総研大物理科学研究科天文科学専攻 シミュレーション天文学 2004.7.13 **星間ガスから星への進化**. **II**.

富阪幸治(国立天文台)

Physical Models & Numerical Method

- Ideal MHD
- Composite Polytropic Eq. of State
 - Which mimics the result of 1D RHD (eg. Masunaga, Inutsuka 2000).

$$p = c_s^2 \rho + c_s^2 \rho_{crit} \left(\rho / \rho_{crit} \right)^{7/5}$$

$$p \approx \begin{cases} c_s^2 \rho \dots & (\rho \le \rho_{crit}) & \text{Isotherma} \\ K \rho^{7/5} \dots & (\rho > \rho_{crit}) & \text{Adiabatic} \end{cases}$$

- Parameter
 - Magnetic-to-Thermal Pressure Ratio $\alpha = \frac{B_{0c}^2 / 4\pi}{c^2 \rho_0}$
 - Angular Rotation Speed / Free-Fall Rate $\omega = \Omega (4\pi G \rho_{0c})^{-1/2}$

- "Nested Grid" Technique
 - Coarser grid: covers global structure
 - Finer grid: small-scale structure near the center.

Axisymmetric Evolution of Isothermal Runaway Collapse

 $\alpha = 1, \ \Omega_0 = 5 \ (L2)$

Typical Dynamical Evolution of Rotating Magnetized Clouds

Runaway Isothermal Collapse

Disk-in-disk structure.

t=0.6066τ_# ~ 10⁶yr after collapse begins

Accretion onto Adiabatic Core

 $(\tau=0: core forms)$

All models with $\Omega_{cl}\neq 0$ and $\alpha\neq 0$ show indicate outflows.

分裂条件: c/(4 G c)^{1/2}>0.2 @断熱コア形成時

初期条件 分裂時の 条件:45度の直線上

分裂する領域はブ ルーに着色した領域

Modes of Fragmentation

bar fragmentation $A_{m2}=0.2 = 1.0$

density (false color, contour) velocity (arrows)

Shape of the magnetic field line (red stream lines) outflow region(blue isovolume) **ring fragmentation** : A_{m2} =0.01 =0.01 =0.5

density (false color, contour) velocity (arrows)

Shape of the magnetic field line (red stream lines) outflow region(blue isovolume)

シミュレーション研究の進展

問題の定式化

- 実験装置であるプログラムについて、適当な計算法を検討
 - 数値不安定性
- プログラムの作成、テスト(検証)
 - 検証問題:類似問題で既知の解のある問題
 - 衝撃波管問題、自己相似解、定常問題の解
- 計算の実行
- 計算結果の解析
 - シミュレーションの可視化、アニメーション
 - 結果から誘導される単純な量の間の関係
 - 物理的解釈
- 結果をわかりやすい形で発表