山口喜博(帝京平成大学),谷川清隆(国立天文台)

Abstract

標準写像において、Farey 型対称 Non-Birkhoff 周期軌道 (NBF) の順序関係を用 いて NBF の回転数が有理数に漸近する場合と無理数に漸近する場合の性質を議論し た.次に KAM 曲線が崩壊する臨界値と NBF が出現する臨界値の関係を導いた.ま た2つの共鳴チェーンをつなぐ遅い軌道を見いだした.

1 序

我々が研究する標準写像 \widetilde{T} は無限円筒面 $[\widetilde{x} \in S^1 = [0, 2\pi), y \in \mathbf{R}]$ で定義されている.

$$y_{n+1} = y_n + f(\tilde{x}_n), \qquad (1)$$

$$\tilde{x}_{n+1} = \tilde{x}_n + y_{n+1}.$$

ここで $f(x) = a \sin x$ である.またパラメーター a は正である.原点 $\tilde{P} = (0,0)$ はサドル不動点である.他の不動点 $\tilde{Q} = (\pi,0)$ は,0 < a < 4 では楕円点であるが,a > 4では反転型サドルとなる.

前の論文(以下では論文Iとして参照する)[1]において、規約分数を回転数として もつバーコフ型サドルの安定多様体の弧と不安定多様体の弧で囲まれた共鳴領域を 構成した.共鳴領域の内部にはバーコフ型楕円点が存在する.この回転数はバーコフ 型サドルと同じである.バーコフ型楕円点の共鳴領域をすべてを集めた集合を共鳴 チェーンとした.これらの共鳴チェーンを利用して、ファレイ型(対称)ノンバーコ フ周期軌道(NBF)を導入した.系のもつ可逆性(対称性)と、共鳴チェーン内におけ る点の運動の性質を利用して、NBFの存在を証明した.次にNBFに対する出現順序 関係を導いた.これらの結果は下記の定理1.1としてまとめられている.

定理 1.1 において、削除 Stern-Brocot 木 (TSBT) を利用する [1, 2]. これに関しては §2 で詳しく説明する. 2 つの周期軌道の強制関係を矢印記号 ()で表す. すなわち $O_1 \rightarrow O_2$ は、周期軌道 O_1 は別の周期軌道 O_2 の存在を導くことを意味する.

定理1.1 (論文 I).

標準写像において下記の主張が削除 Stern-Brocot 木の任意の要素 p/q に対して 成立する.

(i) *p*/*q*-NBF が存在するパラメーター値 *a* が存在する.

(ii) p/qの左の子を p_l/q_l とし、右の子を p_r/q_r とする. このとき順序関係

$$p/q-\text{NBF} \rightarrow p_l/q_l-\text{NBF}, p_r/q_r-\text{NBF}$$

が成立する.

(iii) $n \ge 2$, $q \ge 5$ と $p \ne 1$, q-1 に対して, 次の 2 つの順序関係が成立する.

$$1/n - \text{NBF} \rightarrow p/q - \text{NBF}$$

$$(n-1)/n$$
-NBF $\rightarrow p/q$ -NBF.

(iv) ボイランド型組ひも $\sigma_1^{-2} \rho_q^p \ (q \ge 3)$ を利用して得られる位相的エントロピーの下界を $h_{\text{top}}^{\text{B}}$ とする. p/q-NBF から計算される位相的エントロピーの下界は $h_{\text{top}}^{\text{B}}$ 以上である.

本論文では論文 I の結果を 3 つの異なった方向に拡張する. 第1の方向は,新 しいタイプの周期軌道の導入である. p/q-NBF は 2 つの共鳴チェーン $\langle \mathcal{Z}_{p_1/q_1} \rangle$ と $\langle \mathcal{Z}_{p_2/q_2} \rangle$ に軌道点をもつユニークな周期軌道である. ここで $p = p_1 + p_2$ と $q = q_1 + q_2$ が成立し,かつ $p_2q_1 - p_1q_2 = 1$ も成立する. ただし p_i/q_i (i = 1, 2) は SBT に属する 要素である. 詳細は §2.2 にある. 次に簡単な周期軌道のタイプは 2 つの共鳴チェー ン $\langle \mathcal{Z}_{p_1/q_1} \rangle$ と $\langle \mathcal{Z}_{p_2/q_2} \rangle$ に軌道点をもつが, NBF が満たす条件を満たさない周期軌道 である. つまり p_i/q_i (i = 1, 2) は SBT に属する要素であるとして, $p = p_1 + p_2$ と $q = q_1 + q_2$ が成立し,かつ $p_2q_1 - p_1q_2 \ge 2$ を満たす周期軌道である. このタイプの 周期軌道を p/q-NBNF と呼ぶ. §3 において NBNF と NBF の間に成立する力学的順 序関係を導く. この結果が定理 3.1 である.

第2の方向はパラメーターの値を調べる方向であり.これは必然的に極限の軌道を調べる事に対応し、ひいては系の位相的エントロピーの極限を調べる事になる. ここでいう極限の軌道とは、SBT の中の径路を下って行ったときに、その径路中にある有理数 p_n/q_n を回転数としてもつ NBF の極限である.径路のある有理数列を $\{p_n/q_n\}_{n\geq 1}$ と書く.この列が有理数に漸近した状況に対応したパラメーター値における位相的エントロピーの下界を求める.この結果は定理 4.1.1 に記述されているが、非常に単純な規則を満たしている.またa > 0 における任意に小さなパラメーター値でも NBF が存在する事を示した.これは命題 4.2.1 において述べられている.最後に列 $\{p_n/q_n\}_{n\geq 1}$ が無理数 ω に漸近する場合を調べる.重要な結果として $\lim_{n\to\infty} a_c(p_n/q_n - \text{NBF}) = a_c(\omega)$ が得られた.ここで $a_c(p_n/q_n - \text{NBF})$ は p_n/q_n -NBF がサドル-ノード分岐で生じる臨界値であり、一方 $a_c(\omega)$ は回転数 ω を持った KAM 曲線が崩壊する臨界値である.これは定理 4.3.1 において述べられている.これより NBF は KAM 曲線の崩壊と同時に生じ、崩壊した KAM 曲線の近傍にあることが分 かる.

第3の方向は2つの共鳴領域をつなぐ非常に遅い運動をするNBの存在と関係している.この軌道はひとつの共鳴領域から出発しもう一つの共鳴領域に到達するに 非常に長い時間がかかる.これは定理5.1で述べられている.

第2節において数学的なツールをまとめる.また今までの論文で導入したいくつ かの概念も紹介する.第3節から第5節までが我々が得た結果である.

2 数学的道具

2.1 軌道,対称線ならびに周期軌道

我々はしばしば円筒面の持ち上げである普遍被覆面で作業を行う.そのために普遍 被覆面上で用いられる変数の記法が必要である.円筒面上の点 $\tilde{z} = (\tilde{x}, y) \in S^1 \times \mathbf{R}$ の持ち上げを $z = (x, y) \in \mathbf{R} \times \mathbf{R}$ と書く. 普遍被覆面上で, z_0 を初期点とする軌道 $O(z_0)$ を以下のように書く.

$$O(z_0) = \{\dots, z_{-1}, z_0, z_1, \dots\}.$$
 (2)

ここで $z_k = T^k z_0$ であり, T は \tilde{T} の持ち上げである. また z_0 の拡張軌道 $EO(z_0)$ を 下記のように書く.

$$EO(z_0) = \{T^k z_0 + (2\pi l, 0)\}_{k,l \in \mathbf{Z}}.$$
(3)

標準写像は2つの対合 \widetilde{H} と \widetilde{G} の積で記述できる[1].

$$\widetilde{T} = \widetilde{H} \circ \widetilde{G}, \tag{4}$$

$$\hat{G}(\tilde{x}, y) = (-\tilde{x}, y + f(\tilde{x})),$$
(5)

$$H(\tilde{x}, y) = (y - \tilde{x}, y). \tag{6}$$

 \widetilde{H} と \widetilde{G} の持ち上げである H と G の対称線は, H と G の不動点の集合である. これらの普遍被覆面上での表式は下記のように得られる.

$$S_G(k) \quad : \quad x = k\pi, \tag{7}$$

$$S_H(k)$$
 : $y = 2(x - k\pi)$. (8)

ここで $k \in \mathbb{Z}$. また $S_G^+(k)$ を $S_G(k)$ のy > 0の領域にある部分とする. 同様に $S_H^+(k)$ も定義する.

次に対称線と対称周期軌道の良く知られた基本的な関係を紹介する [3].

性質 2.1.1

(i) $z \in S_G^+(k_1)$ ならびに $T^n z \in S_H(k_2)$ $(n \ge 1)$ を仮定する. ただし $k_1 \le k_2$ である. また $T^i z$ (0 < i < n) を満たす軌道点はいかなる対称線上にもないとする. そうする と z は周期軌道の点でその周期は 2n-1 であり,回転数は $(k_2 - k_1)/(2n-1)$ である. 同様に $z \in S_H^+(k_1)$ ならびに $T^n z \in S_G(k_2)$ $(n \ge 0)$ を仮定する. ただし $k_1 \le k_2$ で ある. また $T^i z$ (0 < i < n) を満たす軌道点はいかなる対称線上にもないとする. そ うすると z は周期軌道の点でその周期は 2n+1 であり,回転数は $(k_2 - k_1)/(2n+1)$ である.

(ii) $z \in S_G^+(k_1)$ ならびに $T^n z \in S_G(k_2)$ $(n \ge 1)$ を仮定する. ただし $k_1 \le k_2$ である. また $T^i z$ (0 < i < n) を満たす軌道点はいかなる対称線上にもないとする. そうする と z は周期軌道の点でその周期は 2n であり,回転数は $(k_2 - k_1)/(2n)$ である. 同様 に $z \in S_H^+(k_1)$ ならびに $T^n z \in S_H(k_2)$ $(n \ge 1)$ を仮定する. ただし $k_1 \le k_2$ である. また $T^i z$ (0 < i < n) を満たす軌道点はいかなる対称線上にもないとする. そうする と z は周期軌道の点でその周期は 2n であり,回転数は $(k_2 - k_1)/(2n)$ である.

回転のオペレーター $\sigma_{z_0}(x,y)$ を導入する.

$$\sigma_{z_0}(x,y) = (2x_0 - x, 2y_0 - y), \tag{9}$$

ただし $z_0 = (x_0, y_0)$. このオペレーターは z_0 を中心とする 180 度回転を表している. $\sigma_{z_0}A$ は, z_0 を中心として集合 A を 180 度回転した集合である. ただし σ_{z_0} は $\sigma_{z_0}(x, y)$ の省略記号である.

最後に普遍被覆面上でのx方向への平行移動のオペレーター $\mathcal{R}(x,y)$ (\mathcal{R} と略記 する)を導入する.

$$\mathcal{R}(x,y) = (x+2\pi,y). \tag{10}$$

 $\mathcal{R}^n(x,y) = (x + 2n\pi, y)$ ならびに $\mathcal{R}^{-n}(x,y) = (x - 2n\pi, y)$ であることに注意しよう.

Figure 1: 区間 [0/1, 1/1] に制限した Stern-Brocot 木. $L \ge R$ は各ノードで左分枝と右分枝を 指定するオペレーターである.

2.2 Stern–Brocot 木

Stern-Brocot 木 (SBT) は無限個の有理数で構成された木である [2]. SBT はゼロ以上の既約分数をすべて含んでいる. ここでは区間 [0/1, 1/1] に制限した Stern-Brocot 木を扱う. これは 図1に描かれている. この場合, 2つの分数 $0/1 \ge 1/1$ から SBT を構成できる. $p_1/q_1 < p_2/q_2$ を満たす 2 つの分数 $p_1/q_1 \ge p_2/q_2$ から,下記の規則 に従って新しい分数 p/q が決められる.

$$p_1/q_1 \oplus p_2/q_2 = (p_1 + p_2)/(q_1 + q_2) = p/q$$
 (11)

SBT において p_1/q_1 は p/q の左上方にあり, p_2/q_2 は右上方にある. この規則より, 区間 [0/1, 1/1] にある既約分数は一度だけこの木に登場する.

SBT より 0/1 と 1/1 を削除すると、削除 Stern-Brocot 木 (TSBT) が得られる. TSBT は 1/2 を根とする 2 分木である (図 1 を見よ). 各親ノード (分数) は 2 つの子 供分枝 (2 つの分数) を持ち、これらが 2 つの子ノードとなる. 各子ノードは親ノード となる. 1/2 が存在する階を 1 階とする. この子供である 1/3 と 2/3 は 2 階にある. これらの子供たちは 3 階にある. このようにして n 階には 2^{n-1} 個の有理数が配置さ れる.

 $p_1/q_1 \ge p_2/q_2$ をSBTの要素とし、条件 $0 \le p_1/q_1 < p_2/q_2 \le 1$ を満たしているとする. $p_1/q_1 \ge p_2/q_2$ が式(11)を満たしているならば、これらをp/qの分割と呼び、 $\{p_1/q_1, p_2/q_2\}$ と書く.次に、p/qの区間を $[p_1/q_1, p_2/q_2]$ としよう.更に条件

$$p_2 q_1 - p_1 q_2 = 1 \tag{12}$$

が満たされているならば、この条件を Farey 条件と呼び、分割を Farey 分割、区間を Farey 区間と呼ぶ. 以下に Farey 分割と Farey 区間の記法をまとめておく.

$$FP[p/q] = \{p_1/q_1, p_2/q_2\}, FI[p/q] = [p_1/q_1, p_2/q_2].$$

Farey 分割はユニークである.しかし有理数を Farey 条件を満たさない分数に分割することも可能である.条件

$$p_2 q_1 - p_1 q_2 \ge 2 \tag{13}$$

を満たしている分割 $\{p_1/q_1, p_2/q_2\}$ を非 Farey 分割と呼ぶ. 非 Farey 分割が複数存 在する p/q がある. よって p/q のすべての非 Farey 分割の集合を NFP[p/q] とする. ここで非 Farey 分割と非 Farey 区間の記法をまとめておく.

$$\{p_1/q_1, p_2/q_2\} \in NFP[p/q], [p_1/q_1, p_2/q_2] \in NFI[p/q].$$

命題 2.2.1 はよく知られた性質であるので、証明は省略する.

命題 2.2.1. $p/q \in (0,1)$ の Farey 分割を $FP[p/q] = \{p_1/q_1, p_2/q_2\}$ とし非 Farey 分割を $\{m_1/n_1, m_2/n_2\} \in NFP[p/q]$ とする. このとき下記の関係が成立する.

$$m_1/n_1 < p_1/q_1 < p_2/q_2 < m_2/n_2.$$
 (14)

p/qの Farey 分割 FP $[p/q] = \{p_1/q_1, p_2/q_2\}$ を考えよう. ここで [p/q]の行列表現 を下記のように書く.

$$[p/q] = \begin{pmatrix} p_1 & p_2 \\ q_1 & q_2 \end{pmatrix}.$$
 (15)

TSBT における各ノードで左の分枝を選択する作用を L とし, 右の分枝を選択する 作用を R とする. これらの作用の行列表示は下記のように得られる.

$$L = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$
(16)

TSBT において 1/2 から任意の p/q に至る径路は $L \ge R$ の作用で記述される. つまり [p/q] は $[1/2] \ge L \ge R$ の列の積で記述される. 例として [3/7] = [1/2]LRR. ここで LRR は 1/2 からの径路を与える. つまり 1/2 から左の分枝を通り 1/3 に至り, 次に右の分枝を通り 2/5 に至り, 最後に右の分枝を通り 3/7 に至る. 無理数 $(3 - \sqrt{5})/2$ へ至る径路は $[(3 - \sqrt{5})/2] = [1/2](LR)^{\infty}$ と得られる. このような記述を径路の LR表現と呼ぶ. 径路に関する性質を与えている命題 2.2.2 を次に示す. 証明は簡単なので省略する.

命題 2.2.2.

(i) TSBT において無限に長い径路と、その *LR* 表現を考える. *LR* 表現においてその 末尾が L^{∞} または R^{∞} ならば、TSBT の径路は有理数 m/n に漸近する. もし末尾が L^{∞} ならば径路上にある分数の列 $\{p_i/q_i\}_{i\geq 1}$ は m/n に上から近づく. ここで添字 iは p_i/q_i が位置する階数を表している. もし末尾が R^{∞} ならば列 $\{p_i/q_i\}_{i\geq 1}$ は m/nに下から近づく.

(ii) LR 表現の末尾が L^{∞} または R^{∞} でなかったなら, 径路は無理数に漸近する.

ここで区間 (0,1) にある無理数 ω に漸近する径路を考える. TSBT の径路にある 分数の列を $\{p_i/q_i\}_{i\geq 1}$ とする. この径路には LR と RL で記述されるターンが無限 に存在する. もし存在しなければ LR 表現の末尾が L^{∞} または R^{∞} となるからであ る. これらのターンを LR ターンならびに RL ターンと呼ぶ. p_{m_k}/q_{m_k} を 第 k 番目 の LR ターンのノードにある分数とする. p_{n_k}/q_{n_k} を第 k 番目の RL ターンのノード にある分数とする. 列 $\{p_{m_k}/q_{m_k}\}_{k\geq 1}$ と列 $\{p_{n_k}/q_{n_k}\}_{k\geq 1}$ は 列 $\{p_i/q_i\}_{i\geq 1}$ の部分列 である. 列 $\{p_{m_k}/q_{m_k}\}_{k\geq 1}$ は ω に下から漸近する. 一方, 列 $\{p_{n_k}/q_{n_k}\}_{k\geq 1}$ は ω に上 から漸近する.

Figure 2: 共鳴領域 $Z_{0/1}(Q_{0,0})$ ($\subset \langle Z_{0/1} \rangle$)の定義. ここで $W_u^1 \geq W_s^2$ はサドル $P_{0,0}$ の不安定多様体のブランチと安定多様体のブランチである. 一方 $W_u^2 \geq W_s^1$ はサドル $P_{1,0}$ の不安定多様体のブランチである. サドルの名称は省略されている. a = 2.92.

2.3 共鳴領域の性質

不動点 $\tilde{P}(0,0)$ の普遍被覆面への持ち上げを $P_{i,0} = (2\pi i,0)$ とし, $\tilde{Q}(\pi,0)$ の持ち上 げを $Q_{i,0} = (2\pi i + \pi, 0)$ とする. サドル $P_{0,0} = (0,0)$ は、2 つの安定多様体のブラン チと 2 つの不安定多様体のブランチをもつ. 不安定多様体のブランチで右上方に出 ているブランチを $W_u^1(P_{0,0})$ とし、左下方に出ているプランチを $W_u^2(P_{0,0})$ とする. また左上方から $P_{0,0} = (0,0)$ に入る安定多様体のブランチを $W_s^1(P_{0,0})$ とし、右下方か ら入るブランチを $W_s^2(P_{0,0})$ とする. 安定多様体と不安定多様体のブランチは図 2 に 描かれている. 必要な場合以外はサドルの名前を省略する. つまり W_u^1 は $W_u^1(P_{0,0})$ を意味する. 以下同様である.

 $P_{0,0}$ から出たブランチ $W_u^1(P_{0,0})$ は対称線 $S_G^+(1)$ とuで交差し、次に対称線 $S_H^+(1)$ とvで交差する。そのため安定多様体のブランチ $W_s^1(P_{1,0})$ は $W_u^1(P_{0,0})$ と2点uとvで交差する。同じタイプの交差がy < 0の領域にあるu'とv'でも生じる。これらは標準写像ではよく知られた事実である。

4 つの弧 $[P_{0,0}, v]_{W_u^1(P_{0,0})}, [v, P_{1,0}]_{W_s^1(P_{1,0})}, [P_{1,0}, v']_{W_u^2(P_{1,0})} \geq [v', P_{0,0}]_{W_s^2(P_{0,0})}$ で 囲まれた開領域を $\mathcal{Z}_{0/1}(Q_{0,0})$ とする. この領域を $Q_{0,0}$ の共鳴領域と呼ぶ. $Q_{i,0}$ に対する共鳴領域をすべて集めて, 共鳴チェーン $\langle Z_{0/1} \rangle$ が構成される.

次に入り口ホモクリニックローブ $U_{0,0}^u$ と出口ホモクリニックローブ $V_{0,0}^u$ を導入 する. $\Gamma_u = [v, Tu]_{W_u^1(P_{0,0})}$ と $\Gamma_s = [v, Tu]_{W_s^1(P_{1,0})}$ で囲まれた開領域を $V_{0,0}^u$ とし, $\gamma_u = [u, v]_{W_u^1(P_{0,0})}$ と $\gamma_s = [u, v]_{W_u^1(P_{1,0})}$ で囲まれた開領域を $U_{0,0}^u$ とする.

 $z_0 & p/q$ バーコフ楕円周期軌道の軌道点とし, $z'_0 & p/q$ -バーコフサドル周期軌 道の点とする. z'_0 の拡張軌道 $EO(z'_0)$ の各点の不安定多様体と安定多様体を利用し て z_0 の拡張軌道 $EO(z_0)$ の各点の共鳴領域を構成できる. これらの共鳴領域を集め て共鳴チェーンが得られる. 構成の詳細は参考文献 [1]の §2.6 において説明をした. ここでは例として $\langle Z_{1/2} \rangle \geq \langle Z_{1/3} \rangle$ を図 3 に示す.

次の性質 2.3.1 と性質 2.3.2 は有用な対称性を与える. 性質 2.3.1 の証明は付録 にある.

性質 2.3.1.

(i) $\sigma_{Q_{0,0}} \mathcal{Z}_{0/1}(Q_{0,0}) = \mathcal{Z}_{0/1}(Q_{0,0}).$

Figure 3: 2つの共鳴領域 $\langle Z_{1/2} \rangle$ と $\langle Z_{1/3} \rangle$ が描かれている. 2/5–NBF の軌道も描かれている. 記号 *i* は η_i を意味し, *i'* は η'_i を意味する. 円筒面において η_2 と η'_2 は同じ点である. 普遍被覆面 での軌道 … ⇒ $\eta_0 \Rightarrow \eta_1 \Rightarrow \eta_2 \Rightarrow \eta_3 \Rightarrow \cdots$ と軌道 … ⇒ $\eta'_2 \Rightarrow \eta'_3 \Rightarrow \eta'_4 \Rightarrow \eta'_5 \Rightarrow \cdots$ は異なる.

(ii) $\sigma_{z_0} \mathcal{Z}_{1/2}(z_0) = \mathcal{Z}_{1/2}(z_0), [z_0 = (0, \pi)].$

性質 2.3.2. $0 \le y \le 2\pi$ を満たす $S_G(0)$ の弧を L とする. $\sigma_{z_k}T^kL = T^kL$ が成立する. ただし $z_k = (k\pi, \pi)$ である.

証明. 証明は簡単なので、方針のみを示す. k = 0に対して、主張は自明である. $\sigma_{z_k}T^kL = T^kL [z_k = (k\pi,\pi)]$ が成立すると仮定する. この仮定のもとで $\sigma_{z_{k+1}}T^{k+1}L = T^{k+1}L [z_{k+1} = ((k+1)\pi,\pi)]$ が成立する事を示す. (Q.E.D.)

最後に証明で利用する共鳴領域の配置について説明する.詳細は図4に描かれている. $TS_G^+(1)$ の上にあるバーコフ楕円点とその共鳴領域を考える. 共鳴領域はほぼ 平行に並んでいて, これらの共鳴領域と $TS_C^+(1)$ はほぼ直角に交わっている.

3 Farey型ノンバーコフ周期軌道の性質

この論文では回転数 p/q が 0 < p/q < 1 を満たす対称 ノンバーコフ周期軌道のみを 考える. この軌道を p/q-NB と書く.

p/q-NBF, p/q-NBNF ならびに p/q-CNBの定義.

 ${p_1/q_1, p_2/q_2}$ を p/qの分割とする.回転数 p/qの対称周期軌道が $\langle \mathcal{Z}_{p_1/q_1} \rangle$ の各 共鳴領域に軌道点を1個もちかつ, $\langle \mathcal{Z}_{p_2/q_2} \rangle$ の各共鳴領域に軌道点を1個もつとし よう.分割が Farey 分割であれば,この軌道を回転数 p/qの Farey 型対称ノンバーコ フ周期軌道と呼ぶ.以下では p/q-NBF と書く.分割が非 Farey 分割である場合は, 回転数 p/qの非 Farey 型対称ノンバーコフ周期軌道と呼ぶ.以下では p/q-NBNF と 書く. また p/q-NBF でも p/q-NBNF でもない p/q-NB を p/q-CNB と書く.

図 3 において、楕円型 2/5–NBF が例として描かれている。2 つの持ち上げ軌道 $\cdots \Rightarrow \eta_0 \Rightarrow \eta_1 \Rightarrow \eta_2 \Rightarrow \eta_3 \Rightarrow \cdots \geq \cdots \Rightarrow \eta'_2 \Rightarrow \eta'_3 \Rightarrow \eta'_4 \Rightarrow \eta'_5 \Rightarrow \cdots$ は円筒面上 では一致する。2 つの軌道点 $\eta_0 \geq \eta_1$ は $\langle \mathcal{Z}_{1/2} \rangle$ の共鳴領域にあり、 $\eta_2 (\eta'_2), \eta'_3, \geq \eta'_4$ は 〈*Z*_{1/3}〉の共鳴領域にある.これらの事実より,この軌道が 2/5-NBf の条件を満た している事が分かる.

定理 3.1.

(i) p/q は TSBT の任意の既約分数とする. このとき p/q-NBNF→ p/q-NBF が成立 する.

(ii) $p/q \ge p'/q'$ はともに TSBT にある既約分数とし, $[p_1/q_1, p_2/q_2] \supset [p'_1/q'_1, p'_2/q'_2]$ が成立しているとする. ただし $[p_1/q_1, p_2/q_2] \in \text{NFI}[p/q], [p'_1/q'_1, p'_2/q'_2] \in \text{NFI}[p'/q']$ である. このとき p/q-NBNF $\rightarrow p'/q'$ -NBNF が成立する.

証明.

(i) $\operatorname{FP}[p/q] = \{p_2/q_2, p_3/q_3\}$ Farey 分割とし, $\{p_1/q_1, p_4/q_4\} \in \operatorname{NFP}[p/q]$ を非 Farey 分割とする. 性質 2.2.1 より, 下記の関係が成立する.

$$p_1/q_1 < p_2/q_2 < p_3/q_3 < p_4/q_4.$$
 (17)

これより 2 つの共鳴チェーン $\langle Z_{p_2/q_2} \rangle$ と $\langle Z_{p_3/q_3} \rangle$ は $\langle Z_{p_1/q_1} \rangle$ と $\langle Z_{p_4/q_4} \rangle$ に挟まれ ていることが分かる. 図 4 を参照の事. p/q-NBNF が存在しているとの仮定より $T^m l_{p_4/q_4}(-p_4+1)$ は $T^{-n} l_{p_1/q_1}(p_1+1)$ と交差している. ここで写像する回数であ る $m \ge n$ は次のように定義されている. q_4 が偶数の場合は $m = (q_4+2)/2$ で、奇数 の場合は $m = (q_4+1)/2$ である. また q_1 が偶数の場合は $n = (q_1-2)/2$ で、奇数の 場合は $n = (q_1-1)/2$ である. この状況で $T^i l_{p_3/q_3}(-p_3+1)$ は $T^{-j} l_{p_2/q_2}(p_2+1)$ と 交差する. 写像回数 $i \ge j$ は次のように得られる. q_3 が偶数の場合は $i = (q_3+2)/2$ で、奇数の場合は $j = (q_2-1)/2$ である. これらの交差点は p/q-NBF の軌道点である. ただし $p = p_2 + p_3 \ge q = q_2 + q_3$ が成立する.

(ii) ここでは再度図 4 を利用して証明を行う. ただし p_2/q_2 を p'_1/q'_1 に置き換え, p_3/q_3 を p'_2/q'_2 に置き換え, p_4/q_4 を p_2/q_2 に置き換える. (i) の証明と同じ方法で (ii) は証明できる. よって詳細を省く. (Q.E.D.)

4 TSBT における Farey 型対称ノンバーコフ周期 軌道

4.1 TSBT において有理数に漸近する径路

定理 4.1.1 を述べる前にいくつか臨界値を導入する. $p/q \in (0,1)$ に漸近する TSBT 内の径路は 2 つある. p/q に上から漸近する径路に位置する分数列を $\{p_n/q_n\}_{n\geq 1}$ とし, $p_n/q_n - \text{NBF}$ が生じる臨界値を $a_c(p_n/q_n - \text{NBF})$ とする. p/q に下から漸近する径路に位置する分数列を $\{p'_n/q'_n\}_{n\geq 1}$ とし, $p'_n/q'_n - \text{NBF}$ が生じる臨界値を $a_c(p'_n/q'_n - \text{NBF})$ とする. これらの臨界値の極限を以下で定義する. これらの臨界値 が定義できることは定理 1.1 より分かる.

$$\lim_{n \to \infty} a_c(1/n - \text{NBF}) = a_c(0/1), \tag{18}$$

$$\lim_{n \to \infty} a_c((n-1)/n - \text{NBF}) = a_c(1/1),$$
(19)

Figure 4: 2 つの共鳴領域 $Z_{p_2/q_2}(\beta) \ge Z_{p_3/q_3}(\gamma)$ は $Z_{p_1/q_1}(\alpha) \ge Z_{p_4/q_4}(\delta)$ の間にある.

$$\lim_{n \to \infty} a_c(p_n/q_n - \text{NBF}) = a_c(p/q), \tag{20}$$

$$\lim_{n \to \infty} a_c (p'_n/q'_n - \text{NBF}) = a'_c (p/q), \qquad (21)$$

$$a_c^{\max}(p/q) = \operatorname{Max}(a_c(p/q), a_c'(p/q)), \qquad (22)$$

$$a_c^{\min}(p/q) = \operatorname{Min}(a_c(p/q), a_c'(p/q)).$$
 (23)

ここでいくつかの数値例を示そう. $a_c^{\max}(1/2) = a_c^{\min}(1/2) \simeq 2.54, a_c^{\max}(1/3) \simeq 1.80,$ $a_c^{\min}(1/3) \simeq 1.76.$ 数値計算によると p/q ($\in (0,1)$) $\neq 1/2$ の場合, $a_c^{\max}(p/q) \neq a_c^{\min}(p/q)$ が成立する. この事実は証明されていない. 定理 4.1.1 で 0/1 と 1/1 を同 一視するならば, 0/1 (1/1) に対しても上下から分数列が集積していることが分かる.

定理 4.1.1. $\lambda_{\max} = (2 + (44 - 3\sqrt{177})^{1/3} + (44 + 3\sqrt{177})^{1/3})/3 = 2.6589 \cdots$ なら びに $\lambda'_{\max} = 1 + \sqrt{2}$ とする.

(i) p/q = 0/1 (1/1),1/2の場合. $a_c^{\max}(p/q) = a_c^{\min}(p/q)$ が成立する. $a = a_c^{\max}(p/q) = a_c^{\min}(p/q)$ において、位相的エントロピーの下界は $(\ln \lambda_{max})/q$ である.

(ii) p/q (\in (0,1)) \neq 1/2 の場合. $a_c^{\max}(p/q) = a_c^{\min}(p/q)$ が成立するならば、位相的エントロピーの下界は $(\ln \lambda_{max})/q$ である. $a_c^{\max}(p/q) \neq a_c^{\min}(p/q)$ ならば、 $a = a_c^{\max}(p/q)$ において位相的エントロピーの下界は $(\ln \lambda_{max})/q$ であり、 $a = a_c^{\min}(p/q)$ において位相的エントロピーの下界は $(\ln \lambda'_{max})/q$ である.

(i) の証明. $\mathcal{Z}_{0/1}(Q_{0,0})$ に含まれる $S_H(1)$ の弧を $l_{0/1}$ とする. $\sigma_{Q_{0,0}}T^k l_{0/1} = T^k l_{0/1}$ が成立する. この事実と性質 2.3.1(i) ならびに y 方向への 2π 平行移動不変性より,

Figure 5: $a = a_c(1/2)$ における $\mathcal{Z}_{1/2}(z_2)$ と $T^2 l_{1/2}(0)$ の関係. ここで z_2 は 1/2-バーコフ楕円 軌道の点で, 黒四角は 1/2-バーコフサドル軌道の点.

 $a_c(0/1) = a'_c(1/1)$ が得られる.よって $a_c^{\max}(0/1) = a_c^{\min}(0/1) = a_c^{\max}(1/1) = a_c^{\min}(1/1)$ が得られる.

性質 2.3.1(ii) と性質 2.3.2 より、 $\sigma_{z_2}\mathcal{Z}_{1/2}(z_2) = \mathcal{Z}_{1/2}(z_2)$ と $\sigma_{z_2}T^2l_{1/2}(0) = T^2l_{1/2}(0)$ が得られる. ここで $z_2 = (2\pi,\pi) = T^2z_0$ ($z_0 \in S_G(0)$) である. よって $a_c^{\max}(1/2) = a_c^{\min}(1/2)$ が得られる.

1/2に上から漸近する径路にある分数列を $\{p_n/q_n\}_{n\geq 1} = \{1/2, 2/3, 3/5, 4/7, \cdots\}$ とする. 共鳴チェーンの列 $\{\langle \mathcal{Z}_{p_n/q_n}\rangle\}$ が $\langle \mathcal{Z}_{1/2}\rangle$ に上から集積している. また1/2に下から漸近する径路にある分数列を $\{p'_n/q'_n\}_{n\geq 1} = \{1/2, 1/3, 2/5, 3/7, \cdots\}$ とする. 共鳴チェーンの列 $\{\langle \mathcal{Z}_{p'_n/q'_n}\rangle\}$ が $\langle \mathcal{Z}_{1/2}\rangle$ に下から集積している. $\mathcal{Z}_{1/2}(z_2)$ の近傍を考える. $T^2l_{1/2}(0)$ の一部が $\mathcal{Z}_{1/2}(z_2)$ の外に出ているとすると、外に出ている弧 と $\langle \mathcal{Z}_{p'_n/q'_n}\rangle$ の長い辺 (安定多様体の弧)が交差しかつ外に出ている弧が $\langle \mathcal{Z}_{p'_n/q'_n}\rangle$ の内部にある $T^{-m}l_{p'_n/q'_n}(\zeta_0)$ とも交差するような整数 n が存在する. ただし q'_n が奇数の場合は $m = (q'_n - 1)/2$ であり, $\zeta_0 \in S_H(p'_n + 1)$ である. cntt 1/2に向かう径路にある $(p'_n + 1)/(q'_n + 2)$ -NBF の存在を意味する. 径路に NBF が存在しない条件より, $T^2l_{1/2}(0)$ は $\mathcal{Z}_{1/2}(z_2)$ の外に出られない. 極限の状況では, $T^2l_{1/2}(0)$ は $\mathcal{Z}_{1/2}(z_2)$ の境界である安定多様体の弧と接触する. この状況は図 5 に描かれている. $\sigma_{z_2}\alpha' = \beta'$ であることに注意しよう.

次に図5の状況で系の位相的エントロピーの下界を計算しよう. $Z_{1/2}(z_2), T^2 l_{1/2}(0)$ ならびに関係する曲線に T^{-2} を作用する. これらは $z_0 \in S^+_G(0)$ が存在する周りに写される. $T^2 l_{1/2}(0)$ は1/2-バーコフサドルの安定多様体の弧と接触していたので, $l_{1/2}(0)$ も1/2-バーコフサドルの安定多様体の弧と接触している. ここで1/2-バーコフサドルの安定多様体はGで移り合うという対称性がある. これより安定多様体が $l_{1/2}(0)$ と接触した点で,不安定多様体も $l_{1/2}(0)$ と接触する.

この状況は図 6 に描いてある.安定多様体の弧 $\hat{\gamma}_s$ は不安定多様体の弧 $\hat{\gamma}_u \ge l_{1/2}(0)$ 上の $\alpha(=T^{-2}\alpha')$ で接している.同じく安定多様体の弧 $\hat{\gamma}'_s$ は不安定多様体の弧 $\hat{\gamma}'_u \ge l_{1/2}(0)$ 上の $\beta(=T^{-2}\beta')$ で接している.トレリス法を図 6 に描かれたトレリスに適用すると、図 6 に描かれたコンパチブルグラフが得られる.コンパチブルグラフには 3 つの周期点 z_0 , s ならびに t がある.これらは円筒面上では, $\tilde{z}_0 = \tilde{T}^2 \tilde{z}_0$, $\tilde{s} = \tilde{T}^2 \tilde{t}$, $\tilde{t} = \tilde{T}^2 \tilde{s}$ の関係を満たす.また $2 \le s \ge t$ は三つ角 (Three prong) と呼ばれる.これ らの点の周期性を利用すると、5 つのブランチ A, B, C, D, E の \tilde{T}^2 による像が決定で

Figure 6: $a = a_c(1/2)$ における $Z_{1/2}(z_0) \geq l_{1/2}(0)$ の関係. ここで z_0 は 1/2-バーコフ楕 円軌道の点,黒四角は 1/2-バーコフサドル軌道の点. ただし $s' \geq t'$ は図 5 で定義されている. A, B, C, D, E の集合はトレリス法のコンパチブルグラフである.

きる.結果は以下のようになる.

- (i) A の像は A と C を 1 回被覆し, B を 2 回被覆する.
- (ii) *B* の像は *E* を1回被覆する.
- (iii) *C* の像は *C* を 1 回被覆し, *B* と *D* を 2 回被覆する.
- (iv) D の像は A を 1 回被覆する.
- (v) *E* の像は*C* と *E* を1回被覆し, *D* を2回被覆する.
- 以上の結果をまとめて遷移行列 M が得られる.

$$M = \begin{pmatrix} A & B & C & D & E \\ \hline A & 1 & 2 & 1 & 0 & 0 \\ B & 0 & 0 & 0 & 0 & 1 \\ C & 0 & 2 & 1 & 2 & 0 \\ D & 1 & 0 & 0 & 0 & 0 \\ E & 0 & 0 & 1 & 2 & 1 \end{pmatrix}.$$
 (24)

最大の固有値 $\lambda_{\text{max}} = (2 + (44 - 3\sqrt{177})^{1/3} + (44 + 3\sqrt{177})^{1/3})/3 = 2.6589 \cdots$ は下記の特性方程式の唯一の実数解として得られる.

$$(\lambda^{3} - 2\lambda^{2} - \lambda - 2)(\lambda^{2} - \lambda + 2) = 0.$$
(25)

よって位相的エントロピーの下界は $(\ln \lambda_{\max})/2$ である. 0/1 または 1/1 へ漸近する 場合, 位相的エントロピーの下界は $\ln \lambda_{\max}$ である.

(ii) の証明. $a_c^{\max}(p/q) = a_c^{\min}(p/q)$ が成立するならば、主張は前の証明と同じように証明できる.よって以下では $a_c^{\max}(p/q) \neq a_c^{\min}(p/q)$ の場合を考える. $a = a_c^{\max}(p/q)$ では、図6の2つの接触点の一つが交差点に変わる.交差点の影響を無視すれば図6と同じコンパチブルグラフが得られる.よって位相的エントロピーの下界は $(\ln \lambda_{\max})/q$ である.

 $a = a_c^{\min}(p/q)$ では、2つの接触点の一つが残り、一方の接触点は消滅した状況となる.この場合は多くの可能性がある.最初にTRと名付けたトレリスを考えよう.これは図7に描いた.弧 $\hat{\gamma}_s$ ($\hat{\gamma}'_s$)と弧 $\hat{\gamma}'_u$ ($\hat{\gamma}_u$)は互いに4点で交差している.図7に描いたTRでは、コンパチグラフにブランチXが現れる.この未来の像はDであるが、過去の像を決める事ができない.よってこのコンパチブルグラフから遷移行列を決める事ができない.この困難を避けるために $\hat{\gamma}_u$ と $\hat{\gamma}_s$ が接触する状況を考える.この状況は図8に描かれている.図8のトレリスTR₁と図7のTRを比べると、TRがより複雑である.今後、トレリスTR₁より位相的エントロピーの下界を求めれば十分であることを示す.TR₁より遷移行列 M_1 は下記のように決められる.

$$M_{1} = \begin{pmatrix} A & B & C & D & E \\ \hline A & 1 & 2 & 1 & 0 & 0 \\ B & 0 & 0 & 0 & 0 & 1 \\ C & 0 & 2 & 1 & 0 & 0 \\ D & 1 & 0 & 0 & 0 & 0 \\ E & 0 & 0 & 1 & 2 & 1 \end{pmatrix}.$$
 (26)

*M*₁の特性方程式は次のように得られる.

$$\lambda(\lambda^2 - 2\lambda - 1)(\lambda^2 - \lambda + 2) = 0.$$
⁽²⁷⁾

最大の固有値は $\lambda'_{\max} = 1 + \sqrt{2}$ である. これは $(\lambda^2 - 2\lambda - 1) = 0$ の正の解である. $a = a_c^{\min}(p/q)$ において TR ならびに TR₁ が実現されていないとして, 第 2 の可能性である TR₂ が実現されているとしよう. TR₂ は図 9 に描かれている. 図 9 では $\mathcal{R}T^{-2}\hat{\gamma}_s$ は $\hat{\gamma}_u$ と接している. 遷移行列 M_2 は次のように得られる.

$$M_{2} = \begin{pmatrix} A & B & C & D & E & F & G \\ \hline A & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\ B & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ C & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ D & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ E & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ F & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ G & 0 & 0 & 1 & 0 & 0 & 2 & 1 \end{pmatrix}.$$
 (28)

行列 M₂の特性方程式は下記のように得られる.

$$\lambda^{3}(\lambda^{2} - 2\lambda - 1)(\lambda^{2} - \lambda + 2) = 0.$$
⁽²⁹⁾

式 (27) と式 (29) の違いは λ のべキのみである. よって 2 つの式 (27) と (29) の最大 の固有値は同じである.

第2の可能性が実現されないとして、順次 $n \ge 3$)番目の可能性を吟味する. ここで第n番目の可能性である TR_nが実現されているとしよう. この場合、 $\mathcal{R}^n T^{-2n} \hat{\gamma}_s$ ($\hat{\gamma}'_s$)と $\hat{\gamma}'_u (\mathcal{R}^{-n}T^{2n} \hat{\gamma}_u)$ が接触し、 $\hat{\gamma}'_u \ge \hat{\gamma}'_s$ の接触は常に存在する. これによって定理 4.1.1(ii)の仮定のすべての可能な状況を尽くしたことになる. トレリス TR_nに対する特性方程式は次のように得られる.

$$\lambda^{2n-1}(\lambda^2 - 2\lambda - 1)(\lambda^2 - \lambda + 2) = 0.$$
(30)

Figure 7: トレリス TR に対するコンパチブルグラフ. $\hat{\gamma}_s$ と $\hat{\gamma}_u$ の接触が消え, 新しい辺 X がコ ンパチブルグラフに現れる.

Figure 8: トレリス TR₁ に対するコンパチブルグラフ. 図 7 の X は消えている.

Figure 9: トレリス TR₂ に対するコンパチブルグラフ. $\mathcal{R}T^{-2}\hat{\gamma}_s \geq \hat{\gamma}_u$ が接触し, $\mathcal{R}^{-1}T^2\hat{\gamma}_u \geq \hat{\gamma}'_s$ が接触している状況.

この事実は最大の固有値は図 6 の β における接触で決まることを意味している. 最大の固有値の値は $\hat{\gamma}_s$ と $\hat{\gamma}_u$ の接触がなくならない限り, 他の安定多様体の弧と不安定多様体の弧の交差には影響されないことが分かる. 最大の固有値は $\lambda'_{\text{max}} = 1 + \sqrt{2}$ である. 以上で証明が終わる. (Q.E.D.)

4.2 TSBT におけるゼロに漸近する分数列

この小節の目的は命題 4.2.1 を証明する事にある.

命題 **4.2.1**. 標準写像において任意の *a* > 0 で NBF が存在し系のエントロピーは正 である.

証明. 性質 4.2.2 (下記を見よ) と定理 1.1(iv) より, 命題 4.2.1 は導かれる. (Q.E.D.)

径路 $[1/2]L^{\infty}$ 以外にゼロに漸近する径路はない.参考文献 [6] で証明したように、 この径路の極限は $T\gamma_u \geq S_H^-(1)$ の接触状況である.ここで $\gamma_u \geq \Gamma_u$ の定義に関し ては図 2 を見よ.これはこの極限が a = 0 でないことを意味している.よって 0 に漸 近する分数列が必要になる.

SBT の中の分数で構成した列 $\{p(k)/q(k)\}_{k\geq 1}$ を考える. これは作用 $L \ge R$ で記述される SBT 内の径路ではない. 以下に構成の条件を記す.

1) $k \ge 1$ に対して $p(k) \ge 2$ が成立する.

2) 任意の k に対して, p(k+1)/q(k+1) が存在する階数は p(k)/q(k) が存在する階数より大きい. また分数列の値は単調に減少する.

3) $\lim_{k \to \infty} p(k)/q(k) = 0.$

例として列 {2/5,2/7,2/9,...,2/(2n+1),...} は上記の条件を満たしている. このような径路をゼロに漸近するスキップ径路と呼ぼう. この径路に対して成立する 性質 4.2.2 を紹介する.

性質 4.2.2. $\{p(k)/q(k)\}_{k>1}$ をゼロに漸近するスキップ径路とする. このとき下記の

Figure 10: 不安定多様体の弧 Γ_u が $Z_{p_1/p_1}(\alpha) \geq Z_{p_2/q_2}(\beta)$ を突き抜けている状況. $\alpha \geq \beta$ は $TS_G^+(1)$ の上にあるバーコフ楕円軌道点で, $Z_{p_2/q_2}(\beta)$ の中の黒四角は p(k)/q(k)-NBF の軌道点で ある. 図の p/q は p(k)/q(k) の省略形.

関係が成立する.

$$\lim_{k \to \infty} a_c(p(k)/q(k) - \text{NBF}) = 0.$$
(31)

証明. $\operatorname{FP}[p(k)/q(k)] = \{p_1(k)/q_1(k), p_2(k)/q_2(k)\}$ とする. 下記のような仮定を置く.

 $\lim_{k \to \infty} a_c(p(k)/q(k) - \text{NBF}) = \delta > 0.$

この仮定のもとで矛盾を導く.

パラメーターが $0 < a < \delta$ の範囲にあるならば,ホモクリニック交差点 $u \ge v$ は存在する. つまりホモクリニックローブも存在する (図 2を見よ). 共鳴領域は $TS_G(1)$ に沿って $W_s^1(P_{1,0})$ の弧である Γ_s に集積している (図 4を見よ). よって 2 つの共鳴領域 $\mathcal{Z}_{p_1/q_1}(\alpha) \ge \mathcal{Z}_{p_2/q_2}(\beta)$ が共に図 10 のようにホモクリニックローブと交差している状況を与える整数kが必ずある. ここで α は p_1/q_1 -バーコフ楕円軌道点で, β は p_2/q_2 -バーコフ楕円軌道点である. この状況で Γ_u は $\mathcal{Z}_{p_1/q_1}(\alpha) \ge \mathcal{Z}_{p_2/q_2}(\beta)$ を突き抜けている. よって $T^m l_{p_1/q_1}(-p_1+1)$ が $T^{-n} l_{p_2/q_2}(p_2+1)$ と交差していて,交差点は $\mathcal{Z}_{p_2/q_2}(\beta)$ にある. ここで q_1 が偶数のときは $m = (q_1+2)/2$ であり,奇数のときは $n = (q_2 - 1)/2$ である. これはp(k)/q(k)-NBFの存在を意味する. 以上で矛盾が導かれた. (Q.E.D.)

4.3 TSBT 内の無理数に漸近する径路

TSBT内で無理数 ω に漸近する径路を考えよう.例として $[(3-\sqrt{5})/2] = [1/2](LR)^{\infty}$ の径路上にある分数は $\{1/2, 1/3, 2/5, 3/8, 5/13, \cdots\}$ である.

p/qを SBT の要素とする. $O(z_0)$ を p/q-バーコフ楕円軌道とする. 軌道の各点 $z_k = T^k z_0$ は、その共鳴領域 $\mathcal{Z}_{p/q}(z_k)$ と共鳴領域に付随するホモクリニックローブ を持つ. 2 つのホモクリニックローブ $V^u_{p/q}(z_k)$ と $V^d_{p/q}(z_k)$ を出口ローブと名付ける. 一方 $U^u_{p/q}(z_k)$ と $U^d_{p/q}(z_k)$ を入り口ローブと名付ける (図 11 を見よ). $\langle \mathcal{Z}_{p/q} \rangle$ の上部

Figure 11: $\mathcal{Z}_{p/q}(z_0)$ のホモクリニックローブの定義. $V_{p/q}^u(z_0)$ と $V_{p/q}^d(z_0)$ は出口ローブで, $U_{p/q}^u(z_0)$ と $U_{p/q}^d(z_0)$ は入り口ローブ. 黒い丸は p/q-バーコフ楕円軌道点で, 黒四角は p/q-バーコフサドル軌道点. 太い曲線は対称線またはその像である.

(下部)から下部 (上部)へと抜ける任意の軌道は、 $\langle \mathcal{Z}_{p/q} \rangle$ の中に軌道点を持たないとしても $\langle \mathcal{Z}_{p/q} \rangle$ の入り口ローブと出口ローブに軌道点を必ず持たなければならない.

標準写像において不安定領域が生じる原因を説明しよう. 厳密性は意図していない. 回転数 ω をもつ KAM 曲線 (ω -KAM と略記する)が臨界値 $a_c(\omega)$ で崩壊するとしよう. $a > a_c(\omega)$ では回転数 ω の Aubry-Mather 集合が ω -KAM の代わりに存在する. この集合は一つの Lipschitz 曲線 l 上にある. その像 Tl は折り畳まれた構造をしている. 直感的に分かりやすくするために Tl が 3 つ折れになった構造を図 12 に描いた. KAM 曲線は図の $\alpha \ge \beta$ の間には存在できない. これは ω -AM が存在する領域を含むように不安定領域 ZI [5]が存在する事を意味している. ZIの下の境界は α の下部にあり, 上の境界は β の丈夫にある. これらの境界は KAM 曲線で構成されている. これらを ω_1 -KAM $\ge \omega_2$ -KAM とする. このとき $-\infty \le \omega_1 < \omega < \omega_2 \le +\infty$ が成立していることに注意しよう. これらの KAM 曲線が崩壊すると円筒面全体 ($-\infty < y < \infty$)が不安定領域になる.

定理 4.3.1. ω -KAM が崩壊する臨界値を $a_c(\omega)$ とする. TSBT 内で ω に漸近する 径路にある分数の列を $\{p_n/q_n\}_{n\geq 1}$ とする. $p_n/q_n - \text{NBF}$ がサドルノード分岐で生 じる臨界値を $a_c(p_n/q_n - \text{NBF})$ とする. このとき下記の関係が成立する.

$$\lim_{n \to \infty} a_c(p_n/q_n - \text{NBF}) = a_c(\omega).$$
(32)

証明.式 (32)の左辺の値が $a_c(\omega)$ 以上である事は自明である.以下のような仮定の もとで矛盾を導く.

$$\lim_{m \to \infty} a_c(p_n/q_n - \text{NBF}) = a_c(\omega) + \delta, \qquad (33)$$

ここで δ は正の定数である. 式 (33) は, パラメーター区間 $a_c(\omega) < a < a_c(\omega) + \delta$ で は任意の n に対する p_n/q_n – NBF が存在しないことを意味する. 以下では, ある整数 n^* があって $n > n^*$ を満たす p_n/q_n – NBF が存在する事を証明する. これによっ て矛盾が導かれる.

Figure 12: 円筒面におけるバーコフの不安定領域の発生. バーコフの不安定領域は ω -KAM の 崩壊後に, その周辺に現れる. ここで ω_1 -KAM はバーコフの不安定領域の下の境界で, ω_2 -KAM は上の境界である.

 $a_c(\omega) < a < a_c(\omega) + \delta$ において、 ω -AM が不安定領域 ZI (ω_1, ω_2) に含まれるよう な無理数 $\omega_1 \ge \omega_2$ が存在する. ただし $\omega_1 < \omega_2$ を満たすとする. ここで $\{p_n/q_n\}_{n\geq 1}$ の 2 つの部分列 $\{r_{n_l}/s_{n_l}\}_{l\geq 1} \ge \{t_{n_m}/u_{n_m}\}_{m\geq 1}$ をとろう. ただしそれぞれの $n_l \ge n_m$ に対して下記の条件が成立しているとする.

 $\omega_1 < t_{n_m} / u_{n_m} < \omega < r_{n_l} / s_{n_l} < \omega_2.$

このような選択は可能である.この不等式は、 $\langle Z_{r_{n_l}/s_{n_l}} \rangle$ と $\langle Z_{t_{n_m}/u_{n_m}} \rangle$ が共に $\operatorname{ZI}(\omega_1, \omega_2)$ の中にあり、 $\langle Z_{r_{n_l}/s_{n_l}} \rangle$ は ω -AMの上にありかつ $\langle Z_{t_{n_m}/u_{n_m}} \rangle$ は ω -AMの下にある事を意味する.

ここで ϵ を正の小さな値とする.しばらくの間,初期点 ξ_0 が ω_2 -KAM の ϵ -近傍 にあり、ある $j \ge 1$ に対する軌道点 ξ_j が ω_1 -KAM の ϵ -近傍にある円筒面上の軌道 $O(\xi_0)$ を考える. ξ_0 は ω -AM の上部にあり、 ξ_j は ω -AM の下部にある.Birkhoff[5] によって証明された定理より、このような軌道の存在は保証されている.この軌道 $O(\xi_0)$ は ω -AM の上部から下部へ有限の写像回数で通過する.このことは軌道点 ξ_k は ω -AM のある Lipschitz 曲線の上部にあり、 ξ_{k+1} が下部にあるような k が必ず存 在する.このことを、軌道切片 { ξ_k, ξ_{k+1} } が ω -AM を横断すると呼ぼう.軌道切片の 横断の仕方を 4 つに分類する.つまり下記に示した C1, C2, C3 ならびに C4 である. この分類は、 ξ_k と ξ_{k+1} の位置の違いによるものである.つまり ξ_k または ξ_{k+1} が共 鳴領域に含まれるかどうかによって 4 つの分類が生じる.以下で用いる入り口ロー ブと出口ローブは図 11 に依っている.

C1: $\xi_k \in Z_{r_{n_l}/s_{n_l}}(\alpha)$ かつ $\xi_{k+1} \in Z_{t_{n_m}/u_{n_m}}(T\beta)$ (図 13 を見よ) を満たす 2 つの共 鳴領域 $Z_{r_{n_l}/s_{n_l}}(\alpha)$ と $Z_{t_{n_m}/u_{n_m}}(T\beta)$ がある.更に, $\xi_k \in U^u_{t_{n_m}/u_{n_m}}(\beta)$ と $\xi_{k+1} \in V^d_{r_{n_l}/s_{n_l}}(T\alpha)$ が成立する.

C2: $\xi_k \in Z_{r_{n_l}/s_{n_l}}(\alpha)$ かつ $\xi_{k+1} \in V^d_{t_{n_m}/u_{n_m}}(T\beta)$ を満たす共鳴領域 $Z_{r_{n_l}/s_{n_l}}(\alpha)$ と出 ロローブ $V^d_{t_{n_m}/u_{n_m}}(T\beta)$ がある.更に、 $\xi_k \in U^u_{t_{n_m}/u_{n_m}}(\beta)$ と $\xi_{k+1} \in V^d_{r_{n_l}/s_{n_l}}(T\alpha)$ が成立する.

C3: $\xi_k \in U^u_{r_{n_l}/s_{n_l}}(\alpha)$ かつ $\xi_{k+1} \in Z_{t_{n_m}/u_{n_m}}(T\beta)$ を満たす入り口ローブ $U^u_{r_{n_l}/s_{n_l}}(\alpha)$

Figure 13: C1の状況を示す図. ここで軌道点 ξ_k は ω -AMの上部にあり, ξ_{k+1} (= $T\xi_k$) は ω -AMの下部にある.

と共鳴領域 $Z_{t_{n_m}/u_{n_m}}(T\beta)$ がある.更に, $\xi_k \in U^u_{t_{n_m}/u_{n_m}}(\beta)$ と $\xi_{k+1} \in V^d_{r_{n_l}/s_{n_l}}(T\alpha)$ が成立する.

C4: $\xi_k \in U^u_{r_{nl}/s_{nl}}(\alpha)$ と $\xi_{k+1} \in V^d_{t_{nm}/u_{nm}}(T\beta)$ を満たす入り口ローブ $U^u_{r_{nl}/s_{nl}}(\alpha)$ と 出口ローブ $V^d_{t_{nm}/u_{nm}}(T\beta)$ がある.更に, $\xi_k \in U^u_{t_{nm}/u_{nm}}(\beta)$ と $\xi_{k+1} \in V^d_{r_{nl}/s_{nl}}(T\alpha)$ が成立する.

C1の状況を調べる. $N > n_l$ ならびに $M > n_m$ とする. $V^d_{r_{n_l}/s_{n_l}}(T\alpha)$ の不安定境界は2つの共鳴領域 $Z_{t_M/u_M}(\beta_M)$ と $Z_{r_N/s_N}(\alpha_N)$ の中を2回通過している. ここで α_N と β_M は共に $TS^+_G(1)$ 上にある. この性質はC2, C3, C4の状況でも成立していることは簡単に示せる. よって下記の関係が得られる.

$$V^d_{t_M/u_M}(\beta_M) \cap V^d_{r_N/s_N}(\alpha_N) \neq \emptyset.$$

これは図 14 に描かれている. $t_M/u_M < p'/q' < p''/q'' < r_N/s_N$ が成立していれば、次の関係が得られる.

$$V^d_{p'/q'}(\delta') \cap V^d_{p''/q''}(\delta'') \neq \emptyset.$$

ここで $\delta' \geq \delta''$ は $TS_C^+(1)$ 上にある.

ここで p'/q' が LR ターンのノードありかつ p''/q'' が p'/q' の右の親であるよう に TSBT 内で, $p'/q' \geq p''/q''$ を選ぶ. $p'/q' < \omega$ である. また $p''/q'' < \omega$ または $p''/q'' > \omega$ であることに注意する. p'/q' の右の子は (p'+p'')/(q'+q'') である. p''/q'' $\geq (p'+p'')/(q'+q'')$ は共に ω に向かう径路にある. これらの分数の関係を図 15 に 示した.

普遍被覆面で対称線の像を調べ NBF の存在を証明する. ここで写像回数 $\hat{m} \geq \hat{n}$ を以下のように定める. q''が偶数のときは $\hat{m} = (q''+2)/2$ で、奇数のときは $\hat{m} = (q''+1)/2$ である. q'が偶数のときは $\hat{n} = (q'-2)/2$ で、奇数のときは $\hat{n} = (q'-1)/2$ である. $T^{\widehat{m}}l_{p''/q''}(-p''+1)$ は $V^d_{s_N/t_N}(\alpha_N)$ を迂回するため、 $T^{\widehat{m}}l_{p''/q''}(-p''+1)$ は $T^{-\widehat{n}}l_{p'/q'}(p'+1)$ と必ず交差する (図 16 を見よ). 交差点は (p'+p'')/(q'+q'')-NB の軌道点である. 上で述べたように (p'+p'')/(q'+q'')-NBF であることが分かる. 列

Figure 14: 2 つの出口ローブ $V^d_{t_M/u_M}(\beta_M)$ と $V^d_{r_N/s_N}(\alpha_N)$ が交差している.

Figure 15: (a) TSBT における 3 つの分数 p'/q', p''/q'', (p' + p'')/(q' + q'') の関係. (b) 5 つの分数 r_N/s_N , t_M/u_M , p'/q', p''/q'', (p' + p'')/(q' + q'') と ω の関係. $p''/q'' > \omega$ を満たす場合もある.

Figure 16: $T^{\widehat{m}}l_{p''/q''}(-p''+1)$ は $V^d_{r_N/s_N}(\alpha_N)$ を迂回するため, $T^{\widehat{m}}l_{p''/q''}(-p''+1)$ は $T^{-\widehat{n}}l_{p'/q'}(p'+1)$ と交差する. 交差点は (p'+p'')/(q'+q'')-NBF の軌道点.

Figure 17: L_1 の定義. L_1 は2つの弧で構成されている.

 $\{p_n/q_n\}_{n\geq 1}$ において、 n^* の値は p'/q'が存在している階数として決められる.つま リ (p'+p'')/(q'+q'')-NBF は p_{n^*+1}/q_{n^*+1} -NBF でもある.定理 1.1(ii) とこの結果 から $n > n^*$ に対して p_n/q_n -NBF が存在することが得られる.よって矛盾が導かれた.(Q.E.D.)

5 2つの共鳴チェーンをつなぐ遅い運動

この節の目的は定理 5.1 を証明する事にある. $p_1/q_1 \ge p_2/q_2$ は共に SBT の要素で あり, $0 \le p_1/q_1 < p_2/q_2 \le 1$ を満たしているとする.

定理 5.1. p/q-NBF $(p = p_1 + p_2, q = q_1 + q_2, p_2q_1 - p_1q_2 = 1)$ が存在すれば, $\langle \mathcal{Z}_{p_1/q_1} \rangle (\langle \mathcal{Z}_{p_2/q_2} \rangle)$ を出発し $\langle \mathcal{Z}_{p_2/q_2} \rangle (\langle \mathcal{Z}_{p_1/q_1} \rangle)$ に至る軌道で任意に長い写像回数を必要とする軌道がある.

証明. q_1 が奇数で q_2 が偶数の場合の証明を行う. 他の場合でも同様の方法で証明で きる. $p_1/q_1 < p_3/q_3 < p_2/q_2$ を満たす TSBT の要素 p_3/q_3 を選ぶ. そうすると共鳴 チェーン $\langle \mathcal{Z}_{p_3/q_3} \rangle$ は $\langle \mathcal{Z}_{p_1/q_1} \rangle$ と $\langle \mathcal{Z}_{p_2/q_2} \rangle$ の間にある. p/q-NBF が存在するという仮 定より、弧 $T^m l_{p_2/q_2}(-p_2+1)$ は弧 $T^{-n} l_{p_1/q_1}(p_1+1)$ と $\langle \mathcal{Z}_{p_1/q_1} \rangle$ の中で交差してい る. ここで $m = (q_2+2)/2$ であり、 $n = (q_1-1)/2$ である. 図 17 の黒丸はこれらの 交差点を表していて、これらの点は p/q-NBF の軌道点である.

この状況で弧 $T^m l_{p_2/q_2}(-p_2+1)$ は共鳴領域 $A \equiv Z_{p_3/q_3}(\zeta_0) (\subset \langle Z_{p_3/q_3} \rangle)$ を2回通過する. つまり弧 $T^m l_{p_2/q_2}(-p_2+1)$ はAの中に2つの部分弧をもつ. 図 17 にこれらの部分弧 $L_1^1 \ge L_1^2$ が描かれている. これらの部分弧はAを左から右へと A_1, A_2, A_3 の3つに分割する. $L_1 = L_1^1 \cup L_1^2$ の上端は,右のコーナーにあるサドル (黒四角)の安定多様体上にあるので, $\mathcal{R}^{-p_3}T^{q_3}L_1$ の下端はこのサドルに近づき, clos A_3 に含まれる. ここで closA は集合 Aの閉包を意味する. $L_1 = L_1^1 \cup L_1^2$ の下端は,左のコーナーにあるサドル (黒四角)の安定多様体上にあるので, $\mathcal{R}^{-p_3}T^{q_3}L_1$ の下端はこのサドルに近づき, clos A_3 に含まれる. ここで closA は集合 Aの閉包を意味する. $L_1 = L_1^1 \cup L_1^2$ の下端は,左のコーナーにあるサドル (黒四角)の安定多様体上にあるので, $\mathcal{R}^{-p_3}T^{q_3}L_1$ の下端はこのサドルに近づき, clos A_1 に含まれる. $\mathcal{R}^{-p_3}T^{q_3}L_1 \ge T^m l_{p_2/q_2}(-p_2+1)$ との間に不安定多様体があるので (図 17 と図 18を見よ), $\mathcal{R}^{-p_3}T^{q_3}L_1$ は $T^m l_{p_2/q_2}(-p_2+1)$ を迂回し $T^{-n} l_{p_1/q_1}(p_1+1)$ と交差する. 新しい交差点は $(p_1 + 2p_3 + p_2)/(q_1 + 2q_3 + q_2)$

Figure 18: L_1 の未来へ写像した像は対称線を過去へ写像した像と交差する. 交差点は $\langle Z_{p_1/q_1} \rangle$ の中にある. $\langle Z_{p_3/q_3} \rangle$ の中の L_2 の定義.

CNB の軌道点である.図 18 に描かれた $\mathcal{R}^{-p_3}T^{q_3}L_1$ の 2 つ弧 L_2 を用いて上記の 方法を繰り返すと、 $(p_1 + 4p_3 + p_2)/(q_1 + 4q_3 + q_2)$ -CNB の存在が証明できる.つ まり $(p_1 + 2kp_3 + p_2)/(q_1 + 2kq_3 + q_2)$ -CNB $(k \ge 1)$ の存在が示される.この $(p_1 + 2kp_3 + p_2)/(q_1 + 2kq_3 + q_2)$ -CNB は、 $\langle \mathcal{Z}_{p_2/q_2} \rangle$ を出発し $\langle \mathcal{Z}_{p_1/q_1} \rangle$ に到達する ために写像回数が $2kq_3 + q_2$ 回必要である.kは任意であるから、主張は証明された. (Q.E.D.)

6 議論

回転数を決めたときに、どのような対称ノンバーコフ周期軌道が最初に生じるのであろうか.回転数が 2/q, 3/q, (q-2)/q, (q-3)/q $(q \ge 5)$ の場合は、NBF が最初に生じる.しかし、回転数が 4/9 の場合は、4/9-CNB が最初に生じる.この軌道は、 $\langle \mathcal{Z}_{1/2} \rangle$ の各共鳴領域に 3 個の軌道点をもち、 $\langle \mathcal{Z}_{1/3} \rangle$ の各共鳴領域には 1 個の軌道点をもつ.4/9-NBF は $\langle \mathcal{Z}_{1/2} \rangle$ と $\langle \mathcal{Z}_{3/7} \rangle$ の各共鳴領域に 1 個の軌道点をもつ.この軌道が 2 番目に生じる.p/q-NB がもつ軌道点がある共鳴チェーンのうち最も下にあるチェーンを $\langle \mathcal{Z}_{p_1/q_1} \rangle$ とし、最も上にあるチェーンを $\langle \mathcal{Z}_{p_2/q_2} \rangle$ とする.p/q-NB の運動の幅を $d(p/q) = p_2/q_2 - p_1/q_1$ で測るとする.上の例は d(p/q) < d(p'/q') ならば、p'/q'-NB $\rightarrow p/q$ -NB が成立しないことを意味している.

ゆっくりした拡散現象の原因は KAM 曲線とか AM 集合の近傍において軌道が とどまる事にあると広く信じられている [7]. これに対し, 我々は新しい軌道の停滞機 構を提唱したい. それは一つの共鳴チェーン内における停滞である. どの共鳴チェー ンに長く停滞するのかまたその頻度はどの程度なのか分からない. このような情報

References

- [1] Y.Yamaguchi and K.Tanikawa (Paper I), Prog. Theor. Phys. **117** (2007), 601.
- [2] A. Bogomolny, http://www.cut-the-knot.org/blue/Stern.shtml
- [3] R. de Vogelaere, in Contribution to the theory of nonlinear oscillation, Vol. IV, ed. S. Lefschetz (Princeton University Press, 1958), 53.
- [4] P. Collins, Int. J. Bifurcation and Chaos, **12** (2002), 605.
- [5] G. D. Birkhoff, *Dynamical Systems* (Amer. Math. Soc., 1927).
- [6] Y. Yamaguchi and K. Tanikawa, Prog. Theor. Phys. 107 (2002), 1117.
- [7] Y. Aizawa, Y. Kikuchi, T. Harayama, K. Yamamoto, M. Ota and K. Tanaka, Prog. Theor. Phys. Suppl., No.98 (1989), 36.

A 性質 2.3.1の証明

(i). $\mathcal{Z}_{0/1}(Q_{0,0})$ の構成から $H\mathcal{Z}_{0/1}(Q_{0,0}) = \mathcal{Z}_{0/1}(Q_{0,0})$ は明らかである. $h\mathcal{Z}_{0/1}(Q_{0,0}) = \mathcal{Z}_{0/1}(Q_{0,0})$ を証明しよう. ここで h は対合で下記のように定義される.

$$h(x,y) = (x - y, -y).$$
 (34)

hの不動点の集合はy = 0である. これをhの対称線と呼ぶ. 直接計算より, $\sigma_{Q_{0,0}} = H \circ h = h \circ H$ が得られる. v' = h(Hv) = hvより $h[P_{0,0}, v]_{W_u^1} = [v', P_{0,0}]_{W_s^1}$ と $h[v, P_{1,0}]_{W_s^2} = [P_{1,0}, v']_{W_u^2}$ が得られる. よって $h\mathcal{Z}_{0/1}(Q_{0,0}) = \mathcal{Z}_{0/1}(Q_{0,0})$ が導かれる. これより $hH\mathcal{Z}_{0/1}(Q_{0,0}) = \mathcal{Z}_{0/1}(Q_{0,0})$ が示される. (Q.E.D.)(ii). 次の対合gを導入する.

$$g(x,y) = (x, 2\pi - y - f(x)).$$
(35)

gの不動点の集合は $y = \pi - f(x)/2$ である.これをgの対称線と呼び, $S_g(1)$ と名前をつける.2つの対称線 $G \ge S_g(1)$ の交差点 $z_0 = (0,\pi) \ge z_1 = (\pi,\pi)$ は1/2-バーコフ楕円周期軌道の点である.

次に $S_H(-1)$ と $S_g(1)$ の交差点を z'_0 とし, $S_H(0)$ と $S_g(1)$ の交差点を z'_1 とす る. 領域 x < 0 にある $S_g(1)$ を $S_g^-(1)$ とし, 領域に x > 0 にある $S_g(1)$ を $S_g^+(1)$ とする. $\sigma_{z_0}S_g^-(1) = S_g^+(1)$ と $\sigma_{z_0}S_H(-1) = S_H(0)$ が成立する事は簡単に分かる. これらの関係より, $\sigma_{z_0}z'_0 = Ggz'_0 = z'_1$ が得られる. $gz'_0 = z'_0$ と $Hz'_1 = z'_1$ より, $z'_1 = Hz'_1 = HGgz'_0 = HGz'_0 = Tz'_0$ が得られる. ここで H の対称線は $S_H(0)$ であ る. $Gz'_0 = z'_1$ より, $z'_2 = Tz'_1 = TGz'_0 = Hz'_0$ が得られ, $HS_H(-1) = S_H(1)$ より $z'_0 = z'_2$ (Mod 2π) が得られる. よって, z'_0 と z'_1 は回転数 1/2 の周期軌道の点である. この軌道がバーコフ型であることは明らかである. Poincaré 指数の保存より, $O(z_0)$ が楕円軌道であるので $O(z'_0)$ はサドル軌道である.

 z'_0 の不安定多様体は z'_0 から右上方に向かって出ていて,sにおいて $S_G(0)$ と交差している. z'_1 の安定多様体は左上方から z'_1 に入る. これはsにおいて $S_G(0)$ と交差

している. 点 t (= gs) は $S_G(0)$ 上にある. なぜなら $t = gGs = \sigma_{z_0}s$ が成立するから である. z'_0 の安定多様体は z'_0 に右下方から入り, $S_G(0)$ と t で交差している. z'_1 の 不安定多様体は z'_1 から左下方に出ていて, $S_G(0)$ と t で交差している. $2 \le s \ge t$ は サドル $z'_0 \ge z'_1$ のヘテロクリニック点である. $[z'_0, s]_u \ge z'_0$ の不安定多様体の弧とし, $[s, z'_1]_s \ge z'_1$ の安定多様体の弧とする. $[z'_0, t]_s \ge z'_0$ の安定多様体の弧とし, $[t, z'_1]_u$ $\ge z'_1$ の不安定多様体の弧とする. $G[z'_0, s]_u = [s, z'_1]_s$, $G[z'_1, t]_u = [t, z'_0]_s$, $g[z'_0, s]_u =$ $[t, z'_0]_s$, $g[z'_1, t]_u = [s, z'_1]_s$ の関係より, $GgZ_{1/2}(z_0) = Z_{1/2}(z_0)$ が導かれる. (Q.E.D.)