サブミリ波偏波観測と 高解像度観測との関係 -NGC7538の話題(ApJ 555, 855)を中心に-

(内容)

NGC7538 SCUBA観測を題材に・・・ 磁場構造と収縮・分裂との関係 アウトフローとの関係 高解像度観測の必要性

星形成領域における磁場観測

◎ ゼーマン効果 (HI, OH, CCS) ★ 磁場の視線方向成分の強度 ★ (問題)高密度領域を対象にした観測が困難 ●ダスト偏光(偏波)観測 ★ <u>ダスト粒子の整列</u>(ダスト長軸 」磁場) ★ 可視・近赤外:Avの比較的小さいところ ★ サブミリ波: 高密度領域の放射を直接観測

NGC7538のSCUBA 偏波観測

- SCUBA偏波計 ★ SCUBA + (半波長板+固定ワイヤーグリッド) $\sim \lambda = 850 \mu m$ ◎ ビームサイズ ~ 16" ◎視野~2'
 - (~1.6 pc)

NGC7538 領域

- d=2.7kpc
- IR Luminosity
 10⁵L_•(IRS1)
 - a few × $10^4 L_{\odot}$ (IRS 9, 11)
- ・顕著な分子流
- ・UC HII領域& 水メーザー
- ・ 北西側: 顕著なHII領域

得られた輝度分布

こつの『コア』
 IRS1:3900M。
 IRS11:1800M。

(T_d=25K: CO観測から, *к*=8.65×10⁻³ cm⁻²g⁻¹)

※1分角=0.78pc

磁場 + CO Outflows (Kameya et al. 1990) ※輝度ピークの10%以上を黒で

(i) IRS 1のコア: 向きのバラツキ大, 偏波率小。(ii) Outflowと良い相関(特にIRS 1:後で詳述)

各Dec.での 平均からのズレ→

両者の違い:進化段階の違いを反映?

- ・SupercriticalなMassive Coreの収縮: 円盤を形成→さらに分裂? (Scott & Black 1980)
- ・磁場と星間物質は(n(H)≃10¹¹cc⁻¹まで)良くカップル (e.g., Nakano & Umebayashi 1986)
 ☞ 進化が進み分裂が進むとBも小スケールで擾乱?

IRS1コアとIRS11コアの比較

- 質量・遠赤外Luminosityは大差なし
- ●赤外線での観測:顕著な違いあり
 - ★ IRS1コア: 2.2µmで複数のコア同定
 - ★ IRS11コア: (10-20)µmでも顕著な点源なし
- ◎ IRS 11の方が早期段階?
 - (i) 偏波方向の一様性, (ii) 高い偏波率
 - 統一的に説明可能。

OMC2/3: Matthews et al. (2001)

磁場 + CO Outflows (Kameya et al. 1990) ※輝度ピークの10%以上を黒で

(i) IRS 1のコア: 向きのバラツキ大, 偏波率小。(ii) Outflowと良い相関(特にIRS 1:後で詳述)

アウトフローの高解像度観測

VLA 15GHz (Campbell et al. 1984) 0.03pcスケールでは南北

分子流と磁場との関係 ◎磁場の向きと分子流の向きに良い相関 ★ 磁場がアウトフローの向きをコントロール ★ アウトフローの力学的作用による磁場構造変化 ● どちら?:エネルギー比較 (Hurka et al. 1999) ★ 分子流の運動エネルギーを磁場換算 $B_{\rm flow} = \left(\frac{8\pi E_{\rm flow}}{V_{\rm flow}}\right)^{1/2}$ × ★ コア中の磁場強度: 柱密度から見積もり

柱密度と磁場強度の関係

<u>N(H₂)とB_{IOS}(Zeeman 効果)</u> よく相関 (*p* =0.85) (Crutcher 1999)

<u>コア</u> N(H₂) \approx 3.5×10²³ cm⁻² \circledast B \approx 750 μ G > B_{flow} (\approx 250 μ G) **磁場によるコントロール?**

Parameter	IRS 1(SMM)	IRS 11(SMM)
(1) Spatial extent (pc ²) ^a	0.657	0.358
(2) Mass $(M_{\odot})^{a}$	3.9×10^{3}	$1.8 imes 10^3$
(3) Mean column density (g cm ^{-2})	1.24	1.05
(4) Mean column density $[N(H_2] \text{ in } \text{cm}^{-2})$	3.7×10^{23}	3.2×10^{23}
(5) Outflow energy (ergs) ^b	6×10^{46}	$4 imes 10^{46}$
(6) Spatial extent of outflow (pc ²) ^b	0.90	0.64
(7) Expected volume of outflow (pc ³) ^c	0.85	0.51
(8) $B_{\rm flow} \ (\mu {\rm G})^{\rm d}$	250	260
(9) $B_{\rm grav} \ (\mu {\rm G})^{\rm e}$	2.0×10^{3}	1.7×10^{3}

^a Derived from our observations. see § 3.1.

^b From Kameya et al. 1989.

[°] Estimated by (spatial extent)^{1.5}.

^d The critical field strength at which the field has the same energy density as the outflows, derived from eq. (2).

^e The critical field strength of the cloud at which the magnetic force is comparable to the gravitational force, derived from $B_{grav} = 2\pi \sqrt{G\Sigma}$, where G is the gravitational constant and Σ is the column density of a cloud; see Nakano & Nakamura 1978.

まとめ:高解像度の必要性 ● 小スケールの構造と偏波(磁場)構造の対応 ★ 分裂による擾乱 (ビーム内変動の克服) ★ アウトフローとの詳細な対応(平均量ではない) 議論:磁場強度の見積もりはどうする?) ◎ ALMA:<0.1"での高解像度マッピング</p> ★ 上の問題に対する答え ★ 波長依存性は? (整列のサイズ依存性?)