). Clearly, r < $ and hence if T70, # o, for 1 < j < 5 then
05 is a fixed point of order s. On (), pi) we have T9z > n > z for every 1 < j <s-—mn,
since T7(Ag, pi) C (1, ¢) for j < s —n. Thus, o5 is a fixed point of order s for s — n > o4
and this inequality is always true for s > 2k — 2.

When n is odd, the existence of fixed points of even order s > 2k — 2 is proved analo-
gously, only now using the points v;.

It remains to prove that T has fixed points of even order smaller than 2k — 2. Before
completing the proof of Lemma 5, let us prove the following result.

Lemma 6. If the map T has a cycle of odd order then it has cycles of any even order.

Consider the sets My and M,. If o™ > o, then there are cycles of all orders
(Lemma 4). Assume that o™ < am,. The points of a cycle of odd order k& will also
form a cycle of order k for the map S = T2 (Lemma 2). For the map S one can construct
sets M and MZ, as we did with the sets M; and My, considering that a point o; is in M}
if j < T?0; and o; € Mg if ; > T?q;. Let oM? be the largest point of M12 and let a2
be the smallest point in MZ. Let us prove that S has cycles of all orders.

Since aM1 < aM,, the map T has a fixed point ~ of first order such that aM: < Y < am,.
This is a fixed point of first order also for S = T2. If oM # oMt (and, consequently, also
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Qpz # o) then either oMt € M, and v < oMi or apz € My and vy > apgz- It remains
to use the remark following Lemma 4.

Assume that oM = o™ and hence also Oy = My, M2 = My, and M} = M,. Let
a1 be the smallest of all the o;, ¢ = 1, 2,..., k. Then o € M. Since ax_; > a; then
ak—1 € M? and, consequently, ax_; € M,. Thus, 0g—1 > ag. Let o, be the largest of all
points a;, ¢ =1, 2,..., k. Then ar—; € M; and hence @; < ar—; < ak. Since on (o, ox—1)
the function f(z) takes at least all the values of the interval (a1, o), then on (o, ax_1)
there is a point § such that T'6 = a,_;. Finally, let w be the largest of the points z € [v, 6)
for which Sz =z (on [y, 6) there is at least one point x such that Sz = z, since Sy = 7).

Thus, we have: Sw = w, $§ = ar > 6, Sz > z on (w, 8], ax—; € (4, ), and
Sag-1 = a1 < w. We have singled out an L-scheme for the map S (see the proof of
Lemma 4), which guarantees the existence of cycles of all orders for S.

The fact that S has cycles of all orders immediately implies the existence of cycles of
even order for T'. For example, let us prove that T has a cycle of order [ = 2I;.

Let o be a fixed point of order I; of S. This means that S"a = o and $7'a # a for
1<j1 <l,ie, T'a = a and T?a # q, where j is any even number less than /. Since
Sa # a, then also Ta # «. Hence, either « is a fixed point of order [ for T or « is a
fixed point of odd order /3 (but not one), and I3 < {;.5 But to a cycle of odd order we can
always apply either Lemma 4 or Lemma 5. Indeed, since the cycle contains an odd number
of points, then there are more points either in M; or in M. To fix the ideas, assume that
there are more points in M; than in M;. Then necessarily there is a point x in My such
that Ty € My, since otherwise the number of points of M; could not be bigger than that of
M;. Thus, since the map T, having a cycle of order I, satisfies the assumptions of either
Lemma 4 or Lemma 5, then T must have cycles of even order > 2l — 2, and hence, of order
[. Lemma 6 is proved.

This concludes the proof of Lemma 5. Since in its proof we have already established
the existence of cycles of odd order (bigger than k), it follows that there are cycles of all
even orders as well.

All these arguments imply the following result.

Theorem 4. If the map T has a cycle of odd order k then it has cycles of all odd orders
bigger than k and all even orders.

8Generally speaking, Lemma 2 implies that for T the point « is a fixed point of order 201, if l; is even, and
either 2!y or [y, if {; is odd.
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Theorem 4 cannot be sharpened. Now we will construct an example of a map T having
a cycle of order 2m + 1 but having no cycles of order 2j-1forj=2,3,..., m.

Assume that the points a;, i = 1, 2,..., 2m + 1 form a cycle of order 2m + 1, with
aivy1 =Toi,1=1,2,...,2m, a1 = Tasmy1, and assume that a) < agm < g2 < -+ <
a2 < a3 < - < a2m41. Assume that the continuous function f(z) defining the map T
is equal to ap for z < ay, is equal to o; for z > a2m+1, and for a; < z < agmyr is a
piecewise-linear function with vertices at the points (01, a2), (a2, a3)
(a2m+1, 01) of the z, y-plane.

It is not hard to see that

yeeey (a2m7 a2m+1)a

T a1, agm] = (a5, C2me]
T (iya, azi] = { [eai+i)-10 @a4s)41), H2<i+5<m,
(2(3itjmm)> C2m41], Hm+1<i+j<2m— 1,
(@2(injytar Cogigs)), H2<i+j<m—1,
T Mogi1, 02i43) = { (o1, 0am), ifi+j=m,
[, Qy(itj—m)+1), HEm+1<Li+j<2m—1,
1=1,2,...,m—1, i=12,...,m.

If T8 = 3 then

T2j—1(a21 :3) = (:3) a2j+1)1 1 S] S m,
. a2j42, B), f1<j<m,
T21‘1(,3, as) = { ( 2j+2 B) = J
(ala /B)a lfJ =m.

Finally, observe that T% =1z = ay; for every z < o; and T% -1z = agj-1 for > agma1,

1<j<m.
Thus, T% 'z > s whenz < Band Tz <z ifz > B, for every 1 < j < m, and,
consequently, the map T has no cycles of order 3, Sy.eey 2m — 1.

Theorem 4 can be generalized to the case when T has a cycle of any order that is not
a power of two.
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Theorem 5. If the map T has a cycle of order k = 2™, where |l > 1 is odd, then T has a
cycle of order 2"r, where r > | is any odd number, and cycles of order 2"t1s, where s is
any natural number.

Proof. If n = 0 we obtain Theorem 4, which has already been proved. Assume that the
theorem is true for n = m — 1, and let us then prove that it also holds for n = m.

Assume that T has a fixed point a of order 2™!. Let us prove, for instance, that in
this case T also has a fixed point of order 2™ry, where rg > [ is odd. The point « is a
fixed point of order 2™~ for the map S = T? (Lemma 2) and, by our assumption, S must
have a fixed point 8 of order 2™ !ry. This means that S2" ™8 = 3 and S8 # B for
i=1,2,3,...,2™ 1ry — 1, that is, T?"8 = 8 and T°8 # 3 for every even ¢ less than
2™ry. We have T3 # (3, since otherwise we would have S3 = (3. Thus, either 3 is a fixed
point of order 2™ry for T, or 3 is a fixed point of odd order, and then, by Theorem 3, T
has fixed points of every even order, and, therefore, there is a fixed point v of order 2™ry.

The proof that T has also fixed points of order 2™*'s, where s is any natural number,
is completely similar.

Thus, Theorem 5 holds for every n.

Theorems 2, 3, and 5, and the fact that there is always a fixed point of first order if
there are fixed points of higher order, can be put together in one single theorem.

Theorem 6. If the map T has a cycle of order 2™, n > 0, then T also has cycles of order
2t,i=0,1,...,n—1. If T has a cycle of order 2"(2m +1), n > 0, m > 0, then it also
has cycles of order 2¢,i =0, 1,..., n, and cycles of order 2"(2r+1),r=m+1, m+2,...,
and of order 2"1s, s=1,2,3,... )

Remark. Let o, ag,..., ax be the points of a given cycle of order k, and let a = min; o,
b = max; ;. Theorem 6 concerns only the points of the interval [a, b]. Outside [a, b] the
map may not have any points of cycles. So, the points of the cycles of the map T defined
asTz=Taforz <a, Tr =Tz fora <z < b, and Tz = Tb for z > b, belong to [a, b].

Let us define the diameter of the cycle ai, az,..., ax as the number do, oy, 0, =
max;<; j<k |0 — a;|. For every n, following k in (*), there is a cycle f31,..., B for which
dg, B2,..8n < day,az,...ar- Moreover, as is easily seen, there is a constant C, depending on
a1, a2,..., g, such that for every m > 1 following & in (*) there is a cycle v1,..., vm for
which d,, .. . > C.

Let us construct an example showing that Theorem 6 completely solves the problem on
the existence of cycles of some orders depending on the existence of cycles of other orders.

In the x, y-plane let there be given points AW (z(1), y(1)), A () 4@
AR (z®) (R with 1) < 2? < ... < 2(k), These points define the following contin-
uous function f(z): for z € [x(l), x(")], f(z) is a piecewise-linear function with vertices at
the points AWM, ..., A®): for z < 20, f(z) = y(!) = const., and for = > ), f(z) = y® =
const. We shall denote by T41) 42)... 4x) the map given by this function.

We shall carry out the construction without getting into the details.

Let us take in the plane’s two points A; and A;, symmetric with respect to the bisector
of the first and third quadrants. It is easy to see that the map T, 4, has only cycles of
first and second orders. Let us draw through A; a line a; perpendicular to the bisector,
and through A, a line ay parallel to the bisector. Let us take on a; points A;; and Az
symmetric with respect to A, and on a3, points As; and Ass symmetric with respect to
Aj, and such that |z1; — z12| = |91 — 722 < E’;ﬁl (we denote by z, the z-coordinate of
Ar). It can be seen that the map T4, 4,44, 4,, has only cycles of first, second, and fourth
orders. Now through the points A;;, Aj2 and As; we must draw lines a1, a1z, and a9
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perpendicular to the bisector, and through Ajs, a line ay; parallel to the bisector (clearly,
a1 and a2 will coincide with a1, and agg, with a;). Next, as before, on these lines one
must take points A111, 4112, A121,..., A2z symmetric with respect to A11, A1z, A21, A2g,
such that

|z11 — 712
|z111 = Z112| = |T121 — Z122| = |T211 — T212| = |21 — T22| < —
etc. Observe that one can draw parallel (and perpendicular) lines to the bisector through
any points and through any number of these points, provided this number is odd.

The map T4a,;..1;A;1;...19-Azs..2 has only cycles of orders 1, 2, 22,..., 2"*t1, To fix the
—— S S
n+1 n+l n+1

ideas, assume that the line aq;..1; is perpendicular to the bisector. We replace the two

n+1
oints Ajir..11(11.-11, Y11.-11), A11r.-12(T11...12, ..12), in the =, y-plane by the points
p 11111 (1111, Y11-11)s A111-12(211.-12, Y11--12) y-p y p
n+1 n+1
A10(z10, ¥10), A20(T20, ¥20)s -+ -5 A2m+1,0(T2m+1,0, Yom+1,0) (see Fig. 10) where

10 = 21111 < T2m,0 < Tam-2,0 < *+- < T20 < Z30 < *** < Tam41,0 = L1112,
S—~— S——

n+1 n+1
Yio = Tit1,0 + (Y1113 — Tp-11), 1=1,2,...,2M, Yom+10 = Y1112
n+1 n+l n+1l

It is not hard to see that the map T,y Asg--Agms10411.21A11...20Asa...0, DaS Cycles of orders
TN~ S S~
n+1 n+41 n+1
1,2, 2%,...,2% 2*(2r 4+ 1), for r > m, and 2"*ls, s > 0, and has no cycles of any other
orders.

Theorem 6 and this example prove the theorem stated at the beginning of this paper.
The following result is related to Theorems 1-6.

Theorem 7. Between any two points of a cycle of order k > 1 there is at least one point
of a cycle of order | < k.

Let a > B be points of a cycle of order k, and let ng, ng be the number of points of
this cycle smaller than « and §, respectively. Clearly, k > n, > ng > 0. There are ny
distinct positive integers s;, 1 = 1, 2,..., ng, smaller than & and such that T%a < . Since
Na > ng, there is an s;,, 1 < ip < ng, such that T%a < o and T% 8 > B. But this
means that there is a point v € (3, a) for which T%0y = +; v is a point of a cycle of order
1<s; Lk

In conclusion, we observe that all the results may be translated into the language of
periodic solutions of the functional equation y(z + 1) = f(y(z)) (where z runs through
a discrete sequence of values). For example, if a map y — f(y) of the line into itself is
continuous, then 1) if the functional equation has a periodic solution of period k then it
also has periodic solutions of any period following k in (*), and 2) if the equation has no
periodic solution with period k then it has no periodic solutions of any period preceding

in (*).
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