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CCS total intensity map observed with the BIMA array. The contour
spacing is 2 o, starting at +2 ¢ with 1 ¢ = 55 mJy beam . The cross indicates
the peak position of the 800 pm continuum emission {Ward-Thompson et al.
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8 Virial Analysis

Hydrodynamic equation of motion using the Lagrangean time derivative [eq.(8)] is

d
pd—j =-Vp-—pVad. (119)

For simplicity, consider a spherical symmetric configuration. The equation of motion is expressed as
du ap ob

P~ "o Por

(120)

Multiplying radius r to the equation and integrating by the volume dV' = 4xr2dr over a volume from

r =0 to r = R, we obtain the Virial relation as

1421 1
where
I= f pr2dV = f r2dM, (122)

is an inertia of the cloud, and 7" and U are, respectively, the kinetic and thermal energies as

1 - . 1 .
T:f—_{mzrﬂf 2/—?.!‘;0'.1”,._
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U= ] L_av.
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Further,

is a gravitational energy.
Since B
dv  1ld*r® 2

T =75 —
dt 2 di?
the lefthand-side of equation (120) is rewritten as

R dv 5 R d_2.r.2 ) )
——darrd = - = r _Jl-',
L o dt T T j[; (2 dfz (i P ar

1 d® R R,
= -5 “d ..—/ dm
Zdﬁfn rdm A vodm

1d°1
= %L _or
2 di?

where we used equation (122) and (123)




On the other hand, the first term of the rhs of equation (120) becomes

R , . 18 B
— f 2L 4y 2y — { [41:1"')*3'3} -3 / "—l?."'.l"zpdi"} .
o dr 0 Jo

i
3 pdV/,
S0
(v - 1)U. (128)

To derive this equation, we have assumed the pressure diminishes at a radius + = R and the surface

pressure term does not appear in the final expression. This is valid for an isolated system.

The last term of the rhs of equation (120) is written as

B do . E Gm .
—f rp—Arridr = —f p——Axridr,
0 0

dr 2

wher we used equation(65). This is rewritten as

B Gm, , B Gm,
p——4mrsdr - dm
= 0

r

W, (130)

Gy

. . _ T m .
where m, = [; dm. The energy + =

per unit mass is necessary for a gas element is moved from r,
ingide which mass m, is contained, to the infinity. Adding the energy +@dm for all the gas, the
potential energy is obtained. In the case of a star composed of uniform density py,
‘ 2
W _SGMT (131)
5 R
where M = 47 R?po /3.

To obtain a condition of mechanical equilibrium, we assume d2I/dt?> = 0. Equation (121) becomes
T +3(y— WU + W = 0. (132)
Assuming the stystem is static v = 0, the above equation reduces to

3y — U +W =0.
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rotB=(471t/c)j
rotE=-(1/c)dB/dt

= |xB/c=-gradB/871t+BgradB/471t

s J=c(E+vxB/c)

= dB/dt=rot(vxB)+(c?/41T1C) B




MHD

B.1 Magnetohydrodynamics

Here, we derive the basic equations of magnetohydrodynamics. Differences from hydrodynamics are
the Lorentz force in the equation of motion and the induction equation of magnetic field. The Lorentz

force is written as {
ij=4—{‘F:-:B}}=:B, (B.1)
47

where we used the Ampere's law ¥ x B = (47/e)j and the displacement current is ignored. Thus,
the equatin of motion becomes as

i 1
e (—v + (V- ?J]U) — Vp—pVv+ —(V x B) x B, (B.2)
(M 4
in the Eulerian form.
The Faraday's law V x E = —(1/e)(0B/dt) and the Ohm’s law j = o(E + v x B/e) (7 is the
electric conductivity) lead the induction equation of the magnetic field as
JB e* V x B
— =WV B)—- —V , B.3
ot x (v x B) 4w 8 o (B.3)
The factor ¢ /4mo is the eoefficient of magnetic diffusibility. When we assume the electrie conductivity
g — oo, diffusive MHD equation, equation(B.3), reduces to the 1deal MHID equation as
aB
B = V x (v x B). (B.4)
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B.1.1 Flux Freezing

An important nature of the ideal MHD is derived from equatio (B.4), that is, the matier and the
magnetic field is coupled with each other. Consider a gas parcel threaded with the magnetic field B.
The magnetic flux anchored to the gas parcel &y = [ B - dS 1s changes

d®g
= dffB ds — f— dS+fH vxds, (B.5)

where &8 = 5. The first term of the lhs of the equation comes from a time derivative of the magnetic
flux density, while the last term represents the change of the integral region due to gas motion (see

Figure B.1: The change of flux anchored to a surface d5. One part of the shange comes from the
temporal change in magnetic lux density. The other comes from the change of the boundary of the
surface due to gas motion. Time variation of the area is given by wdf x da.

Fig.B.1). (dS = v x ds) Using the Stokes’ theorem [V x A -dS = [ A -ds, the last term is reduced
to [B xv-da= [V(B x v)-dS. Finally, we obtain

ﬂ'lIJ

” 57 — V(v x B)|-dS =0, (B.6)
-[|&

where we used equation (B.4). This means that the magnetic lux anchored to a gas parcel does not
chanee in the ideal WMHT) recimea
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