すばる中間赤外線装置COMICSで さぐる大質量星形成

岡本 美子 (北里大学)

1. イントロダクション

2. 超コンパクト(UC)HII領域の電離星

3. 超コンパクト(UC)HII領域の電離ガス運動

大質量星形成に関係する天体

- Cold cores
- Warm cores
- Hot cores
 - 0.1pc, 100K, 10⁵cm⁻³, NH₃etc
- Hypercompact HII regions ← Protostarの形成?
- Ultracompact HII regions ・0.1pc, ne>~ 10⁵cm⁻³, EM>~ 10⁶cm⁻⁶ pc, 10⁵yr
- OB stars/associations
- 広いmass range:
 - 3桁のluminosity range, 6桁の電離光子数range
 - 質量と形成ステージがカップル
- 込合った領域→SEDを天体ごとに分離できていない

- 割とよく性質がわかっている のはUCHIIsとhot cores
 - わかっているのは全体量
 - 温度、密度、電離フラックス、 cloud質量など
- いったいそこから・そこにど のくらいの質量の星が生ま れる(生まれている)のかは よくわかっていない
 - Cloudの進化を考える上で重要
- 若い段階から追うのは困難 - →UCHII領域段階で見てみる

2. 超コンパクト質量HII領域の 電離ガスの運動*

*一部、北里学術奨励研究助成(第16期)の助成による

物理量:アウトフローvs電離ガス					
• アウトフロー駆動とUCHII現象は段階が異なる現象					
-	- エネルギー規模,年齡に大きな隔たり				
• U	 UCHII形成時点でoutflowで生じた構造が残存 				
- UCHIIのradio/MIR/NIR放射が、outflow軸に関連したようなアー					
ク構造を持っている & 電離カス運動のoutflowとの関連					
		Outflow (Hunter	UCHII region		
		et al.1997)	(from ∆v of [NeII])		
	Energy [erg]	5.6x10 ⁴⁸	1.9x10 ⁴⁵		
			(1/2 $M_{ionized gas} \Delta v^2$)		
	Moment[M _{sun} km/s]	31000	50		
			$(M_{ionized gas} \Delta v)$		
	τ _{dynamical} [yr]	2x10 ⁵	6x10 ³		
			(UCHII size / ∆v)		
電離ガス質量~1.3Msun:電子密度とサイズからすべてH+として求めた					

G35.20-1.74

シャンパン流的cometary HII領域として

<u>よく説明できる</u>

- · 「NeII]輝線
 - V(LSR)⊅້40-50km/s
 - cometaryの軸上ではtail側にかけて赤くなる
 - PV図でどのCutでも赤い側にウイング
- ・ 分子線 (Hofner et al. 2000等)
 - V(LSR)はおよそ42-45km/s
 - 青い側にウイング
- 350µmダスト放射(Hunter et al. 2000)
 - 北側と東側にバー状に分布
 - Cometaryのheadが北東
- · 速度範囲は20km/s程度
- →視線向こう側に開いたシャンパン流膨張

G33.92+0.11

[NeII]は分子線よりも青い
 – RRLも青いがRRLより分子との差が大(数km/sと15km/s)

 中心で一定に近く、その外で距離に対して線形に加速、 さらに外では再び一定速度

 ただし、全体として9km/s/pc程度の加速にのっているよう
 加速量は15km/s、率 125km/s/pc

 ほぼedge-onで見たbipolar ionized outflowか?

 北側が赤いので向こう側
 11.7µm像で北側が弱いのと矛盾しない

 11.7µmより8.8µmの方が中心の2ピークの距離が小

- おそらくbipolarの中心部に電離星
- 電離フローの開口角77度
- NIRでは中心星は見えていない。
 - 350mm peakにUCHIIがあるので矛盾はしない

加速メカニズムは何か?

- 加速領域の大きさ・加速が線形であること・加速度・速度
 分布(中心速度、速度幅)が重要だろう
- 考えられるメカニズム
- ・ 降着円盤による磁気圧:開口角が大きすぎでは
- ・ 放射圧
 - この場合、点源放射源による放射圧加速は、点源から遠くなるほど ど光子との衝突頻度が落ちるため、加速度が小さくなりそう
- ・ 星風:もとをたどれば放射圧

