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Abstract

The standard mapping is an analytical, reversible monotone twist mapping.
The appearance ordering, i.e., the so called dynamical ordering, of the symmetric
non-Birkhoff periodic orbits (SNBO) in the standard mapping is derived. Essential
use is made of the reversibility. After the establishment of various properties of
the symmetry axes under the mapping, two theorems on the dynamical ordering
are proved. Then the braids for SNBOs are constructed with the aid of techniques
developed in the braid group theory. The lower bound of the topological entropy
of the system possessing an SNBO is estimated by the eigenvalue of the reduced
Burau matrix representation of the braid constructed from the SNBO. Behavior
of the topological entropy in the integrable limit is discussed.




1 Introduction

The standard mapping 7" is defined in cylinder.

Yng1 = Ynt af($n)? (1)
Tpny1 = T + Yn+1 (Mod 27]'), (2)

where a is a positive parameter and f(z) = sinz. There are two fixed points P = (0,0)
and Q = (m,0), where P is a saddle and @ is an elliptic point(0 < @ < 4) or a saddle
with reflection(a > 4). For convenience, we call a point (27,0) a saddle P’

As we have repeatedly exploited its property in various occasions,!2!420:22.23) the
standard mapping belongs to a class of systems possessing reversibility(see §2.3). All
orbits are classified either into symmetric or non-symmetric ones. The standard mapping
belongs to a class of systems which are called monotone twist. All orbits are classified
either into monotone or non-monotone ones(§2.2). Symmetric monotone periodic orbits
exist down to the integrable limit. In a sense, these objects are not interesting. In order
to study the chaotic behavior of the system or how the system becomes more chaotic with
parameter, it seems necessary to study other types of periodic orbits. In the standard
mapping, symmetric non-monotone periodic orbits are quite suitable for this purpose.
There exist non-symmetric periodic orbits bifurcated from symmetric ones.??)

The appearance order of periodic orbits is called the dynamical ordering. The most
famous ordering has been proved by Sharkovskii® in one-dimensional mappings. Ex-
tensions to two—dimensional mappings and to systems described by ordinary differential
equations have been carried out by many authors.~1) In the preceding papers,"? we
studied the dynamical ordering of the symmetric non-Birkhoff orbits in the standard
mapping and its family mappings, and in the forced oscillator. In this paper, we extend
the dynamical ordering derived in these papers, construct braids for periodic orbits in
the dynamical ordering, and estimate the topological entropy of the standard mapping at
parameter values for which there are periodic orbits whose braid types are determined.
The appearance of non-Birkhoff orbits is related to the non-integrability of systems,!)?)
and to the breakup of KAM(Kolmogorov-Arnold—Moser) invariant curves.!!):?)

In §2, we provide several useful concepts and notation used in the following sections.
In §3, the properties needed in the proof of theorems are proved. The theorems on the
dynamical orderings are proved in §4. The braid for non-Birkhoff orbit listed in the
dynamical ordering is constructed in §5 and the topological entropy is estimated in §6.
In the final section, we point out several problems to be solved.

2 Preliminaries

2.1 Notation

We have defined the mapping in cylinder. In sections 3 an 4, we almost always work in
universal cover R? and use the lift mapping. We move from cylinder to universal cover




and vice versa when we construct braids of the non-Birkhoff periodic orbits in section
5. We lift the mapping T to universal cover in such a way that the fixed points of T" are
also fixed under the lift. Then the lift is uniquely determined. To avoid the notational
complexity, we use the same notation T for the lift mapping and coordinates (z,y) for
universal cover. We will make a note if there may be a possibility of confusion.

The orbit of a point z € R? is denoted o(T,z) = {...,T7'2,2,Tz,...}. Following
Boyland and Hall,'") we define the extended orbit of a point z € R? by

eo(T,z) = {T*z + (2n1,0) : k,l € Z}. (3)

We usually abbreviate o(T, z) and eo(T, z) as o(z) and eo(z). Let m(z)(resp. m2(2)) be
projection to the z-coordinate (resp. y-coordinate) of z. The rotation number v of an

orbit of z € R? is defined as

v = limsup sl e = :rrl(z).

n—oo n

(4)

2.2 Birkhoff and Non-Birkhoff periodic orbits
A point z € R? is called a p/g-periodic point for the standard mapping 7' : R? — R? if

Tz — (27p,0) = =.
A p/g-periodic point z € R? is called Birkhoff by Hall'® if for any r, s € eo()
mi(r) < m(s) = m(Tr) < m(Ts). (5)

Otherwise, the point is said to be non-Birkhoff. A Birkhoff(resp. non-Birkhoff) periodic
point is abbreviated as a BP(resp. NBP). Corresponding orbits are denoted as a BO

and an NBO.
We give a little bit more precise definition for non-Birkhoff periodic points or orbits.

If we lift a p/g-periodic orbit in cylinder to universal cover, there are p different orbits
corresponding to the original one. In fact, a p/g¢-periodic orbit in cylinder has ¢ points
in one period. In universal cover, the orbit cover p copies of cylinder in one period. In
these copies, there are q x p points. Therefore, we need p different p/g-periodic orbits.
Taking this into account, let us define two types of non-Birkhoff periodic points(NBP).

Definition. Suppose a p/g-periodic point z € R? is given.
(1) If for some r,s € eo(z) with r € o(s),

m(r) < m(s) = m(Tr) > m(Ts), (6)

then, point z is called a non-Birkhoff periodic point of Type L.
(2) If for any r, s € eo(z) with r € o(s),

m(r) <m(s) = m(Tr) < m(Ts) (7)
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and if for some r', s’ € eo(z) with r’ € o(s'),
m(r') < m(s) = m(Tr') > m(TS'), (8)
then, point z is called a non-Birkhoff periodic point of Type II.

Remarks.
1) Obviously, if a 1/g-periodic orbit is non-Birkhoff, it is always of Type I. Both Types

I and II are possible for p/q-NBOs (p > 2,9 > 2).
2) A point r € eo(z) satisfying

7 (T~ 'r) < my(r),mi(r) > m(Tr), or (9)
(T 1r) > mi(r), mi(r) < m(Tr), (10)

is called a turning-back point or simply a turning point. There is an even number of
turning-back points in universal cover in an NBO of Type I. There are no turning-back
points in an NBO of Type II. Points monotonically proceed to the same direction in the
z coordinate under the mapping.

In this paper, we restrict our attention to the first type. An example of NBOs of the
second type has been displayed in Refs. 6) and 8).

2.3 Symmetry axes and symmetric periodic orbits

A mapping is reversible if it is decomposed into a product of two involutions.!®) Since the
standard mapping is doubly reversible,'?) there are two forms of the product. Roughly
speaking, the first one represents the left-right symmetry, i.e., symmetric points are
disposed rather horizontally, and the second one the up—down symmetry, i.e., symmetric
points are disposed rather vertically. In this paper, we mainly use the first form. Thus
T is expressed as the product of involutions H and G.

T = HoG, (11)
G : (z,y) & (—z,y+af(z)) (Mod 27), (12)
H : (z,y) & (—z+y,y) (Mod 27). (13)

where G? = id = H? and detVG =detVH = —1. The sets of fixed points of G and

H are the symmetry axes. In universal cover, the symmetry axes are expressed in the

forms
ng) : & =2nm, (14)
ng) : z=2mm+m, (15)
Sy =2(z — 2mm), (16)
™ oy =2(z — (2m + 1)7) (17)




where m(—oo < m < o) is an integer. We denote S; = S}, S, = 59, S3 = 53, and
S, = 55. 5; and S; are symmetry axes of (G, whereas S; and Sy are symmetry axes of
H. In order to specify a branch of symmetry axis with y > 0 (resp., y < 0), we add a
suffix +(—) to the expression of axis.

A periodic orbit which has points in symmetry axes is called symmetric. A p/g-
periodic symmetric Birkhoff(resp. non-Birkhoff) orbit is denoted by an p/g—SBO(resp.
an p/g-SNBO). A point of an SBO(resp. an SNBO) is denoted by an SBP(resp. an
SNBP). Let {po,p1,--,ps-1} be a set of points from one period of an p/¢—SBO or an

p/q-SNBO. We summarize the relation of these points and the symmetry axes in Table
1.12).16)

Table I. The relation of the symmetry axes and the symmetric periodic orbits.

p(>0)| g | po | Transit | p(> 0) q po | Transit
Odd 2k | Sy | px € S 0Odd 2k+1 1 5 Prk+1 € Sy
Odd 2k Sz Pk € 51 Qdd 2k + 1 82 Pk+1 € 83
Odd |2k | Ss|pre Syl Odd |[2k+1|S3 | pr €S,
Even |2k | S, |pr€S1 | Even |2k+1 |5 | prs1 € 53
Even |2k | Sy |pi€ Sy || Even |2k+1 | Sy | pes1 € 54
Even |2k | Ss |pr € S3 || Even |2k+1| S5 | pr €51
Even |2k | Sy |pr €Sy | Even |2k4+1| 54| pr €5,

Here we present an easy way to distinguish SNBPs from SBPs and distinguish two
types of SNBPs. Let us suppose that a p/g—periodic point is bifurcated in a symmetry
axis. We claim that this is a non-Birkhoff periodic point. Indeed, let us suppose the
point is bifurcated in either S; or S;. We already have an p/¢-SBP in the axis. This
means that the whole p/g-periodic orbits are not in the graph of a Lipschitz function,*6)
which implies that new born point is a non-Birkhoff point. Next, let us take a positive
rotation number and suppose a point r is bifurcated in either S3; or Syy. Let s be the
Birkhoff point in the axis. Assume that r and s satisfy the relation m,(r) < m;(s). One
easily confirms that 7;(T"1r) > 7;(T"'s). This means either r or s is non-Birkhoff.
Then r is non-Birkhoff. For a negative rotation number we take points in S;_ or Ss_
and argue in a similar manner.

Thus we have proved

Proposition 2.1. Symmetric periodic points bifurcated in symmetry axes and stay
there are SNBPs.

Next let us see, using examples, the geometrical difference of SNBPs of Types I and
II. Suppose that T?r ¢ T2S§‘33 N Si(i). Then r € Sy is an 1/3-SNBP of Type [, since
m1(r) < m(Tr) and 7 (Tr) > 7(T?r). Suppose that T?r € sz’ﬁ_) N S;(,i_) and this point is
bifurcated via saddle-node bifurcation. Then r € ST, is an 2/3-SNBP of Type II, since
ma(r), mo(T'r), mo(T?r) are all positive and there are no turning-back points.




2.4 Stable and unstable manifolds

Two saddles P and P’ have stable and unstable manifolds. Let W} be a branch of
unstable manifold starting at P toward the right direction and W} be a branch of stable
manifold going toward P’ from the left side in universal cover. Let W72 be a branch of
unstable manifold starting at P’ and W2 be a branch of stable manifold going toward P

(see Fig. 1).

0 0 0
arspl s/ S Sy /

X

Fig. 1. Structure of stable and unstable manifolds in the standard mapping at a = 3.2.
The symmetry axes S}G)(i =1,---,4) are also displayed.

The existence of transverse intersection of W,! and W! at u has been proved,'® where
u is an intersection point of W, and Ség_). The slope of W, at u is larger than that of
W,. Due to the up-down symmetry, two unstable manifolds Wl and W? are symmetric
with respect to @. This is the case also for W} and WZ. Hence W? and W} intersect
transversely at u’ where v’ is the symmetrical point of u with respect to Q. Due to the




reversibility, the stable and unstable manifolds are related by

Wi = Wi, (18)
R =, (19)

withet = 182

Let 7, s € W, where r is closer to P than s is along W,. A closed arc of W, between
r and s will be written as [r,s]w,. Open and semi-open arcs are defined similarly.
Arcs of other manifolds are defined in a similar manner. Points u and v, and their
forward and backward iterates are the primary homoclinic points.'®) Let v, = [u, v]w:
and 7, = [u,v]w:. Let V be an open region bounded by v, and v and U an open region
bounded by [T'v,ulw: and [T~'v,ulw:. These are primary homoclinic lobes. Due to
Eq. (18), two lobes U and V are related by

U — 6V, (20)

We define the open intervals in the symmetry axes.

™ = T"vNSE™ (m>0,n21), (21)
Jem = v nSE™ (m>1,n 2 1), (22)
KC™ = TV nSE™ (m > 0,1 2 0), (23)
LEm = prap q g™ (> 1on > 0. (24)

These may be empty for a certain range of parameter values. In Fig. 2, several intervals
are displayed. We further introduce

IGO0 erten e O s L) (25)

KGCM = it pe ) k) (26)
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Fig. 2. Intervals Il(o), Jl(_l), Kée), I(fo) and LS‘I) are observed at a = 8.

We write
plg € IT™ (27)

if an p/g-SNBP exists in I{~™). We use the same notation for other intervals. We define
the critical parameter values.

[1] ac(p/q € I{"™) = inf{a > 0: p/q € II™}.

[2] a (1™ = infla > 0: I\ £ 0.

The critical values for SNBPs in other intervals are similarly defined.




3 Properties

Property 3.1. Let r € V and s € U. Then we have

T < m(r) < 2m, (28)
0 <m(s) <. (29)

Proof. We have my(u) = 7 and m < m1(v) < 27. Thus V is located in the region between
x = m and x = 27. The first relation is proved. Equation (20) implies the second one.

Q.E.D.

Let D be an open region bounded by By = [Q,u].0, B2 = [u,v]w;s, Bs = [v, P'lw:,
( :
and B; = [, P'] in the  axis, and let Z be an open region outside D satisfying y > 0
and y < 2(z — ).

Property 3.2.

TDNZ = 0. (30)
Proof. 7B, is a line segment of y = z — 7 in D and then 7B, N Z = (. TB; is
[T'v, P'lw;. One easily confirms my(T's) < 0 for any s € B,\{Q, P'}. So TByNZ = {).
Since T'B; NT' By = 0 holds, T'V is located in the region surrounded by T'B;, [T, P'lwz,
and T'By. Thus we have TB, N Z = (. Q.E.D.

Property 3.3. Any periodic point in primary homoclinic lobe V' is an NBP of Type 1.
Proof. Let z € V be a p/g-periodic point. The relation m;(2) — 7 (T 12) = my(z) > 0
holds. The orbit of z goes forward from T~ 'z to z. Thus the existence of turning-back
is obvious if p < 0. So we take p > 0. A point of TV is either in D or below the
z-axis. A point below the z-axis is a turned-back point. A point of TV C D under one
more iterate decreases its y-coordinate but never go into Z by Property 3.2. Since z is
a periodic point, its finite iterate goes out of D. It necessarily goes below the z-axis.
Therefore in any case, the orbit of z has a turning-back point. Q.E.D.

Property 3.4. I(-™) consists of a unique component. The same is true for other
intervals.

Proof. Let v, = [u, v]w:. The slope of the graph of +, strictly decreases as z increases.
The largest slope is at u and is greater than 1. So there is a unique point w € 7, at
which the slope is 1. Then 7~'4, has a unique point 7"'w at which the slope diverges.
This implies that there is only one component in [/ 1(0) if 1 {0) exists at all.

If Iéo) has two components, there exist at least three points in the arc T~2+, at which
the slope diverges. Then T+, has at least three points at which the slope is equal to
1, and thus it has at least three points at which the slope diverges. This contradicts the
above mentioned property of 7'"!v,. Repeating this procedure, the statement is proved.

Q.E.D.
Property 3.5. The critical values satisfy the following relations.

ao(I337) < aoI™), ai(JGT) < ad(JT™) (m > 0,0 > 1), (31)

n

20)
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n

a (K™Y < ao(KE™), ao(LET) < a(LE™) (m > 0,1 > 0), (32)

ae(IE™) < ao(IE™ D), a (JE™) < a(JE™Y) (m = 0,n > 1), (33)
ao(KE™) < a(KT™Y), a(LE™) < a(LE™ ) (m > 0,n > 0),  (34)
a(TE™ V) > a (L) > ao(I5™) > a(KE™) (m > 0), (35)
ao(KE™) > a.(IGT) (m > 0), (36)

ao(LS™) > a (JGT) (m > 0). (37)

Proof. Equations (31)-(35) follow from the construction of intervals and the lambda
lemma.?!) We shall give a proof of Eq. (36). Let us increase the parameter and suppose
T~ [u, v]w; touches Ség_) for the first time at some a. There exist an interval in y = z(z >
0) such that two end points are intersection points of T‘ [u,v]w: and y = z(z > 0).

By definition, the backward image of this interval is I . Thus we have the relation
a.(K K9 > a.(I{”). Repeating this, Eq. (36) is proved. The proof for Eq. (37) is
smrula.r Q. k1)

Property 3.6.
lim a.(R(™) =0 (38)

n—00
where R={I,J} (m>0,n>1)and R={K,L} (m >0,n >0).
Proof. According to the lambda lemma, the intersection of Wl(s) and Sl i ) exists for
any small @ > 0. This implies Eq. (38). Q.E.D.

Property 3.7.
lim T"R(™) =+, (39)

n—00

where R is defined in Property 3.6.

Proof. For simplicity let us only consider the case ® = I and m = 0. The proof for
other R and m is basically the same. Let I' = [v, Tu]W& and let (=% be the set of points
of T shifted to the left by 2kw,k > 1. Obviously I'(*) is an arc of the unstable manifold
emanating from a fixed point at (—2km 0) For a given a > 0, there is a minimum ko > 1
such that I['=%) N ). = (. Let ' = (-%), By the lambda lemma, 7™ has an arc
arbitrarily close to [P v]w: for sufficiently large n > 0. T" [ 0 is sandwiched by T"I* and
[P, v]wy. Q.E.D.

Property 3.8. If I(-™) exists at all, then it contains SNBPs of Type I. The same
property holds for other intervals J(—™) K(=™) and L{~™)

Proof. In view of Property 3.3, we need only to show that I{-™) contains a periodic
point, i.e., T*I{~™) intersects another symmetry axis for some k£ > 0. By the lambda
lemma, there exists a positive jo such that T+, N Séo_) # () for 7 > jo and in addition,
intersections are transverse. By Property 3.7, TI{™™ is arbitrarily close to v, as a
whole for sufficiently large n. Then one confirms that TFI ™ N S #Qfork=n+y
for sufficiently large j > jo. The proofs for other cases are similar and omitted. Q.E.D.
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Property 3.8 gives two relations for the critical values.

ac(p/g € RC™) > al(R™), (40)
lim ac(p/q € RT™) = ac(RT™) (41)

where R is defined in Property 3.6.

Property 3.9. The minimum period of SNBPs in I{~™) or J=m™) is 2n 4 1 where n > 1.
The minimum period of SNBPs in K{~™) or L™ is 2n + 2 where n > 0.
Proof. We know that T"I{-™) C V. At least one iteration is needed to go from V to
U. Due to the symmetry with respect to G, n iterations are needed to go from U to
I¢-™+D which is I{~™ shifted by 27 toward the right direction. Thus the first statement
is proved. _

We know that T*K{~™) C V. At least one iteration is needed to go from V to U,
and (n + 1) iterations are needed to go from U to K{™™*! due to the symmetry with
respect to H. The second statement is proved. Q.E.D.

Ll




4 Dynamical ordering

There are many types of SNBOs with 2n(n > 1) turning points if its period is large
enough. For example, if the period is five, SNBOs with two and four turning points are
possible. In the following, we restrict our attention to p/g-SNBOs (p > 0,q > 2) with
two turning points.

We introduce two symbols — (]) and +». Let R, R’ be one of I,J, K, or L. If the
existence of an p/g-SNBP in R(™) implies the existence of an p'/q'~SNBP in R;(r_m'),
then we write as )

PeRrtm™ 42 c RE™), (42)
q n A n

q

If both an p/q-SNBP in RC™ and an p'/¢'~SNBP in R;(,_ml) appear at the same value
of a, then

g € RC™ & % eRS™). (43)

4.1 Dynamical ordering for p/2— and p/3—-SNBOs

In the dynamical ordering derived in the next subsection, p/2— or p/3-SNBOs occupy
special positions. We summarize their properties in this section.

Property 3.9 implies that an p/2-SNBP appears in K(g_m) and L((fm). A dynamical
ordering among them proved in Ref. 22) is reproduced in Table II. For completeness
sake, we cite the short proof.

Table II. Dynamical ordering for p/2-SNBPs.

K « ITY « KTV & I§Y
0/2 «+

N

0/2 + 1/2 «

NN

0/2 « 1/2 « 2/2 «
NN LN

0/2 « 1/2 + 2/2 « 3/2 +
NN LN N
/2 « 2/2 « 3/2 + 42 +

Proof of Table I1. We estimate the critical values a.(p/2 € Ké*m)) and a.(p/2 € L[()"m)),
at which an p/2-SNBP appears in the corresponding interval.

ac(p/2 € K§™) = 2r(3+4m—p) (n>0,2m+1>p > 0), (44)
ac(p/2€Lg_m)) ~ 2r(l4+4m—p) (n>1,2m > p>0). (45)
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The fact that the z coordinate of p/2-SNBP is approximately equal to 37 /2 is used.
Equations (44) and (45) determine the dynamical ordering in Table II. Q.E.D.

We consider p/3-SNBPs appearing in [é_m) and J((,_m). The detailed discussion has
been done in Ref. 23). We show in Table III the extended ordering including the case

with p = 0.
Table III. Dynamical ordering for p/3-SNBPs.

O « g o 1Y UV
0/3 «
S
0/3 « 1/3 «
) )
0/3 + 1/3 « 2/3 «
1 S }
0/3 « 1/3 +« 2/3 + 3/3 «
\ \ } 1
1/3 « 2/3 + 3/3 + 4/3 «+

Proof of Table ITI We estimate the critical values a.(p/3 € I™™) and a.(p/3 € J\™™),
at which an p/3-SNBP appears in the corresponding interval.

ac(p/3€ ™) ~ 2Bm—p+9/4)7 (:>0,2m+1>p>0), (46)
ac(p/3€J™) & 2Bm—p+3/4)r (i>1,2m>p>0). (47)

The fact that the z coordinate of p/3-SNBP is approximately equal to 37/2 is used.
Equations (46) and (47) determine the dynamical ordering in Table III. Q.E.D.

4.2 Two theorems

Theorem 1. The following dynamical ordering for p/g-SNBPs in I{-") and J{~™) holds
with 0 <p < (2m+1) for I{-™) and 0 < p < 2m for vl

Ié_m),Jé_m): p/3 — p/4 — p/5 — p/6 —
& P 4 +

Il(’m),Jl(_m): p/5 — p/6 — p/T — p/8 —
l ! l |

Ié_m),Jz(_m): p/7T — p/8 — p/9 — p/l0 —
4 s b |

Proof. The conditions for p are determined by Eqs (46) and (47). We prove the cases
for SNBPs in I{~™). The proof for SNBPs in J{~™) is similar, and thus is omitted.
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(1) Proof of p/k € I™ — p/(k+1) € IF™(k > 2n +1).
(1-1) Both p and k are odd.

The assumption p/k € I{™ implies the relation T*+1/2[(-™) n Syim=(e=1)/2) o
0. Relation T*+1/21(=m) n S;m=t=1/2) £ @ follows from the relative positions of
Sym=G=0/2) opg grlm=to- DD Ty fact, S s located to the left side of
S, (m= (p_l)/z). The intersection points are those of SNBO with v = p/(k + 1) start-
ing from I{~™
(1-2) p is odd and k is even.

The assumption implies the relation T*2I(-™ N §;™~®=1/2) L The intersection
points are mapped under T to the left of S;_m_(p_l)/z) (see Fig. 3). This implies
T(k+2)/2]’£—m) A 84—_("1—(10*1)/2) £ 0.

(1-3) p is even and k is odd.

The proof is similar to (1-1), and thus is omitted.
(1-4) Both p and k are even.

The proof is similar to (1-2), and thus is omitted.

={am=lp=1)I'Z)
s

S;_(m—(P-l)/Z)

Fig. 3. Disposition of ;™ ®~V/%) and S{m=®=1/2) 3nd that of T*2I(-™) and
T(k+2)/21r(a m)
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(2) Proof of p/k € I™™ — p/(k +2) € IST) (k> 2n +1).
(2-1) Both p and k are odd.

The assumption p/k € I{~™) implies T(*++1)/2[(-™) 0 S;,Em_(p_l)/z) # 0. The relative
positions of T(*+1/2[(-m) and T(k+3)/21£;’f) are displayed in Fig. 4. T("*‘S)/QI,S:_T) is lo-
cated outside the closed area bounded by T**1)/2[{~™) and an arc of W!. We express this
configuration T+3/27(-™) o P+1/21(=m)  This implies T(E+/21C™ Qg M= =1/2) 4
(. The intersection points are those of p/(k + 2)-SNBOs starting in I,,{J_T).

For the other cases, the proofs are similar to (2-1), and thus are omitted. Q.E.D.

<

!

&/ _
‘\ w2 i

7 (k+3) /QI(-m)

n+l

Fig. 4. Relation of T"+1/2[(=m) and Tk+3)/2 ("),
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Theorem 2. The following dynamical ordering for p/q-SNBPs in K(~™ and L{™)
holds where 0 < p < 2m + 1 for K{~™ and 0 < p < 2m for L{™).

KS™ LE™: p/2 = p/3 = p/4 - p/5 —
{ il d: ol

K§‘m),L£‘m): p/4 — p/5 — p/6 — p/T —
& s 4 &

I{g"m),Lg_m): p/6 — p/7T — p/8 — p/9 —
1 o A’ |

Proof. Equations (44) and (45) determine the conditions for p. We prove the cases for
SNBPs in K(=™). The proof for L™ is similar.

(1) Proof of p/k € K{™ — p/(k+1) € K{™ (k> 2n+2).

(1-1) Both p and & are odd.

The assumption p/k € K™ implies T*-D/2K(-m) n 57 »=(=1/2) £ ¢ The in-
tersection points are mapped to the left of S;(m_(p_l)m. This implies T¢*+D/2 (=)
S;_(m—(P—l)/ﬁ) £ 0.

(1-2) p is odd and k is even.
The assumption implies 7%/2K{-™)n 8, ™=®=1/2) £ g, TH2 g (-mn g5 m=e-1/2) £ g

follows from the disposition of S5 ™~ ®=1/2) and gy (m=P=1)/2),

(1-3) p is even and k is odd.

The proof is similar to (1-1), and thus is omitted.
(1-4) Both p and k are even.

The proof is similar to (1-2), and thus is omitted.

(2) Proof of p/k € K{™™ — p/(k+2) € KT (k> 2n 4 2).
(2-1) Both p and k are odd.

The assumption p/k € K™ implies T*:-1/2K(=m)ng; ("= =1/D o g ang TR+1/2 T A
T(*-=1/2(~m)_ This implies T¢:+D2 K™ n 55 (m==1/2) 4 ¢,

For the other cases, the proofs are similar to (2-1), and thus are omitted. Q.E.D.

4.3 Accumulation of critical values

We now describe the behavior of critical values a.(1/(2i + j) € 1) and a.(1/(2i + j) €
Kz-(o)) as functions of 7 and j. We express the numerical results in a three-dimensional
plot(see Figs. 5(a) and (b)). The maximum is a.(1/3 € I{O)) in Fig. 5(a) and a.(1/2 €
Kéo)) in Fig. 5(b). For a fixed 7, the critical values decrease as j increases. The

accumulation value is ac(ffo)) (resp., a.( "1-(0))).
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Fig. 5. Three-dimensional plot of (a) a.(1/(2:+ j) €
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In the limit 2 > 1, the behavior of a.(I; )) and ac(f\ ) displayed in Fig. 6 is modeled
by

1
a.(I™), ao(K®) « = with o~ 0.93 (48)
ECZ
Here we discuss the meanm%‘ of taking the limit i — co for every 5. We sha.ll deﬁne
two critical values. Let a.(n; S ) be a critical value at which 7", touches 52 1 for
the first time. Repeating the same dlscuss1ons in Properties 3.6-3.8, we have

lim a,(1/(2i +j) € I”) = a.(j; S)(j = 2n,n > 1), (49)

lim ao(1/(2i+7) € )7) = a(j;S2)i=2n—1,n>1), (50)
lim a.(7; S&_) = 0. (51)
J]—00

The accumulation of a.(7; S£4) ) in the limit j — oo is shown in Fig. 7 and is modeled

by

ac(7; 35?4)_) x — with &~ 0.87. (52)

0.6

5id fes s S SNV SO, S S T, S

RS RIS NUNRUU SR UL SONLE SO W
®

(@]

log10(Critical Value)
S
2]

-0.4
-0.6
-0.8
<
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
log,.t

Fig. 6. Plot of a.(I{”)(square) and a.(K (O))(c:rcle) as a function of 1.
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5 Braid

We express the reason why we construct the braid of SNBO. If there exists a particular
periodic orbit in the system and its braid is pseudo-Anosov (pA) type, the lower bound
of topological entropy is positive and thus there exists chaos in this system. The concept
of pA is an extension of Anosov property showing the hyperbolicity of system.?®

Let us introduce notation. DOPR(_,,,) (R = I,J,K,or L) represents the dynamical
order itself realized in R where p shows the numerator of rotation number. DO%_ (¢, 1)
(R=1,J,K,or L) is the (7,7) element of DO%_,.,, where ¢ > 1 and 5 > 1 for I=™) and
JE™ and i >0 and j > 1 for K™ and L™,
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5.1 Braid for SNBOs in DOl

For an 1/(2: + 7)-SNBO with j = 2k + 1,k > 0,2 > 1, we divide its orbital points
{po,P1,-- -, P2k} of one period into four groups A, B,C and D as

Az{pﬁv'.'!pi—l}u Bz{p‘i)"'api-l-k}:
C= {P=‘+k+1, ~ :pi+2k+1}1 and D = {piyak+2," ", Drit2k}

where po is always taken in I, A\{po} and C are located between S and S{” and B
and D between S{” and 5. We have A\{po} = GD and B = GC by reversibility.

Fig. 8. The orbit of an 1/9-SNBP in Iéo) where an integer k stands for p;. The stable
and unstable manifolds are also displayed.

Figure 8 displays the orbit of an 1/9-SNBP in I:.(;D) where A = {po,p1,p2}, B =
{ps,p4}, C = {ps,ps} and D = {p7,ps}. The schematic version is illustrated in Fig. 9(a).
The group A is located to the left of W} and C is to the right. Due to the reversibility
with respect to S;EOJ, B is located to the right of W} and D is to the left.
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Fig. 9. (a) Configuration of four groups A4, B,C and D, and (b) reconstruction of these
groups into the fundamental orbital order.

For the behavior of the orbital points, we observe the following properties. These are
justified next paragraph.
[P1] There is one turing point in B and C.
[P2] For the points in A and D, the following relations hold.

T1(Pm) < T1(Pm) (53)

where 0 <m<m/<i1—-1linAdand i +2k+2<m<m' <2i+2k)inD.
[P3] For the points in A and C, the following relations hold if the corresponding points
exist at all.

T1(pi-1) < Ti(Pivaks1)s (54)
m(pice) < mi(Pigak), (55)
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[P4] For the points in B and D, the following relations hold if the corresponding points
exist at all.

m(pi) < mi(Pigort2)s (56)
T1(piy1) < mi(Pig2rss), (57)

[P5] The = coordinate of any point in B is larger than those of points in C.

Here [P1] means that one turning—back point is located in B and one turning-forward
point in C. [P2] means that the orbital points in A and D are well-ordered. In fact, the
turning back does not occur since the value of y—coordinate of orbital points is positive.
Equation (56) in [P4] is true since p; € V and piyarq2 € TU, and T'U is located to the
right of V. The other inequalities reflect the fact that piior42 in TU is mapped to the
right of Tv and p; in V' is mapped to the left of Tv, and so on. Note that psijort1 € T
is located in Sﬂ_) and p;yry1 € THHV is located in s, Operating G to the equations
of [P4], we have [P3]. [P5] is derived from the reversibility with respect to G.

Taking into account [P1] through [P5], we place the four groups of points in a line as

0o(1,5) = (ATC LB | D). (58)

A schematic illustration is given in Fig. 9(b). We call the expression an orbital order
of DO}« (i,7). The suffix o stands for ’odd’, i.e., Eq. (58) is for odd periodic orbits.
Three symbols 1,1 and | in the orbital order represent W, , S7, and W, respectively.
These symbols stress that four groups are separated by three objects. Later, these will
be frequently omitted. If in particular p; and p;yr+1 are the two turning points and
there are no other turning points, then we call the order the fundamental orbital order
(FOO). The role of the FOO in constructing braids will be seen in what follows.
Let us consider DO} (3,3). Its FOO(see Fig. 10(a)) is

0,(3,3) = (012654378). (59)

There are two additional orbital orders which satisfy [P1-5] and which can be realized
by actual orbits(Fig. 10(b) and (c)):

0'(3,3) = (012563478), (60)

0"(3,3) = (015263748). (61)

We can not exchange 1 and 5 due to [P3], and 4 and 8 due to [P4]. The orbital order
directly determined by the orbit displayed in Fig. 8 is O0/(3,3).

We describe now the construction of a braid of an 1/¢-SNBO using the information
on the orbital order. A braid is constructed in two steps. The first step is a construction
of (¢ — 1) strings from 0 to 1, 1 to 2, ..., (¢ — 2) to (¢ — 1), and the second step is that
of the final string from (¢ — 1) to 0.
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Step [1]. A string corresponding to the forward motion goes behind a string correspond-
ing to the backward motion when they cross.
Step [2]. The string from (g — 1) to 0 goes behind all other strings when they cross.
The first rule expresses the twist property and the second one the rigid rotation with
v = 1/q revolving round cylinder.

Braid ((3,3) constructed from O,(3,3) is shown in Fig. 10(a). Its expression in

terms of generators is
B(3,3) = o5 tog o5 oz o og G, (62)

where (3 = og---0,. Braid §/(3,3) constructed from O/(3,3) and braid 8”(3,3) from
07(3,3)(Figs. 10(b) and (c)) are expressed in terms of generators as

B'(3,3) = o505 o5 05 05 05 o, (63)

B"(3,3) = o705 o5 oy log oy Ce. (64)

These braids are equivalent to 3(3,3) via the Markov move as

B'(3,3) = 0405 ' 6(3,3)0y ' g6, (65)
B"(3,3) = 0307 '8'(3,3)05 ' 07. (66)
(a) (b) (c)
012654378 01256 34738 0152 63748

N

B i

0126543738 01256 34738
p(3,3) £ (3,3) £"(3,3)

Fig. 10. (a) Braid constructed from O,(3,3), (b) that from O](3,3) and (c) that from
07 (3,3) where an integer k stands for py.

0152 637438

To obtain 3”(3,3), we exchange two strings 4 and 7 in #(3,3). The string from 7 to
8 gets ahead of the string from 4 to 5 in the upper side. As a result, new intersection
point appears. We add o7 in the left side of 4(3,3). In the bottom, the string from 3
to 4 and the string from 6 to 7 do not intersect each other. In order to untwist them,
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we add o7 in the right of 3(3,3). Due to symmetry, we add o3 and o3 ' and thus have
£"(3,3). It turns out that the exchange of points in the orbital order does not change the
braid type if it does not violate [P1-5]. The construction of the FOO is simple compared
with that of other orbital orders. This is the reason why we use the FOO to construct

the braid.
Let us see what happens if we accomplish inhibited exchanges of two strings 3 and 7

and of strings 2 and 6 in Fig. 10(a). These exchanges do not satisfy [P3] and [P4]. We
have an orbital order (016254738) and have a braid o7'3(3,3)o3". Since the number
of intersection points of braid is different from that of £(3,3), the new braid is not
equivalent to 5(3,3).

Let us next consider periodic orbits of even period. We divide the orbital points (one
period) of an 1/(2¢ 4+ 7)-SNBO (j = 2k, k > 1) into {p;4+} and four sets A, B,C, and D

as

A= {pOJ T ﬂpi—l}a B= {Pi, T 1pi+k—1}a
C = {pishs1, > Pit2k}, and D ={piyort1, - ,Prit2k—1}-

and arrange them in a line as
O.(iyj) = (A1 C(i+k)B | D). (67)

where (z?k) stands for p;yi € 549 The symbols have the same meaning as before.
(1 + k) plays the role of . The FOO is defined as the orbital order in which turning

points are p; and p;y. i
Now the expressions of braids for 0,(2,3) = (0154326) and O.(2,4) = (01654327)

are determined.

B238) = oiia, or'os 00y G
= ol 0y 05 05 a5 Oy “Ci, (68)
B(2,4) = o307 0 05 05 05 0 05 (s,

-1 1 1 1 1

= 0, 05 053 0y

o5 lor (s, (69)

where Reidemeister and Markov moves®+?*) are operated to derive the second equation
in Eqs. (68) and (69). As a result, the expression of braid for O,(i,7) or O.(s,7) is
derived.

el
04 O3

B(3,3) = (PTGt (70)
where p, = 01+ 0p_; and (, = Oy - - 0y.

Here let us compare 8(i, j) and braids investigated by Boyland.®) Consider two annuli
and (2i+j) strings connecting them. The braid (;}'; pj; means that the first string passes
behind the second through (j + 1)-th strings, and then passes in front of these strings.
This twisting is caused by the non-Birkhoffness of the orbit. The braid (3;;; represents a
rigid rotation of a 1/(2¢+ j)-Birkhoff orbit. According to this geometrical interpretation,
the braid (i, 1) corresponds to the braid constructed by Boyland.
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5.2 Braid for SNBOs in DO,
5.2.1 Braid for SNBOs in DO} with i > 1

Figure 11 displays SNBOs starting in ng_). The points of one period of an orbit are
grouped into four sets A, B,C and D. For even period g=214+74+1 (j =2k—1,k > 1),
we define the orbital order.

Oc(1,7) = (ATCIB.|D), (71)
A={po,--+,pi-1}, B={pi," -, Pirs-1},
C= {Pz‘+k, =8 aP:‘+2k—1}, and D= {pi-l-?ka £ 7P2i+2k+1}-
The FOO is such that p; and p;;9;—; are the turning points. For odd period ¢ =
21+7+1(j =2k, k> 1), we define the orbital order.
0.(,5) = (ATC(i+k)B|D), (72)
A ={po,---,pi-1}, B=1{pi," " Piri1},
C = A{pit+kt+1, - Pit2x}, and D = {piyakt1, ", P2it2k}.

The FOO is such that p; and p;yqr are the turning points. Note that A = GD and
C = GB hold in both O.(z,7) and O,(z, 7).

2 > [® Tv o4
3 :
2 210 5
y 1 y 1
0 0 /
| -1
- =21 3 e ¢ 2
7) 3 4 5 6 7 1 2 3 4 5 6 7
X
5 5
4 41 3% - &5
3 3
2 2
y]- y]' s ] 6 e
015 01 7
-1 -1 4 3
—2 __2 ® [ ]
I 2 3 4 5 6 7 1 2 3 4 5 6 7
X X

Fig. 11. (a) 1/4 € K®, (b) 1/5 € K19, (c) 1/6 € K{¥ and (d) 1/7 € K
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Using the same rules as in §5.1, the braid 3(z, 7) for DO}&-(O)(i,j) is derived.
Bi,3) = Cj_-}-llp_'i_-ilgﬁ+j+1- (73)

5.2.2 Braid for SNBOs in DO} with 1 =0

In Fig. 12, two orbits with v = 1/2 and 1/3 are displayed. For both orbits, the turning
back of the orbit occurs at py (symbol 0 in the figure).

10 10
] (a) 0 2 g (b) ﬁ 3
6 6
4 4
Y 2 )
O}« . 0 .
_9 1 / 21 2 ¢ 1/
0 2 4 6 8 10 12 0 2 4 6 8 10 12
. x

Fig. 12. (a) 1/2 € K and (b) 1/3 € K{*.

In order to have a braid of pA from an 1/2-SNBO (DOgk (0,1)), we need at least one
more string. To accomplish this, we use the information in the vicinity of the period-2
orbit. We first deform cylinder to annulus. Next we shrink the inner circle of annulus to
a point (termed as ¢). The point ¢ stands for the fixed point at infinity. A string from
¢ to ¢ is the additional string. We construct the braid of three strings connecting two
annuli. Let a string from po to p; be A, a string from p; to pp be B and a string from c
to ¢ be C. Two strings A and B revolve round c. This gives how to intersect two strings
(A and C, B and C). If A and B intersect each other, we draw the string of the forward
motion behind the string of the backward motion. This intersection corresponds to the
twist property. As a result, we have the expression of braid.

B(0,1) = o105 oy o200 = g0y (74)

The braid 3(0, 1) expresses the tangled structure of the braid of the period-2 orbit and
that of c.
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Orbit on Cut and open

(a) cylinder _ (b) e LN

L5052 ,
To annulus
4—-Q—>

After
modification

R

(¢) Reconnect

Rotate
180°

- A

i g

Fig. 13. Deformation of cylinder to annulus ((a) — (b)). Cutting and recombination of
annulus ((b) — (c) ). After rotating (c) by 180°, we have (d)

Next we construct the braid for an 1/3-SNBO. The orbital order is O, = (1 210 |),
and this gives a braid o7'o;!. But this braid is not pA. We apply the transformation
illustrated in Fig. 13. The first step is the deformation of cylinder to annulus. We cut
open annulus and glue both borders at the opposite side so that the inner and outer
circles exchange their role. Thus we have new orbit in the modified annulus and have
the expression of braid.

B8(0,2) = .a7'op o7 o) a5 oy,
= (o7'o7 o107t (75)

Equation (75) implies that 3(0,2) is pA.
The orbital orders for the elements with j(> 2) of ¢ = 7 + 1 are derived.

0.(0,5) = (1 BkA ), (76)

where A = (po, -, pk-1), B = (prs1, - ,p2x) (7 = 2k,k > 1) and py and py are the
turning points, and

0.(0,5) = (Tt BT Al), (77)
where A = (po,--,Pk)s B = (Pry1,* *,Pws1) (7 =2k + 1,k > 1) and py and pyy,, are
the turning points. In both expressions, B = G.A holds.
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These determine the braids o' - - o;*. Unfortunately these are not pA. Therefore,
we apply the transformation mentioned above and then have the braids of pA.

B(0,75) = P;&Cj_-i-ll (7 = 2). (78)

6 Topological entropy

We have derived braids of SNBOs in §5. In this section, we use these to estimate the
lower bound of the topological entropy of a system which possesses an SNBO with braid
B. The lower bound A(8) of the entropy can be estimated by the maximum absolute
eigenvalue (Anaz = Max(|)i|)) of the reduced Burau matrix representation Mg(t).25)26)

h(B) = 1n Amas. 79)

(
The reduced Burau matrix representation Mp(t) has a parameter ¢ defined by ¢ =
exp(2d) (0 € § < 27). In order to calculate h((3), we need the value of Max(|A;|) as
a function of t or §. For the braid of the third order, A\nqz is obtained at ¢t = —1.23) We
need numerical calculations for the braids of arbitrary orders. In Appendix, we give a
sample program written by MATHEMATICA?" to construct the reduced Burau matrix
representation and to calculate its eigenvalues. Figure 14 displays the numerical results
of Max(|A;]) as a function of 6.

(b)

2l

(a)
2 2
1.8 1.8
1.6 [ 1.6

1.4 1.4
1.2 1.2
e : —| 1
0 1 2 3 4 5 6 1 2 3 4 5
6 6
(c) (d)
1.7
1.6 /\/\ /\/\ 1.6 /\ [\ /'\
1.5 L e B
1.4 PoE O\ H 14 /\ [\
S 1.3 N R R N
I.2 : 1 B o« B & 1.2 P @ B = ek
: : 1.1 S :
1 l—— : . ] 1l== s = s pIRD.
0 1 2 3 4 5 6 1 2 3 4 5
8 8

Fig. 14. The 6 dependence of Max(|\;|). (a) 1/4 € I{”,(b) 1/5 € I (c) 1/6 € I{” and
(d) 1/7 € I
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6.1 Topological entropy estimated by using SNBO in DO}

We observe the following property for braids of odd orders through numerical calcula-

tions. Proof is in order. The property is generally not true for braids of even orders.
Then we only calculate h(3) for SNBOs with odd periods.

Observation. \,,,; is determined by the maximum absolute value of the real root(> 1)
of eigenfunction at ¢t = —1.

We derive the eigenfunction of the reduced Burau matrix for braid 8(1,7) = (i} pi1Cive
in DO} (1, ) where j is assumed to be an odd integer satisfying j > 1. For example,
Eq. (80) gives the reduced Burau matrix with t = —1 for 8(1,3) = o3'0; 07 04 of
1/5 € 119, and Eq. (81) is its eigenfunction.

1 -1 0 0

11 0 -1 0
M5(1s3)(_1) - 1 0 R | ’ (80)

0 0 -1 1
M 3034302 -3 +1=0. (81)

The eigenfunction for any j is obtained in Eq.(82).
: g A—2)(Wt—2) -3

AMFLL3N (=N + 1= ( ) )= 0. (82)

= A+1

It is easy to see that the value of A, accumulates at 2 as j — oco. Equation (82)
corresponds to the expression derived by Boyland.®

In order to estimate A, for (¢, 7) element, we shall derive the eigenfunction for the
cases with 7 > 1.

2{3(% + 1) (=N + (4 -1) ZJ: (=\)F + 2251(41 +25 —2k—1)(=N)"=0. (83)
k=0 k=2i—1 k=j+1

Our main purpose is to estimate the topological entropy in the limit ¢, 7 — co. Here we
consider the limit j — co. We keep the most divergent terms in Eq. (83), and let these
be zero.

X)) =2, (84)
Next we consider the cases with 7 > 5 and thus have
i1 2i—1 2i+j-1
SSEE+HD(N 4+ 2+ 1) D (A + X (425 -2k - 1)(-N)F=0.  (85)
k=0 k=7 k=21
We also have _
(=N (1=X)=2. (86)
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For the cases with j = 27 — 1, the accumulation values A of topological entropy A(8(3, 7))
at the i—th row and the j—th column are same. Let us consider the limit 7,5 — co. Put
A =1+ ¢€(e > 0). In the case with € < 1, we have the relation ~» = e¢. Equations (84) is
rewritten in the form:

kEln(l + ¢) = In(2/e¢) (87)
where k = 27 — 1. In the limit £ — oo, we have the topological entropy A:
+ In(2k In(In(2k
h:%—f—O(%D—). (88)

Numerical results of Eq. (87) are shown in Fig. 15. For large values of k, these results
are in agreement with Eq. (88).

Equation (88) gives that the topological entropy is zero in the integrable limit and
also means that the system with a > 0 is pA. Combining Eqs. (48) and (88), we have
the topological entropy h as a function of @ in the limit a — 0.

~  In(1/a)
h W. (89)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
In(2(2i-1))/(2i-1)

Fig. 15. Accumulation of topological entropy .

6.2 Topological entropy estimated by using SNBO in DO
The topological entropy for DO} (0, 1) has been already estimated in Ref. 22).

R(B(0,1)) = 2+ V3. (90)
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We derive the eigenfunction of DO} (0, ;) for even j since Observation of §6.1 is true

in these cases. :
(A+3)A* =14+ 3. (91)

In the limit 7 — oo, we have |[A| — 3.

Next we study the topological entropy for DO}\.—(O)(i,j)(i > 1). In these cases, Ob-
servation of §6.1 is not true (see Fig. 16). Thus we calculate the topological entropy
numerically. The accumulation value of the topological entropy of the limit 5 — oo at
¢ =1 is In1.63, and that of the limit i — oo at 7 = 1 is In2. The topological entropies
fz,-(i > 1,7 — oo) and .;z_,(_] > 1,1 — oo) are displayed in Fig. 17, and accumulate to zero
in the limit 7,7 — oo showing the integrable limit.

i 1.4 |
12 12
1 — = l__—_ S
0. ki 2 3 & =3uae REEER T TR
0 9
© &)
el e i
o Lapads 1.5 Fifd
gl e o = Al e
iBfe g Bl
1s1 : 11 3 :
] l— —_— ] — % e
B b2 4 S Oisel i34 -5k
g 6

Fig. 16. The 6-dependence of Max(|\;]). (2) 1/5 € K@ (b) 1/6 € K (c) 1/7 € K?
and (d) 1/8 € K.
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Fig. 17. Accumulation of topological entropy.
7 Remarks

We refer to several points to be pursued.
[1] Forcing relation between different dynamical orderings, for example, DO%, and

DO .-
rII\‘o establish the relation, p/2- or p/3-SNBOs plays an important role.
[2] Dynamical ordering for the SNBOs with 2n (n > 2) turning points and the estimation
of topological entropies for these orbits.
[3] Appearance order of NBOs not having points in symmetry axes.
We have a hypothesis for their appearance, i.e., all NBOs not having points in sym-
metry axes are bifurcated from mother SNBOs.
[4] Dynamical ordering for SNBOs of Type II.
This will be useful to investigate the breakup of KAM curves.
[5] Appearance of NBOs in the systems not having the left-right symmetry.
We believe that two theorems proved in §4 are true if the symmetry breaking per-
turbation is weak.
[6] Forcing relation between the braids obtained in §5.
Can we derive the dynamical ordering of SNBOs by using it? This is a reverse
approach.
[7] Theoretical explanation of the power law decay of critical values obtained as Egs.

(48) and (52).




Acknowledgements

The authors express their thanks to Drs. T. Matsuoka and E. Kin for discussions.

References

1) K. Tanikawa and Y. Yamaguchi, Chaos 12 (2002), 33.

2) Y. Yamaguchi and K. Tanikawa, Prog. Theor. Phys. 106 (2001), 1097.

3) A. Sharkovskii, Ukr. Mat. Z. 16 (1964), 61.

4) L. Alseda, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in
Dimension One (World Scientific, 1993).

5) T. Matsuoka, in Dynamical System 1 (World Scientific, 1986), p. 58; Contemp. Math.
152 (1993), 229. See also Bussei Kenkyu(Kyoto) 67 (1996), 1.

6) P. Boyland, Contemp. Math. 81 (1988), 119.

7) S. Baldwin, Ergod. Th. & Dynam. Sys. 11 (1991), 249.

8) P. Boyland, Topology and its Appl. 58 (1994), 223.

9) M. Handel, Ergod. Th. & Dynam. Sys. 17 (1997), 593.

10) J. Los,L.H.E.S. (1997), 5.

11) P. Boyland and G. R. Hall, Topology 26 (1987), 21.

12) L. Leage and R. S. Mackay, Phys. Lett. A 118 (1986), 274.

13) G. D. Birkhoff, Acta. Math. 43 (1920), 44.

14) K. Tanikawa and Y. Yamaguchi, J. Math. Phys. 28 (1987), 921: 30 (1989), 608.
15) G. R. Hall, Ergod. Theor. & Dynam. Sys. 4 (1984), 585.

16) R. de Vogelaere, in Contribution to the Theory of Nonlinear Oscillations Vol.IV
(Princeton University Press, 1957).

17) P. Le Calvez, Dynamical Properties of Diffeomorphisms of the Annulus and of the
Torus (AMS, 2000).

18) V. F. Lazutkin, [. G. Schachmannski and M. B. Tabanov, Physica D, 40 (1989),235.
19) S. Wiggins, Chaotic Transport in Dynamical Systems (Springer—Verlag, 1991).

20) Y. Yamaguchi and K. Tanikawa, Prog. Theor. Phys. 103 (2000), 1127.

21) J. Palis and W. de Melo, Geometric Theory of Dynamical Systems (Springer, 1982).
22) Y. Yamaguchi and K. Tanikawa, Prog. Theor. Phys. 106 (2001), 691.

23) Y. Yamaguchi and K. Tanikawa, Prog. Theor. Phys. 104 (2000), 943.

24) S. Moran, The Mathematical Theory of Knots and Braids (North-Holland, 1983).
25) D. Fried, in Geometric Dynamics. ed. J. Palis Jr. Lecture Notes in Mathematics
1007 (Springer—Verlag, 1983). p. 261.

26) B. Kolev, C. R. Acad, Sci. Paris, 309, Ser. I (1989), 835.

27) S. Wolfram, THE MATHEMATICA BOOK, Fourth Edition (Cambridge University
Press, 1999).

28) A. J. Casson and S. A. Bleiber, Automorphisms of Surface after Nielsen and Thurston
(Cambridge University Press, 1988).

33




Appendix

A MATHEMATICA (Trademark of Wolfram Research) program which constructs

the reduced Burau matrix representation and calculates its eigenvalues as a function of

0 is shown below.

Explanatory note.
[1] In the first block, input two values of n (> 4) and ma where n is an order of braid

and ma is a number of division of 8.
[2] The second block is a preparation of generators.
[3] In the third block, input a braid by using s[k] and is[k] where s[k] is a generator oy
and is[k] a generator o} '
[4] In the fourth block, the eigenvalues are calculated and Max|);| is displayed as a
function of . Final output is A,qz-

A sample program determines the eigenvalues of a braid o,05 '03 .

Sample program

(* 1st Block *)
(* Input an order of Braid *)

n = 4;
(* Input a number of division *)
ma = 360;

(* 2nd Block *)

(* Construction of generators s[1] - s[n - 1] and is[1] - is[n - 1] %)

Clear[t];

nn =n-1; m=1; v = {0};

Do[v = Append[v, 0], {k, 1, nn - 1}];

Do[d[i] = ReplacePart[v, 1, il, {i, 1, nn}];

d[m] = ReplacePart[d[m], -t, m];

d[m] = ReplacePart[d[m], 1, m + 1];

s [m] Table[d[k], {k, 1, nn}];

m=1; v = {0};

Do[v = Append[v, 0], {k, 1, nn - 1}];

Do[d[i] = ReplacePart[v, 1, il, {i, 1, nn}];

d[m] = ReplacePart[d[m], -1/t, m];

d[m] = ReplacePart[d[m], 1/t, m + 1];

is[m] = Table[d[k], {k, 1, nn}];

Dol[v = {0};
Do[v = Append[v, 0], {k, 1, nn - 1}];
Do[d[i] = ReplacePart[v, 1, il, {i, 1, nn}];
d[m] = ReplacePart[d[m], t, m - 1];
d [m] ReplacePart[d[m], -t, m];
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d[m] = ReplacePart[d[m], 1, m + 1];

s[m] = Table[d[k], {k, 1, nn}], {m, 2, nn - 1}];
Dol[v = {0};

Do[v = Append[v, 0], {k, 1, nn - 1}];

Do[d[i] = ReplacePart[v, 1, il], {i, 1, nn}];

d[m] = ReplacePart[d[m], 1, m - 1];

d[m] = ReplacePart[d[m], -1/t, m];

d [m] ReplacePart[d[m], 1/t, m + 1];

is[m] = Tablel[d[k], {k, 1, nn}], {m, 2, nn - 1}];
m = nn; v = {0};
Do[v = Append[v, 0], {k, 1, nn - 1}];
Do[d[i] = ReplacePart[v, 1, i], {i, 1, nn}];

d[m] = ReplacePart[d[m], t, m - 1];
d[m] = ReplacePart[d[m], -t, m];
s[m] = Tablel[d[k], {k, 1, nn}];

m = nn; v = {0};

Do[v = Append[v, 0], {k, 1, nn - 1}];
Do[d[i] = ReplacePart[v, 1, i], {i, 1, nn}];
d[m] = ReplacePart[d[m], 1, m - 1];

d [m] ReplacePart[d[m], -1/t, m];

is[m] = Table[d[k], {k, 1, nn}];

(* end *)

(* 3rd Block *)
(* Input a braidtype *)
b = s[1].is[2].is[3];

(* 4th Block *)
(* Calculation of Eigenvalues *)
Do [
theta = 2Pi/max*k;
t = Cos[theta] + I*Sin[thetal];
gg = Eigenvalues[N[b]];
Do[e[i] = Abs[Part[gg, i]], {i, 1, nn}];
y[k] = Max[Tablel[e[k], {k, 1, nn}]];
x[k] = N[thetal, {k, 0, mal}];
(* Output *)
gl = Table[{x[k], y[k1}, {k, 0, ma}];
ListPlot[gl, PlotStyle -> {RGBColor[1, 0, 01}];
gg = Tablel[yl[k]l, {k, 0, mal}l;
Max[gg]
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If the eigenfunction of the reduced Burau matrix with ¢ = —1 is needed, delete the
fourth block and add the following statements.

(* Eigenfunction: f(x) = 0. Output is f(x). *)
t ==1;
Det[b - x#IdentityMatrix[n - 1]]
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