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Abstract

Birkhoff and Non-Birkhoff types of periodic orbits are defined in circle map-
pings. The dynamical order relation of non-Birkhoff periodic orbits (NBOs) with
period longer than equal 3 is proved. The braids are constructed for NBOs and
the topological entropy is estimated.

1 Introduction

Dynamics of one dimensional circle mapping offer useful information on periodic orbits,
quasi-periodic and chaotic motions.!~® In many cases, systems with one external pa-
rameter have been the target of research. The parameter region pertaining to the local
motion?) or to the Arnold tongues® has been investigated. Properties of systems in the
parameter region where local and global motions mix are not made clear. By the global
motion, we mean that of revolving the circle. In this situation, the mixing of the local
and global motions (this will be called the mixed state) induces complicated phenomena.
In this paper, we pay attention to the appearance of periodic orbits (called windows in
the bifurcation diagram) in the parameter region of mixed state, and try to estimate the
topological entropy of complicated motions.
We consider C° mapping f on circle S' defined by

Ont1 = f(0a) (Mod 1), (1)

where f(6) is assumed to satisfy the following conditions.

[1] F(0+1) = () + 1,

[2] f(6) has one local maximum point at 8., € (0,6.) and has one local minimum point
at Opmin € (0.,1) for some 0 < 6, < 1.

[3] There exist two fixed points §; and 6, satisfying 6. < 6, < 6, < 1. Note that 6, is an
unstable fixed point.

Since we discuss periodic orbits revolving the circle, we work in universal cover R!
of 81, In R, we use a lift f : R' — R! of f : S! — S!. The lift f is chosen to keep the
fixed points for f fixed, so it is uniquely defined.

We address the following questions on the circle mappings satisfying [1] — [3], and
answer partially to them. What periodic orbits exist in the mixed state, and what
types of dynamical order relation between them hold? What is the topological entropy
in the system? We use, in obtaining periodic orbits, the standard tools in the one-
dimensional mappings such as primitive mappings, covering relations, oriented graphs
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and so on. Construction of braids and estimation of topological entropy follow those of
our preceding articles.!?)13):14)

In §2, we introduce several definitions and notation, and prove the dynamical order
relation for non—Birkhoff type periodic orbits (NBOs) . In §3, the braids for NBOs are

constructed, and the topological entropy is estimated. In §4, we give several remarks.

2 Dynamical order relation

2.1 Definition and notation

Birkhoffness or non-Birkhoffness of periodic orbits has been introduced in two—dimensional
twist mappings.?) The notion is most relevant to circle mappings. A point 0 eRis
called a p/g-periodic point for fif

f(6)=0+p. (2)
The orbit of § is O(8) = {---, f~2(8),8, f(§),---}. The extended orbit of 4 is
0(0) = {f*(8) + m : k,m € Z}. (3)
A p/g-periodic point 8 is called Birkhoff if for any #,3 € EO(6)
F<d = f(F) < f(3) (4)

If the extended orbit of a periodic point has a couple of points not satisfying Eq.(4),
we call it the non-Birkhoff periodic point and its orbit the non-Birkhoff periodic orbit
(NBO). From now on, we use the convention O = f (90)

Let us consider a p/g-periodic orbit O(Ho) If 6, > O 1 and b, > 9k+1 hold at some
kEd £k<.g) Hk is ca.lled a turning-back point. If O < Op_y and O < 9k'+1 hold at
some k' (0 < k' < q), 0 is called a turning-forward point. We call these the turning
points. In this paper, we consider NBOs with turning points. Note that there are NBOs
with no turning points. 12) We can choose fo as a starting point of the orbit so that 0,
be the first tarning-back point. Let Hk +1 (ks > 1) be the first turning-forward point,
and ékb-i-l (ky > 1) be the last turning-forward point. If the orbit has only two turning
points, then k, = k,. We restrict our attention to NBOs satisfying the condition

fo < 01,11 < Oro41 < b1 (5)

Later, we categorize NBOs with 2n (n > 1) turning points by k, and the number of

turning points.
If a closed interval I C R! contains one turning point, we denote it by I. Let I and

I, be two closed intervals satisfying Int(I;) N Int(l;) = 0 where Int(]) is the interior of
I. If the relation I, C f(Il) holds, we write I; > I, and we say [; covers I,. We also
call I; > I, the oriented graph of mtervals or the covering relation.
The rotation number v of an orbit of 8 € R is defined by
"(f) — 0
-0 ©)

v = lim sup
n—00

A 1/¢-NBO with k, and two turning points is denoted by

(). "
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If the existence of a 1/¢-NBO with k, and two turning points implies the existence of a
1/¢'-NBO with k and two turning points, then we write as

2 2
(5).~ (@), ®
9/ ka 9/ k
and we simply say that (1/q)}, implies (1/¢')},. We also say that (1/¢'), is dominated
by (1/9)i,- |

2.2 NBOs with period-3

We assume that there exists a 1/3-NBO in the universal cover R' of S! in some parameter
set satisfying the orbital order

0Ség<éz<é1<1593:éo+l, (9)

where §; = fi(ég) and k, = ky = 1. This orbit is (1/ 3)3 following the convention adopted
in §2.1. Since the orbit turns back at 6;, we have §; < 6; < 6,. We define four intervals:

I, = [01émax]1 (10)

I2 = [émaxaémin]a (11)

I3 = [émin}1]7 (12)

SI = [1,0mn +1]. (13)

One observes that a (1/3)? exists if the covering relation
L -I-1, 5L (14)
holds. In order to guarantee (14), we use three conditions.

F0) < frmin, (15)

f(émin) < 6‘imaxa (16)

fOmax) > 1+ bmax. (17)

Fig. 1. The oriented graph of the intervals.




Equations (15)—(17) give an oriented graph of intervals shown in Fig. 1. This graph
contains the covering relation (14) as a subgraph. Analysis of Fig. (1) gives Proposition
1.

Proposition 1. (1/3)% implies 1/n-NBOs (n > 4).

Proof. A cycle I, = Is = I3 > I, = SI; gives a 1/4-NBO. Similarly, we can construct
a cycle with period longer than 4. (Q.E.D.)

2.3 Theorem
In this section, we elaborate the appearance order or the dynamical order of NBOs found

in Proposition 1.

Lemma 1. For 1/¢-NBOs with ¢ > 3, k.(> 1) and with two turning points for the
circle mapping f satisfying [1]-[3], the following dynamical order relation holds.

(1/3)2 — (1/42 — (@1/5)2 — (1/6)} —--.

) J . )
(1/5)2 — (1/6)2 — (1/7)% — (1/8)2 —---
) ! ! !

/73 = (1/83 — (1/93 — (1/10)f —--

| l ] !

Remarks. We will use the matrix notation to specify the position of NBOs in Lemma
1. Regarding the above table as a matrix, we take (1/(2: + 7))? as the (4,7) (¢,5 > 1)
element. Thus, for example, we say (1,1) — (1,2) if the forcing relation (1/3)} — (1/4)%
holds.

Proof: In order to prove Lemma 1, we use the primitive tight mapping?)®") which is the
simplest piecewise linear mapping having a periodic orbit with the given orbital order.
Using the information of the NBO defined by Eq. (9), we can construct the primitive
tight mapping F, shown in Fig. 2. In the figure, the relation SI; = I; + 3 holds and the
orbital order of the period-3 orbit is expressed by 0 — 2 — 1 — 3. Figure 3 is an oriented
graph showing the covering relation between intervals. Each interval I; in Fig. 2 has a
unit length. We can change the length and use another continuous function connecting
adjacent two points. However, new oriented graph for such mappings contains Fig. 3 as
a subgraph. The oriented graph shown in Fig. 3 implies the existence of a cycle from I
to SIl

Using the oriented graph, we can determine periodic orbits dominated by (1/3);. The
following cycle gives a period—4 orbit.

LsTBLrLL» L 8. (18)

The rotation number of the orbit is 1/4 since SI; C f?‘l([l). The orbit is non-Birkhoff
because there are turning points in I, and J3. Obviously we have kg = 1. Then the
orbit is (1/4)%. Thus (1,1) — (1,2) is proved. It is to be noted that the orbital points
of (1/4)? are not at the endpoints of intervals since these are points of (1/3)3. (This fact
is true for cases treated below.)




We have two cycles for period-5 orbit satisfying S1; C 5(1).

L=l Lxbs>L>5h, (19)
T B dy - 1o 5 I 5 G (20)

These give the same 1/5-NBOs with k, = 2. Thus (1,1) — (2, 1) is proved.
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Fig. 2. Primitive tight mapping constructed by (1/3)3.

Fig. 3. The oriented graph of the intervals, and the unnecessary arrows are omitted.

Next we prove the general cases of (i,5) — (¢,7 + 1) and (4,7) — (¢ + 1,7). The
existence of (1/(2i + j))? gives the primitive tight mapping shown in Fig. 4, in which
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]3’(1{) =1I,and I}, C I:_'(Ié) hold. The relation between the intervals is displayed in
Fig. 5, where unnecessary arrows are omitted. We want to find the cycle from I ! 0. S15.
The shortest orbit has a period (2i+j+1) and k; = i. Thus the relation (z,7) — (¢,7+1)
is proved. There are two ways to construct an orbit with period (2i+3542) and kp = i+1.
If we use I!,, twice, then we have I} = ff“ = Iy = Ly = -+ = SIL. If we use I,
twice, we have I!l > -+ > I3 = I, > I, > --- > SI}. These orbits are expressed by
(1/(2é+3+2))? . Asaresult, (z,5) = (¢+1,7) is proved. The proof completes. Q.E.D.

A
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Fig. 4. Primitive tight mapping constructed by (1/(2¢ + 7)) where I; = ILU I and
Liy2 = Ii[+2 U Izr+2‘

Q2 (2

1 6Ii+2_>1i+1_>"'_913_>72 — &

¥
Q—=> I g = L3 === Iy, ; =5

Fig. 5 The oriented graph of the intervals, and the unnecessary arrows are omitted.
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We have two ways to obtain NBOs of higher periods. One observes this by looking
at Fig.5 carefully. For example, the cycle

LI, >hL>=L>=I-I-I,~ >8I (21)

constructed by using the oriented graph shown in Fig. 5 gives an NBO with four turning
points, k, = 1 and k;, = 1 + 2. Using I, repeatedly, we can prove the existence of NBOs
with 2n (n > 2) turning points. Next using I}, , or I7, ,, we construct cycles of longer
periods without increasing the number of turning points. This property comes from the
fact that either of I and [;;5 contains a fixed point.

In the oriented graph constructed by the primitive tight mapping for (1/¢)", the
shortest cycle of an NBO from I; to SI; with 2n turning points not using the edgepoints
is (g +1). In fact, the orbit of (1/¢)" passes one edgepoint of I;1,, and the cycle not
using edgepoints passes I;,, twice such that it passes I£+2 to turn back and I, to go out
from the localized region. If we increase the number of turning points by 2, the period
of a new cycle increases by 3. Summarizing these facts, we have Lemma 2.

Lemma 2. For ¢ > 1 and 7 > 1, the forcing relations hold.
2 4 6
1 1 1
R R N SE 22
(2i+j)i_>(2i+j+3)i_>(2i+j+6)i_> 22)

Here we construct the order relation of NBOs with 2m (m > 1) turning points.

Lemma 3. For NBOs with v = 1/q (¢ > 3), k, (> 1) and 2m turning points in the
circle mapping [ satisfying [1]-[3], the following dynamical order relation holds.

(1/@Gm)i™ = 1/Bm+1))" — (1/Bm+2))i" — -

(1/B3m +2))2™ — (1/Bm+3))i™ — (1/B3m+4))2™ — ...
(1/@m+ 0P & (GmA5Em = (1/Bm+)R -

! Il )

Proof. The proof is similar to that of Lemma 1, and thus is omitted.(Q.E.D.)

From now on, the dynamical ordering in Lemma 3 will be called the dynamical
ordering on the m-th floor. m is the number of turning-back or equivalently turning-
forward points in an orbit. Consequently, the dynamical ordering on the m-th floor is
that for orbits with 2m turning points. Using Lemma 2, we can construct the dynamical
ordering between the orderings on adjacent two floors. We introduce three dimensional
notation (7, 7, m), and specify the position of NBOs, for example, (1/(3m))*™ at (1,1, m),
(1/(3m+1))¥™ at (1,2, m) and (1/(3m+2))2™ at (2,1,m). As a result, we have theorem
1 on the three dimensional dynamical ordering for NBOs.




Theorem 1. The following dynamical orderings for NBOs hold.

(4,5,m) — (4,7 +1,m), (23)
(4,5,m) — (+1,5,m), (24)
(4,5,m) = (i,5,m+1), (25)

where i, 7,m > 1 and an NBO of (7, j, m) element has a rotation number v = 1/(2: + 7 +
3(m —1)).

2.4 Existence of BOs and their dynamical ordering

According to a theorem by Boyland,®") if a 1/n-NBO exists, then there is a rotation
band defined by [0/1,1/(n — 1)], and there exists a BO with a rotation number in the
rotation band. Combining our results and this theorem, we have Proposition 2.

Proposition 2. A 1/n-NBO (n > 3) implies a 1/(n — 1)-BO.

Let us denote a 1/g-Birkhoff periodic orbit (¢ > 2) by (1/¢)s. There exist g points
in the region [0,6,) U (,,1) € S'. Using this fact and the condition [3] of f, we can
determine the dynamical order relation of them.

Proposition 3. The following dynamical ordering for BOs holds.

(1/2)B - (1/3)g — (1/4)B e,

Proof. We prove the relation (1/2)g — (1/3)p. The others are similarly proved and
then the proof is omitted. The primitive tight mapping allowing (1/2)p is displayed in
Fig. 6 where two fixed points are located in I; due to [3] and this interval is divided
into /! and I5. The oriented graph is obtained in Fig. 7. The existence of loop I} > I}
depends on the parameters and thus this loop is omitted. There exist two cycles not
containing turning points I; = I} > Iy = SI and I} = I > I5 > SI;. This implies

(1/3)5.(Q.E.D.)
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Fig. 6. Primitive tight mapping allowing (1/2)s.
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Fig. 7. The oriented graph of intervals constructed by using Fig. 6.




3 Braid and topological entropy

3.1 Braid

We construct braids from periodic orbits by using information on the order of orbital
points.6~%12) From now on, we use NBOs in the first floor (7,7,1). The periodic points
are located in the circle. Thus we connect 8, and 6,,; by an arrow. Examples are
displayed in Fig. 6 where symbol ¢ stands for §;. In Fig. 8(a), an arrow from 1 to 2
intersects that from k to k 4+ 1. In the braid, a string from 1 to 2 does not intersect
that from k to k + 1. This displays a braid for BO. Figs. (b) and (c) correspond to
braids for NBOs. In each braid, two strings intersect each other. If the orbit (fast orbit)
goes over the slow orbit or the backward orbit, the string of fast orbit passes behind the
string of slow orbit or backward orbit. Using this rule, two braids of Figs. (b) and (c)
are constructed.

k+1 1 k& 2 k+1

(a)
1 k 2 ktl

, s 1 k K+l 2
(b) N
™\

1 k k+1 2

RA

k+1

1 k 1 k+1 2 k

© N /

1 k+1 2 &

Fig. 8 Fig.(a) shows a part of BO and its braid, and Figs. (b) and (c) display the
intersection of braids due to non-Birkhoffness.

We show two braids for 1/5-NBOs expressed by the generator of braid.!")
B(1,3,1) = o3'o7'Cs =01, (26)

B(2,1,1) = o3'o3'o05 s =07 05 a7 07 G (27)
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where (5 = 04--- 0,1, and Reidemeister and Markov moves®) are operated to derive the
second expression. The difference of braids comes from that of kg. We have the braid
for an NBO of (7,7,1) element in Lemma 1.

ﬁ(i:ja ]-) = Ctti-llp‘i_-l-llc2i+j (28)

where p; = 0;-+-0;,_y and (; = 0;_;---0y. The part (3,4, is the braid of 1/5-Birkhofl

orbit and the part (i p;}; represents the non-Birkhoffness.

3.2 Topological entropy

We show the procedure to estimate the lower bound of topological entropy by using NBOs
in Lemma 1. First, we construct the Burau matrix representation®® corresponding
to the braid of an NBO. Next, we calculate the eigenvalues of Burau matrix. The
maximum (.. ) of the absolute values of eigenvalues gives the lower bound of topological
entropy,'®!11) expressed by h = In Aqe-

Numerical results for topological entropy are shown in Table I. The maximum value
is In(v/5 + 3)/2 = 0.962 - - - estimated by using (1/3)2.®) The entropy A(1,7,1) is not a
strictly decreasing function of 7, but it accumulates at In2 in the limit 7 — oo. This fact
implies that the entropy is larger than In2 for finite j. Finally it is noted that we can
not determine the forcing relation of NBOs by using the topological entropy estimated
in Table L.

Table I: Topological entropy A(i, 7,1) calculated by using the program in Ref. 12).

j=1] 2 3 4 5 6 7
i =1] 0962 | 0.776 | 0.767 | 0.713 | 0.714 | 0.694 | 0.698
2 1 0.652 | 0.575 | 0.558 | 0.530 | 0.512 [ 0.508 | 0.499
3 | 0.562 | 0.499 | 0.491 | 0.462 | 0.460 | 0.445 | 0.446
4 | 0.465 | 0.422 [ 0.416 | 0.398 | 0.389 | 0.382 | 0.373
5 | 0413 ]0.379 | 0.375 | 0.355 | 0.354 | 0.342 | 0.343
6 | 0.364 | 0.338 | 0.334 | 0.321 | 0.315 | 0.310 | 0.304
7 10.332 [0.310 | 0.307 | 0.293 | 0.292 | 0.282 | 0.283

4 Remarks

Suppose that f has one bifurcation parameter a, and assume the existence of a critical
value a. such that the mixing of the local and global motions exists at a > a,. The
transition from a local state to a mixed state is called the crisis. Let a.(1/g|}. ) with
q = 2i + j be a critical value at which an NBO of (1/q);, appears due to the tangent
bifurcation. For BOs, the critical values a.(1/q|g) (g > 2) are also defined.

In the limit ¢ — oo, 6, tends to #, from the left side. In the limit ;7 — oo, 6;12 tends
to @, from the right side. The converged situation is that of crisis. We have the relation:

lima.(1/q[f) = a, for fixed j, (29)
leac(lfqlf) = a, for fixed i, (30)
J—ro0

limac(1/ql) = @ (31)
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where a critical value a* is the value for which f(0ma:) = 6, holds. The topological
entropy is larger than In 2 at a > @, since the limiting value is In2 for : = 1 and j — oo,
and Egs. (29) and (30) hold.

We have used only the continuity of mapping function to prove Lemmas. Then
Theorem 1 holds for a climbing sine-mapping (CSM) defined by

K
f(8) =6+ = sin 276 + Q, (32)

where K > 0 and © > 0. This mapping satisfies the conditions [1]-[3] where 8. = 1/2.
In the case that § is fixed, we can regard K as a bifurcation parameter ¢ mentioned
above. Thus Eqgs. (29)-(31) hold for CSM. There exists the parameter region satisfying
a. = a. Using CSM, we can draw the bifurcation diagram and confirm periodic windows
corresponding to NBOs in Theorem 1 and to BOs in Proposition 3. However the structure
of windows after the crisis is beyond all imagination.

The structure of dynamical ordering in Lemma 1 is similar to those derived in the
standard mapping,'? the standard-like mappings,'® and the forced oscillator.!¥) The
dynamical ordering similar to Lemma 1 may hold in the systems possessing the mixed
state.
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