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Chapter 1

Introduction
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Figure 1.1: Multiphases of the interstellar medium. The temperature and number density of gaseous
objects of the interstellar medium in our Galaxy are summarized. Originally made by Myers (1978),
reconstructed by Saigo (2000).

Figure 1.1 shows the temperature and number density of gaseous objects in our Galaxy. Cold
interstellar medium forms molecular clouds (T ∼ 10K) and diffuse clouds (T ∼ 100K). Warm inter-
stellar medium 103K<∼T<∼104K are thought to be pervasive (wide-spread). HII regions are ionized by
the Ly continuum photons from the early-type stars. There are coronal (hot but tenuous) gases with
T ∼ 106 K in the Galaxy, which are heated by the shock fronts of supernova remnants. Pressures
of these gases are in the range of 102Kcm−3<∼p<∼104Kcm−3, except for the HII regions. This may
suggest that the gases are in a pressure equilibrium.
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4 CHAPTER 1. INTRODUCTION

In this figure, a theoretical path from the molecular cloud core to the star is also shown. We will
see the evolution more closely in Chapter 4.

Globally, the molecular form of Hydrogen is much abundant inside the Solar circle, while the
atomic hydrogen is more abundant than molecular H2 in the outer galaxy. In Figure 1.2 (left), the
radial distributions of molecular and atomic gas are shown. The right panel shows the distributions for
four typical external galaxies (M51, M101, NGC6946, and IC342). This indicates these distributions
are similar with each other. HI is distributed uniformly, while H2 density increases greatly reaching
the galaxy center. In other words, only in the region where the total (HI+H2) density exceeds some
critical value, H2 molecules are distributed.

Figure 1.2: Radial distribution of H2 (solid line) and HI (dashed line) gas density. (Left:) our galaxy.
Converting from CO antenna temperature to H2 column deity, n(CO)/n(H2) = 6× 10−5 is assumed.
Taken from Gordon & Burton (1976). (Right:) Radial distribution of H2 and HI gas for external
galaxies. The conversion factor is assumed constant X(H2/CO) = 3× 1020H2/Kkms−1. Taken from
Honma et al (1995).

1.2 Case Study — Taurus Molecular Clouds

Figure 1.3 (left) shows the 13CO total column density map of the Taurus molecular cloud (Mizuno et
al 1995) whose distance is 140 pc far from the Sun. Since 13CO contains 13C, a rare isotope of C, the
abundance of 13CO is much smaller than that of 12CO. Owing to the low abundance, the emission
lines of 13CO are relatively optically thiner than that of 12CO. Using 13CO line, we can see deep
inside of the molecular cloud. The distributions of T-Tauri stars and 13CO column density coincide
with each other. Since T-Tauri stars are young pre-main-sequence stars with M ∼ 1M�, which are
in the Kelvin contraction stage and do not reach the main sequence Hydrogen burning stage, it is
shown that stars are newly formed in molecular clouds.
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Figure 1.3: (Left) 13CO total column density map of the Taurus molecular cloud (Mizuno et al 1995).
Taken from their home page with a url of http://www.a.phys.nagoya-u.ac.jp/nanten/taurus.html (in
Japanese). T Tauri stars, which are thought to be pre-main-sequence stars in the Kelvin contraction
stage, are indicated by bright spots. (Right) C18O map of Heiles cloud 2 region in the Taurus
molecular cloud (Onishi et al. 1996). This shows clearly that the cloud is composed of a number of
high-density regions.

Since 18O is much more rare isotope (18O/16O �13 C/12C), the distribution of much higher-
density gases is explored using C18O lines. Figure 1.3 (right) shows C18O map of Heiles cloud 2 in
the Taurus molecular cloud by Onishi et al (1996). This shows us that there are many molecular
cloud cores which have much higher density than the average. Many of these molecular cloud cores
are associated with IRAS sources and T-Tauri stars. It is shown that star formation occurs in the
molecular cloud cores in the molecular cloud. They found 40 such cores in the Taurus molecular cloud.
Typical size of the core is ∼ 0.1 pc and the average density of the core is as large as ∼ 104cm−3. The
mass of the C18O cores is estimated as ∼ 1 − 80M�.

H13CO+ ions are excited only after the density is much higher than the density at which CO
molecules are excited. H13CO+ ions are used to explore the region with higher density than that
observed by C18O. Figure 1.4 shows the map of cores observed by H13CO+ ions. The cores shown in
the lower panels are accompanied with infrared sources. The energy source of the stellar IR radiation
is thought to be maintained by the accretion energy. That is, since the gravitational potential energy
at the surface of a protostar with a radius r∗ and a mass M∗ is equal to Φ � −GM∗/r∗, the kinetic
energy of the gas accreting on the stellar surface is approximately equal to ∼ GM∗/r∗. The energy
inflow rate owing to the accretion is (∼ GM∗/r∗)× Ṁ ∼ (GM∗/r∗)× A(c3

s/G), where Ṁ = A(c3
s/G)

is the mass accretion rate. In the upper panels, the cores without IR sources are shown. This core
does not show accretion but collapse. That is, before a protostar is formed, the core itself contract
owing to the gravity.

In Figure 1.4, H13CO+ total column density maps of the C18O cores are shown. Cores in the
lower panels have associated IRAS sources, while the cores in the upper panels have no IRAS sources.
Since the IRAS sources are thought to be protostars or objects in later stage, the core seems to evolve
from that without an IRAS sources to that with an IRAS source. From this, the core with an IRAS
source is called protostellar core, which means that the cores contain protostars. On the other
hand, the core without IRAS source is called pre-protostellar core or, in short, pre-stellar core.

Figure 1.4 shows that the prestellar cores are less dense and more extended than the protostellar
core. This seems to suggest the density distribution around the density peak changes between before
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Figure 1.4: Pre-protostellar vs protostellar cores (H13CO+ map). Upper panel shows the C18O cores
without associated IRAS sources. Lower panel shows the cores with IRAS sources. Taken from Fig.1
of Mizuno et al. (1994)

and after the protostar formation.

1.3 T-Tauri Stars

T-Tauri stars are observationally late-type stars with strong emission-lines and irregular light varia-
tions associated with dark or bright nebulosities. T-Tauri stars are thought to be low-mass pre-main-
sequence stars, which are younger than the main-sequence stars. Since these stars are connecting
between protostars and main-sequence stars, they attract attention today. More massive counter-
parts are Herbig Ae-Be stars. They are doing the Kelvin contraction in which the own gravitational
energy released as it contracts gradually is the energy source of the luminosity. Many emission lines
are found in the spectra of T-Tauri stars. WTTS (Weak Emission T-Tauri Stars) and CTTS (Clas-
sical T-Tauri Stars) are classified by their equivalent widths of emission lines. That is, the objects
with an EW of Hα emission < 1nm = 1A is usually termed a WTTS. Figure 1.5 is the HR dia-
gram (Teff − Lbol) of T-Tauri stars in Taurus-Auriga region (Kenyon & Hartman 1995). WTTSs
distribute near the main-sequence and CTTSs are found even far from the main-sequence. A number
of theoretical evolutional tracks for pre-main-sequence stars with M ∼ 0.1M� − 2.5M� are shown in
a solid line, while the isochorones for ages of 105yr, 106yr, and 107yr are plotted in a dashed line.
Vertical evolutional paths are the Hayashi convective track. Since D=2H has a much lower critical
temperature (and density) for a fusion nuclear reaction to make He than 1H, Deuterium begins to
burn before reaching the zero-age-main sequence. This occurs near the isochrone for the age of 105yr
and some activities related to the ignition of Deuterium seem to make the central star visible (Stahler
1983).

1.4 Spectral Energy Distribution

A tool to know the process of star formation is provided by the spectral energy distribution (SED)
mainly in the near- and mid-infrared light. T-Tauri stars and protostars have typical respective SEDs.
IR SEDs of T-Tauri stars were classified into three as Class I, Class II, and Class III, from a stand-
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Figure 1.5: HR diagram of T-Tauri stars. Many emission lines are found in the spectra of T-Tauri
stars. WTTS (Weak Emission T-Tauri Stars) and CTTS (Classical T-Tauri Stars) are classified by
the equivalent widths of emission lines. That is, the objects with an EW of Hα emission < 1nm is
usually termed a WTTS. Taken from Fig.1.2 of Hartmann (1998).
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point of relative importance of the radiation from a dust disk to the stellar black-body radiation.
Today, the classification is extended to the protostars, which is precedence of the T-Tauri stars, and
they are called Class 0 objects. (Unfortunately, there is no zero in Roman numerals.) In Figure 1.6,
typical SEDs and models of emission regions are shown.

1. Class III is well fitted by a black-body spectrum, which shows the energy mainly comes from a
central star. This SED is observed in the weak-line T-Tauri stars. Although T-Tauri stars show
emission lines of such as Hydrogen Balmar sequence, the weak-line T-Tauri stars do not show
prominent emission lines, which indicates the amount of gas just outside the star (this seems
to be supplied by the accretion process) is small. In this stage, a disk has been disappeared or
an extremely less-massive disk is still alive.

2. Class II SED is fitted by a black-body with a single temperature plus excess IR emission. This
shows that there is a dust disk around a pre-main sequence star and it is heated by the radiation
from a central star. The width of the spectrum of the disk component is much wider than that
expected from a single-temperature black-body radiation. Thus, the disk has a temperature
gradient which decreases with increasing the distance from the central star. In this stage, the
dust disk is more massive than that of Class III sources. Classical T-Tauri stars have such
SEDs.

3. In Class I SED, the mid infrared radiation which seems to come from the dust envelope is
predominant over the stellar black-body radiation. Since the stellar black-body radiation seems
to escape at least partially from the dust envelope, a relatively large solid angle is expected for
a region where the dust envelope does not intervene.

4. Class 0 SED seems to be emitted by isothermal dust with ∼ 30K. The protostar seems to be
completely covered by gas and dust and is obscured with a large optical depth by the dust
envelope. No contribution can be reached from the stellar-black body radiation.

The reason why the emission from the disk becomes wide in the spectral range is understood
(Fig.1.7) as follows: Temperature of the disk is determined by a balance of heating and cooling.
Assuming the disk is geometrically thin but optically thick, the cooling per unit area is given by
the equation of the black-body Planck radiation. Therefore, the temperature is determined by the
heating predominantly by viscous heating and extra heating by the radiation from the central star.
The flux density emitted by the disk is given by

νFν ∼
∫

νπBν [T (r)]2πrdr ∼ r(T or ν)2νBν . (1.1)

Assuming the radial distribution of temperature as

T = T0

(
R

R0

)−q

, (1.2)

(q = 3/4 for the standard accretion disk) and taking notice that each temperature in the disk radiates
at a characteristic frequency ν ∝ T (the Wien’s law for black-body radiation)

νFν ∼ r2νBν ∝ ν4T−2/q ∝ ν4−2/q, (1.3)

where we used the fact that the peak value of Bν ∝ ν3. Therefore, it is shown that

νFν ∝ νn; n = 4 − 2
q
. (1.4)
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Figure 1.6: Spectral Energy Distribution (SED) of young stellar objects (YSOs) and their models.
(Left:) ν − νFν plot taken from Lada (1999). (Right:) λ − λFλ plot taken from André (1994)
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Figure 1.7: Explanation for the spectral index of the emission from a geometrically thin but optically
thick disk. Taken from Fig.16 of Lada (1999).

As shown in the previous section, we have no young stellar objects found by IR before a protostar
is formed. These kind of objects (pre-protostellar core) are often called Class -1. The classification
was originally based on the SED and did not exactly mean an evolution sequence. However, today
YSOs are considered to evolve as the sequence of the classes: Class -1 → Class 0 → Class I → Class
II → Class III → main-sequence star.

1.5 Protostars

1.5.1 B335

B335 is a dark cloud (Fig.1.8) with a distance of D � 250pc. Inside the dark cloud, a Class 0 IR
source is found. The object is famous for the discovery of gas infall motion. In Figure 1.9, the

Figure 1.8: Near infrared images of B335, which is Class 0 source.
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Figure 1.9: Line profile of CS J = 2 − 1 line radio emission. Model spectra illustrated in a dashed
line (Zhou 1995) are overlaid on to the observed spectra in a solid line (Zhoug et al 1993).
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Figure 1.10: Explanation of blue-red asymmetry when we observe a spherical symmetric inflow mo-
tion. An isovelocity curve for the red-shifted gas is plotted in a solid line. That for the blue-shifted
gas is plotted in a dashed line. Taken from Fig.14 of Lada (1999).

line profiles of CS J = 2 − 1 line emissions are shown (Zhou et al. 1993). The relative position of
the profiles correspond to the position of the beam. (9,9) represents the offset of (9”,9”) from the
center. At the center (0,0), the spectrum shows two peaks and the blue-shifted peak is brighter than
the red-shifted one. This is believed to be a sign of gas infall motion. The blue-red asymmetry is
explained as follow:

1. Considering a spherical symmetric inflow of gas, whose inflow velocity vr increases with reaching
the center (a decreasing function of r)

2. Considering a gas element at r moving at a speed of vr(r) < 0, the velocity projected on a
line-of-sight is equal to

vline−of−sight = vsystemic + vr cos θ, (1.5)

where vsystemic represents the systemic velocity of the cloud (line-of-sight velocity of the cloud
center) and θ is the angle between the line-of-sight and the position vector of the gas element.
The isovector lines, the line which connect the positions whose procession/recession velocities
are the same, become like an ellipse shown in Fig.1.10.

3. An isovelocity curve for the red-shifted gas is plotted in a solid line. That for the blue-shifted
gas is plotted in a dashed line. If the gas is optically thin, the blue-shifted and red-shifted gases
contribute equally to the observed spectrum and the blue- and red-shifted peaks of the emission
line should be the same.

4. In the case that the gas has a finite optical depth, for the red-shifted emission line a cold gas in
the fore side absorbs effectively the emission coming from the hot interior. On the other hand,
for the blue-shifted emission line, the emission made by the hot interior gas escapes from the
cloud without absorbed by the cold gas (there is no cold blue-shifted gas).
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Figure 1.11: C18O total column density map (left) and H13CO+ channel map (right) of B335 along
with the position-velocity maps along the major and minor axes. Taken from Fig.3 of Saito et al
(1999).

5. As a result, the blue peak of the emission line becomes more prominent than that of the read-
shifted emission. This is the explanation of the blue-red asymmetry.

In Figure 1.9, model spectra calculated with the Soblev approximation (Zhou 1995) are shown. These
show the blue-red asymmetry (the blue line > the red line).

Many bipolar molecular outflows are found in star forming regions. B335 is also an outflow source.
In Figure 1.11, distributions of high density gases traced by the C18O and H13CO+ lines are shown
as well as the bipolar outflow whose outline is indicated by a shadow (Hirano et al 1988). Comparing
left and right panels, it is shown that the distribution of C18O gas is more extended than that of
H13CO+ which traces higher-density gas. And the distribution of the H13CO+ is more compact
and the projected surface density seems to show the the actual distribution is spherical. And the
molecular outflow seems to be ejected in the direction of the minor axis of the high-density gas. It
may suggest that (1) a molecular outflow is focused or collimated by the effect of density distribution
or that (2) collimation is made by the magnetic fields which run preferentially perpendicularly to the
gas disk. This gas disk is observed by these high density tracers.

Combining the C18O and H13CO+ distributions, the surface density distribution along the major
axis is obtained by Saito et al (1999). From the lower panel of Figure 1.12, the column density
distribution is well fitted in the range from 7000 to 42,000 AU in radius,

Σ(r) = 6.3 × 1021cm−2
(

r

104AU

)−0.95

, (1.6)

where they omitted the data of r<∼7000 since the beam size is not be negligible. Similar power-law
density distributions are found by the far IR thermal dust emission.
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Figure 1.12: Column density distribution NH(r) derived from the H13CO+ and C18O data taken by
the Nobeyama 45 m telescope. Taken from Fig.9 of Saito et al (1999).

1.5.2 L1551 IRS 5

Figure 1.13: (Left:) 13CO column density distribution. The contour lines represent the distribution
of 13CO column density. 2.2 µm infra-red reflection nebula is shown in grey scale which was observed
by Hoddap (1994). (Right:) Schematic view of L1551 IRS5 region.

L1551 IRS 5 is one of the most well studied objects. This has an infra-red emission nebulosity
(Fig.1.13). It is believed that there is a hole perpendicular to the high-density disk and the emission
from the central star escapes through the hole and irradiate the nebulosity. In this sense this is a
reflection nebula. L1551 IRS 5 has an elongated structure of dense gas similar to that observed in
B335. The gas is extending in the direction from north-west to south-east [Fig.1.13 (left)]. Since the
opposite side of the nebulosity is not observed, the opposite side of nebulosity seems to be located
beyond the high-density disk and be obscured by the disk. This is possible if we see the south surface
of the high-density disk as in Figure 1.13 (right).
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Figure 1.14: Isovelocity contours measured by the 13CO J = 1− 0 line. It should be noticed that the
isovelocity lines run parallelly to the major axis. The north-eastern side shows a red-shift and the
south-western side shows a blue-shift.

Infall Motion

The inflow motion is measured. Figure 1.14 shows the isovelocity contours measured by the 13CO
J = 1−0 observation (Ohashi et al 1996). It should be noticed that the isovelocity lines run parallelly
to the major axis. The north-eastern side shows a red-shift and the south-western side shows a blue-
shift. Considering the configuration of the gas disk shown in Fig.1.13 (right), this pattern of isovelocity
contours indicates not outflow but inflow. That is, the north-east side is a near side of the disk and the
south-west side is a far side. Since a red-shifted motion is observed in the near side and a blue-shifted
motion is observed in the far side, it should be concluded that the gas disk of the L1551 IRS5 is now
infalling.

Optical Jet

HST found two optical jets emanating from L1551 IRS5. This has been observed by SUBARU
telescope jet emission is dominated by [FeII] lines in the J- and H-bands. The jet extents to the
south-western direction and disappears at ∼ 10” � 1400AU from the IRS5. The width-to-length
ratio is very small <∼1/10 or less, while the bipolar molecular outflow shows a less collimated flow.
As for the origin of the two jets, these two jets might be ejected from a single source. However, since
there are at least two radio continuum sources in IRS5 within the mutual separation of ∼ 0.”5 [see
Fig.1.15 (right)], these jets seem to be ejected from the two sources independently.
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Figure 1.15: (Left:) Infrared image (J- and K-band) of the IR reflection nebula around L1551 IRS5
by SUBARU telescope. Taken from Fig.1 of Itoh et al. (2000). (A jpeg file is available from the
following url: http://SubaruTelescope.org/Science/press release/9908/L1551.jpg). (Right:)
Central 100 AU region map of L1551 IRS5. This is taken by the λ = 2.7cm radio continuum
observation. Deconvolved map (lower-left) shows clearly that IRS5 consists of two sources. Taken
from Looney et al. (1997).
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Although the lengths of these jets are restricted to 10”, Herbig-Haro jets, which are much larger
than the jets in L1551 IRS5, have been found. HH30 has a ∼ 500 AU-scale jet whose emission is
mainly from the shock-excited emission lines. One of the largest ones is HH111, which is a member of
the Orion star forming region and whose distance is as large as D ∼ 400pc, and a jet with a length of
∼ 4pc is observed. Source of HH111 system is thought to consist of at least binary stars or possibly
triple stars [Reipurth et al (1999)]. Star A, which coincides with a λ = 3.6 cm radio continuum
source (VLA 1), shows an elongation in the VLA map whose direction is parallel to the axis of the
jet. Therefore, star A is considered to be a source of the jet. Since the VLA map of star A shows
another elongated structure perpendicular to the jet axis, star A may be a binary composed by two
outflow sources.

1.6 L 1544: Pre-protostellar Cores

L1544 is known as a pre-protostellar core (Taffala et al 1998). That shows an infall motion but
this contains no IR protostars. In Figure 1.17(left), CCS total column density map is shown, which
shows an elongated structure. Ohashi et al (1999) have found both rotation and infall motion in
the cloud. PV diagram along the minor axis shows the infall motion. That along the major axis
indicates a rotational motion, which is shown by a velocity gradient. Due to a finite size of the beam,
a contraction motion is also shown in the PV diagram along the major axis.

1.7 Magnetic Fields

Directions of B-Field are studied by (1) measuring the polarization of light which is suffered from
interstellar absorption. In this case the direction of magnetic field is parallel to the polarization
vector. The reason is explained in Figure 1.18. In the magnetic fields, the dusts are aligned in a
way that their major axes are perpendicular to the magnetic field lines. Such aligned dusts absorb
selectively the radiation whose E-vector is parallel to their major axes. As a result, the detected light
has a polarization parallel to the magnetic field lines.

However, the polarization measurement in the near IR wavelength limited to the region with
low gas density, because background stars suffer severe absorption and becomes hard to be observed
if we want to measure the polarization of the high-density region. More direct method is (2) the
measurement of the linear polarization of the thermal emission from dusts in the mm wavelengths; in
this case the direction of magnetic field is perpendicular to the polarization vector. The mechanism
is explained in Figure1.18b. The aligned dusts, whose major axes are perpendicular to the magnetic
field lines, emit the radiation whose E-vector is parallel to the major axes. Since the absorption does
not have a severe effect in this mm wavelengths, this gives information the magnetic fields deep inside
the clouds.

Prestellar Core

Figure 1.19 illustrates the polarization maps of three prestellar cores (L1544, L183, and L43) done in
the 850 µm band by JCMT-SCUBA. In L1544 and L183 the mean magnetic fields are at an angle of
30 deg to the minor axes of the cores. L43 is not a simple object; there is a T Tauri star located in
the second core which extends to south-western side of the core (an edge of this core is seen near the
western SCUBA frame boundary). And a molecular outflow from the source seems to affect the core.
The magnetic field as well as the gas are swept by the molecular outflow. L43 seems an exception.
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Figure 1.16: A mosaic image of HH 111 based on HST NICMOS images (bottom) and WFPC2 images
(top). Taken from Fig.1 of Reipurth et al (1999).
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Figure 1.17: CCS image of prestellar core L1544. (Left:) Total intensity map. (Right:) PV diagrams
along the minor axis (left) and along the major axis (right).

The fact that the mean magnetic fields are parallel to the minor axis of the gas distribution seems
the gas contracts preferentially in the direction parallel to the magnetic fields.

1.7.1 Cores with Protostars

B-field at the position of protostars and T-Tauri stars are measured for IRAS 16293-2422, L1551
IRS5, NGC1333 IRAS 4A, and HL Tau (Tamura et al. 1995). Although HL Tau is a T-Tauri star,
it has a gas disk. Thus this is a Class I source. The others are believed to be in protostellar phase
(Class 0 sources). It is known that IRAS 16293-2422, L1551 IRS5, and HL Tau have disks with the
radii of 1500-4000 AU from radio observations of molecular lines. Further, near infrared observations
have shown that these objects have 300-1000 AU dust disks. Figure 1.20 shows the E-vector of
polarized light. If this is the dust thermal radiation, the direction of B-fields is perpendicular to the
polarization E-vector. Figure shows the B-fields run almost perpendicular to the elongation of the
gas disk. Global directions of B-field outside the gas disk and the direction of CO outflows are also
shown in the figure by arrows. It is noteworthy that the directions of local B-fields, global B-fields,
and outflows coincide with each other within ∼ 30 deg.
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Figure 1.18: Explanation how the polarized radiation forms. Taken from Weintraub et al.(2000).
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Figure 1.19: Directions of B-Field are shown from the linear polarization observation of 850 µm
thermal emission from dusts by JCMT-SCUBA. L 1544 and L183, the magnetic field and the minor
axis of the molecular gas distribution coincide with each other within ∼ 30deg. Taken from Ward-
Thompson et al (2000).
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Figure 1.20: Polarization of the radio continuum λ = 1mm, λ = 0.8mm. IRAS 16293-2422 (upper-
left), L1551 IRS5 (upper-right), NGC1333 IRAS 4A (lower-left), and HL Tau (lower-right). Taken
from Tamura et al (1995).
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1.8 Density Distribution

Motte & André (2001) made 1.3 mm continuum mapping survey of the embedded young stellar
objects (YSOs) in the Taurus molecular cloud. Their maps include several isolated Bok globules, as
well as protostellar objects in the Perseus cluster. For the protostellar envelopes mapped in Taurus,
the results are roughly consistent with the predictions of the self-similar inside-out collapse model of
Shu and collaborators. The envelopes observed in Bok globules are also qualitatively consistent with
these predictions, providing the effects of magnetic pressure are included in the model. By contrast,
the envelopes of Class 0 protostars in Perseus have finite radii <∼10000 AU and are a factor of 3 to
12 denser than is predicted by the standard model.

Another method to measure the density distribution is to use the near IR extinction. From
(H − K) colors of background stars, the local value of AV in a dark cloud can be obtained using a
standard reddening law,

AV = 15.87E(H − K) (1.7)

if the intrinsic colors of background stars are known. We can convert the extinction to the column
density assuming the gas/dust ratio is constant

N (H + H2) = 2 × 1021cm−2mag−1AV . (1.8)

This is a standard method to obtain the local column density of the dark cloud using the near IR
photometry.

See Figure 1.21. If the density distribution is expressed as

ρ(r) = ρ0

(
r

r0

)−α

, (1.9)

where r is a physical distance from the center. The column density for the projected distance of the
line-of-sight from the center of the cloud is given

Nρ(p) = 2
∫ (R2−p2)1/2

0
ρ

[
(s2 + p2)1/2

]
ds, (1.10)

where R represents the outer radius of the cloud. Using equation (1.8), this yields AV distribution

AV (p) = 10−23ρ0r
α
0

∫ (R2−p2)1/2

0
(s2 + p2)−α/2ds. (1.11)

If background stars are uniformly distributed, the number of stars with AV |obs is proportional to the
area which satisfies AV |obs = AV (p). That is, if we plot AV (p) against 2πpdp, this gives the number
distribution of background stars with AV . Figure 1.23 shows the result of L977 dark cloud by Alves
et al (1998).

Recently, Alves et al (2001) derived directly the radial distribution of NH by comparing the NH(p)
model distribution for B68. They obtained a distribution is well fitted by the Bonner-Ebert sphere in
which a hydrostatic balance between the self-gravity and the pressure force is achieved (lower panels
of Fig.1.23).

In this fields, we should pay attention to the density distribution in cylindrical clouds. As seen in
the Taurus molecular cloud, there are may filamentary structures in a molecular cloud. In §4.1, we
will give the distribution for a hydrostatic spherical symmetric and cylindrical cloud. The former is
proportional to ρ ∝ r−2 and the latter is ρ ∝ r−4. Therefore, the distribution ρ ∝ r−4 was expected
for cylindrical cloud. From near IR extinctions observation (Alves et al 1998), even if a cloud is
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Figure 1.21: Schematic view to explain an AV distribution.

Figure 1.22: (Left:) Radial intensity profiles of the environment of 7 embedded YSOs (a-g) and 1
starless core (h). (Right:) Same as left panel but for 4 isolated globules (a-d) and 4 Perseus protostars
(e-h). Taken from Motte & Andre (2001).
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Figure 1.23: Density distribution of L977 (top) and B68 (bottom) dark clouds. (Top-left:) L977
dark cloud dust extinction map derived from the infrared (H-K) observations. (Top-right:) Observed
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Figure 1.24: A structure of magnetic fields in the L1641 region. Polarization of light from embedded
stars (Vrba et al. 1988) is shown by a bar. The direction of B-fields in the line-of-sight is observed
using the HI Zeeman splitting, which is shown by a circle and cross (Heiles 1989).

rather elongated [Fig.1.23 (top-left)], the power of the density distribution is equal to not -4 but
� −2. Fiege, & Pudritz (2001) proposed an idea that a toroidal component of the magnetic field,
Bφ, plays an important role in the hydrostatic balance of the cylindrical cloud (Fig.1.24).

1.9 Mass Spectrum

We have seen that a molecular cloud consists in many molecular cloud cores. For many years, there
are attempts to determine the mass spectrum of the cores.

From a radio molecular line survey, a mass of each cloud core is determined. Plotting a histogram
number of cores against the mass, we have found that a mass spectrum can be fitted by a power law
as

dN

dM
= M−n (1.12)

where dN/dM represents the number of cores per unit mass interval. Many observation indicate that
n ∼ −1.5.

Figure 1.25 (Motte et al 2001) shows the cumulative mass spectrum (N (> M) vs. M) of the 70
starless condensations identified in NGC 2068/2071. The mass spectrum for the 30 condensations of
the NGC 2068 sub-region is very similar in shape. The best-fit power-law is N (> M) ∝ Mn+1 ∝
M−1.1 above M>∼0.8M�. That is, n = −2.1. This power derived from the dust thermal emission is
different from that derived by the radio molecular emission lines. The reason of the difference is not
clear. However, the power n+1 = −1.1 which is close to the Salpeter IMF, N (> M) ∝ M−1.35 seems
meaningful.
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Paper n Region Mass range
Loren (1989) −1.1 ρ Oph 10M�<∼M<∼300M�
Stutzki & Guesten (1990) −1.7 ± 0.15 M17 SW a few M�<∼M<∼a few 103M�
Lada et al (1991) −1.6 L1630 M>∼20M�
Nozawa et al (1991) −1.7 ρ Oph North 3M�<∼M<∼160M�
Tatematsu et al. (1993) −1.6 ± 0.3 Orion A M>∼50M�
Dobashi et al (1996) −1.6 Cygnus M>∼100M�
Onish et al (1996) −0.9 ± 0.2 Taurus 3M�<∼M<∼80M�
Kramer et al.(1998) −1.6 ∼ −1.8 L1457 etc∗ 10−4M�<∼M<∼104M�
Heithausen et al (2000) −1.84 MCLD123.5+24.9,Polaris Flare MJ<∼M<∼10M�

∗ MCLD126.6+24.5, NGC 1499 SW, Orion B South, S140, M17 SW, and NGC 7538

Figure 1.25: Cumulative mass distribution of the 70 pre-stellar condensations of NGC 2068/2071. The
dotted and dashed lines are power-laws corresponding to the mass spectrum of CO clumps (Kramer
et al. 1996) and to the IMF of Salpeter (1955), respectively. Taken from Fig.3 of Motte et al (2001).
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Physical Background

2.1 Basic Equations of Hydrodynamics

The basic equation of hydrodynamics are (1) the continuity equation of the density [equation (A.11)],

∂ρ

∂t
+ div(ρv) = 0, (2.1)

(2) the equation of motion [equation (A.7)]

ρ

[
∂v
∂t

+ (v · ∇) v
]

= −∇p + ρg, (2.2)

and (3) the equation of energy [equation (A.18)]

∂ε

∂t
+ div(ε + p)v = ρv · g. (2.3)

Occasionally barotropic relation p = P (ρ) substitutes the energy equation (2.3). Especially poly-
tropic relation p = KρΓ is often used on behalf of the energy equation. In the case that the gas is
isothermal or isentropic, the polytropic relations of

p = c2
isρ (isothermal) (2.4)

and
p = c2

sρ
γ (isentropic) (2.5)

are substitution to equation (2.3). [We can replace equation (2.3) with equations (2.4) and (2.5).]

2.2 The Poisson Equation of the Self-Gravity

In this section, we will show the basic equation describing how the gravity works. First, compare
the gravity and the static electric force. Consider the electric field formed by a point charge Q at a
distance r from the point source as

E =
1

4πε0

Q

r2
, (2.6)

where ε0 is the electric permittivity of the vacuum. On the other hand, the gravitational acceleration
by the point mass of M at the distance r from the point mass is written down as

g = −G
M

r2
, (2.7)

29
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where G = 6.67 × 10−8kg−1 m3 s−2 is the gravitational constant. Comparing these two, replacing Q
with M and at the same time 1/4πε0 to −G these equations (2.6) and (2.7) are identical with each
other.

The Gauss theorem for electrostatic field as

divE =
ρe

ε0
, (2.8)

and another expression using the electrostatic potential φe as

∇2φe = −ρe

ε0
, (2.9)

lead to the equations for the gravity as

div g = −4πGρ, (2.10)

and
∇2φ = 4πGρ, (2.11)

where ρe and ρ represent the electric charge density and the mass density. Equation (2.11) is called
the Poisson equation for the gravitational potential and describes how the potential φ is determined
from the mass density distribution ρ.

Problem

Consider a spherical symmetric density distribution. Using the Poisson equation, obtain the potential
(φ) and the gravitational acceleration (g) for a density distribution shown below.

ρ

{
= ρ0 for r < R
= 0 for r ≥ R

Hint: The Poisson equation (2.11) for the spherical symmetry is

1
r2

∂

∂r

(
r2∂φ

∂r

)
= 4πGρ.

2.3 Free-fall Time

If the pressure force can be neglected in the equation of motion (A.1), the gravitational one remains.
Assuming the spherical symmetry, consider the gravity gr(r) at the position of radial distance from
the center being equal to r. Using the Gauss’ theorem, gr is related to the mass inside of r, which is
expressed by the equation

Mr =
∫ r

0
ρ4πr2dr, (2.12)

and gr is written as

gr(r) = −GMr

r2
. (2.13)

This leads to the equation motion for a cold gas under the control of the self-gravity is written

d2r

dt2
= −GMr

r2
. (2.14)
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Analyzing the equation is straightforward, multiplying dr/dt gives

dv2/2
dt

= +
d

dt

(
GMr

r

)
, (2.15)

which leads to the conservation of mechanical energy as

1
2

(
dr

dt

)2

− GMr

r
= E, (2.16)

in which E represents the total energy of the pressureless gas element and it is fixed from the initial
condition. If the gas is static initially at the distance R, the energy is negative as

E = −GMr(R)
R

, (2.17)

because at t = 0, r = R and dr/dt = 0.
The solutions of equation (2.16) are well known as follows:

1. the case of negative energy E < 0. Considering the case that the gas sphere is inflowing v < 0,
equation (2.16) becomes

dr

dt
= − [2GMr(R)]1/2

(
1
r
− 1

R

)1/2

, (2.18)

where we assumed initially dr/dt = 0 at r = R. Using a parameter η(t), the radius of the gas
element at some epoch t is written

r = R cos2 η. (2.19)

In this case, equation (2.18) reduces to

cos2 η
dη

dt
=

(
GMr(R)

2R3

)1/2

. (2.20)

This gives us the expression of t as

t =

(
R3

2GMr(R)

)1/2 (
η +

sin 2η

2

)
. (2.21)

This corresponds to the closed universe in the cosmic expansion (Ω0 < 1).

2. if the energy is equal to zero, the solution of equation (2.16) is written as

(
r3/2 − R3/2

)2/3
=

(
9GMr(R)

2

)1/3

t2/3, (2.22)

where R = r(t = 0).

[Problem] solve equation (2.16) and obtain (2.22).

3. If E > 0, the expansion law is given by

t =

(
R2

2E

)1/2 (
Ṙ2R

2GMr(R)

)−1 (
sinh 2η

2
− η

)
(2.23)
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Figure 2.1: Free-fall. x-axis and y-axis represent cos2 η and η + sin2η/2.

and
x =

(
E

GMr(R)

)
r = sinh2 η, (2.24)

where E represents the total enerygy

E =
Ṙ2

2
− GMr(R)

R
> 0. (2.25)

[Problem] solve equation (2.16) and obtain equations (2.23) and (2.24).

In the present case, at t = 0, since dr/dt = 0 the energy is negative. Equation (2.19) shows us r
becomes equal to zero (the gas collapses) if η = π/2 as well as η = 0 at t = 0. Equation (2.21)
indicates it occurs at the epoch of

t = tff =

(
R3

2GMr(R)

)1/2
π

2
,

=
(

3π

32Gρ̄

)1/2

, (2.26)

where ρ̄ represents the average density inside of r, that is Mr/(4πr3/3). This is called “free-fall
time’ of the gas. This gives the time-scale for the gas with density ρ̄ to collapse. In the actual
interstellar space, the gas pressure is not negligible. However, tff gives a typical time-scale for a gas
cloud to collapse and to form stars in it.

2.3.1 Accretion Rate

Equation 2.26 indicates that the gas shell with a large ρ̄ reaches the center earlier than that with a
small ρ̄. Imediately, this means a spherical cloud with a uniform density ρ0 contracts uniformly and
all the mass reaches the center at t = tff = (3π/32Gρ0)1/2. In this case, the mass accretion rate to
a central source becomes infinity. In contrast, consider a cloud whose density gradually decreases
outwardly. In this case, the outer mass shell has smaller ρ̄ than the inner mass shell. Therefore even
when the inner mass shell collapses and reaches the center, the outer mass shell are contracting and
does not reach the center. This gives a smaller mass accretion rate than a uniform cloud. If the gas
pressure is neglected, the accretion rate is determined by the initial spatial distribution of the density.
We will compare the accretion rate derived here with results of hydrodynamical calculation in §4.4
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2.4 Gravitational Instability

Here, we will study a typical size where the self-gravity play an important role and form density
inhomogeneities — the Jean wavelength.

Linear Analysis

Consider a uniform gas with density ρ0 and pressure p0 without motion u0 = 0. In this uniform gas
distribution, we assume small perturbations. As a result, the distributions of the density, the pressure
and the velocity are perturbed from the uniform ones as

ρ = ρ0 + δρ, (2.27)

p = p0 + δp, (2.28)

and
u = u0 + δu = δu, (2.29)

where the amplitudes of perturbations are assumed much small, that is, |δρ|/ρ0 � 1, |δp|/p0 � 1
and |δu|/cs � 1. We assume the variables changes only in the x-direction. In this case the basic
equations for isothermal gas are

∂ρ

∂t
+

∂ρu

∂x
= 0, (2.30)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
+ ρgx, (2.31)

and
p = c2

isρ, (2.32)

where u and gx represent the x-component of the velocity and that of the gravity, respectively.
Using equations (2.27), (2.28), and (2.29), equation (2.30) becomes

∂ρ0 + δρ

∂t
+

∂(ρ0 + δρ)(u0 + δu)
∂x

= 0. (2.33)

Noticing that the amplitudes of variables with and without δ are completely different, two equations
are obtained from equation(2.33) as

∂ρ0

∂t
+

∂ρ0u0

∂x
= 0, (2.34)

∂δρ

∂t
+

∂ρ0δu + δρu0

∂x
= 0, (2.35)

where the above is the equation for unperturbed state and the lower describes the relation between the
quantities with δ. Equation (2.34) is automatically satisfied by the assumption of uniform distribution.
In equation (2.35) the last term is equal to zero. Equation of motion

(ρ0 + δρ)
(

∂u0 + δu

∂t
+ (u0 + δu)

∂u0 + δu

∂x

)
= −∂p0 + δp

∂x
+ (ρ0 + δρ)

∂φ0 + δφ

∂x
, (2.36)

gives the relationship between the terms containing only one variable with δ as follows:

ρ0
∂δu

∂t
= −∂δp

∂x
− ρ0

∂δφ

∂x
. (2.37)
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The perturbations of pressure and density are related with each other as follows: for the isothermal
gas

δp

δρ
=

(
∂p

∂ρ

)
T

=
p0

ρ0
= c2

is, (2.38)

and for isentropic gas
δp

δρ
=

(
∂p

∂ρ

)
ad

= γ
p0

ρ0
= c2

s. (2.39)

2.4.1 Sound Wave

If the self-gravity is ignorable, equations(2.35)

∂δρ

∂t
+ ρ0

∂δu

∂x
= 0, (2.40)

and equations(2.37)

ρ0
∂δu

∂t
= −c2

is

∂δρ

∂x
, (2.41)

where we assumed the gas is isothermal. These two equations describe the propagation and growth
of perturbations. If the gas acts adiabatically, replace cis with cs.

Making ∂
∂x×(2.40) and ∂

∂t×(2.41) vanishes δρ and we obtain

∂2δu

∂t2
− c2

is

∂2δu

∂x2
= 0. (2.42)

Since this leads to
∂δu

∂t
− cis

∂δu

∂x
= 0, (2.43)

∂δu

∂t
+ cis

∂δu

∂x
= 0, (2.44)

equation (2.42) has a solution that a wave propagates with a phase velocity of ±cs. Since the
displacement (∝ δu) is parallel to the propagation direction x, and the restoring force comes from
the pressure, this seems the sound wave.

Problem

Interstellar gas contains mainly Hydrogen and Helium, whose number ratio is approximately 10:1.
Obtain the value of average molecular weight for the fully ionized interstellar gas with temperature
T = 104K (components are ionized H+ (HII) and He+2 (HeIII) and electron e−1). How about the
molecular gas (T = 10K) containing molecular H2, neutral He (HeI) and no electron.

2.5 Jeans Instability

Sound wave seems to be modified in the medium where the self-gravity is important. Beside the
continuity equation (2.35)

∂δρ

∂t
+ ρ0

∂δu

∂x
= 0, (2.45)

and the equation of motion (2.37)

ρ0
∂δu

∂t
= −c2

is

∂δρ

∂x
− ρ0

∂δφ

∂x
, (2.46)



2.5. JEANS INSTABILITY 35

Figure 2.2: Dispersion Relation

the linearized Poisson equation
∂2δφ

∂x2
= 4πGδρ, (2.47)

should be included. ∂
∂x×eq.(2.46) gives

ρ0

(
∂2δu

∂x∂t

)
= −c2

is

∂2δρ

∂x2
− 4πGρ0δρ. (2.48)

where we used equation (2.47) to eliminate δφ. This yields

∂2δρ

∂t2
= c2

is

∂2δρ

∂x2
+ 4πGρ0δρ. (2.49)

where we used ∂
∂t×eq(2.45).

This is the equation which characterizes the growth of density perturbation owing to the self-
gravity. Here we consider the perturbation are expressed by the linear combination of plane waves
as

δρ(x, t) =
∑

A(ω, k) exp(iωt − ikx), (2.50)

where k and ω represent the wavenumber and the angular frequency of the wave. Picking up a plane
wave and putting into equation (2.49), we obtain the dispersion relation for the gravitational
instability as

ω2 = c2
isk

2 − 4πGρ0. (2.51)

Reducing the density to zero, the equation gives us the same dispersion relation as that of sound
wave as ω/k = cis. For short waves (k � kJ = (4πGρ0)1/2/cis), since ω2 > 0 the wave is ordinary
oscillatory wave. Increasing the wavelength (decreasing the wavenumber), ω2 becomes negative for
k < kJ = (4πGρ0)1/2/cis. For negative ω2, ω can be written ω = ±iα using a positive real α. In this
case, since exp(iωt) = exp(∓αt), the wave which has ω = −iα increases its amplitude exponentially.
This means that even if there are density inhomogeneities only with small amplitudes, they grow in
a time scale of 1/α and form the density inhomogeneities with large amplitudes.

The critical wavenumber
kJ = (4πGρ0)1/2/cis (2.52)
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Figure 2.3: Thin disk.

corresponds to the wavelength

λJ =
2π

kJ
=

(
πc2

is

Gρ0

)1/2

, (2.53)

which is called the Jeans wavelength. Ignoring a numerical factor of the order of unity, it is shown
that the Jeans wavelength is approximately equal to the free-fall time scale (eq.2.26) times the sound
speed. The short wave with λ � λJ does not suffer from the self-gravity. For such a scale, the
analysis we did in the preceding section is valid.

Typical values in molecular clouds, such as cis = 200m s−1, ρ0 = 2 × 10−20g cm−3, give us the
Jeans wavelength as λJ = 1.7 × 1018cm = 0.56pc. The mass contained in a sphere with a radius
r = λJ/2 is often called Jeans mass, which gives a typical mass scale above which the gas collapses.
Typical value of the Jeans mass is as follows

MJ � 4π

3
ρ0

(
λJ

2

)3

=
π

6

(
π

Gρ0

)3/2

c3
isρ0. (2.54)

Using again the above typical values in the molecular clouds, cis = 200ms−1, ρ0 = 2 × 10−20g cm−3,
the Jeans mass of this gas is equal to MJ � 27M�.

2.6 Gravitational Instability of Thin Disk

Disks are common in the Universe. Spiral and barred spiral galaxies have disks where stars are
formed. In more small scale, gas and dust disks are often found around protostars. Moreover, the
disk may become a proto-planetary disk. It is valuable to study how the self-gravity works in such
thin structures. Here, we assume a thin disk extending in x- and y-directions whose surface density
is equal to σ =

∫∞
−∞ ρdz, in other word the density is written using the Dirac’s delta function δ(z) as

ρ(x, y, z) = σ(x, y)δ(z). (2.55)

Integrating along the z-direction basic equations (2.45), (2.46), and (2.47), the linearized basic equa-
tions for the thin disk are as follows:

∂δσ

∂t
+ σ0

∂δu

∂x
= 0, (2.56)

σ0
∂δu

∂t
= −c2

is

∂δσ

∂x
− σ0

∂δφ

∂x
, (2.57)
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∂2δφ

∂x2
+

∂2δφ

∂z2
= 4πGδσδ(z), (2.58)

where we assumed σ = σ0 + δσ, u = δu, φ = φ0 + δφ and took the first order terms (those contain
only one δ).

Outside the disk, the rhs of equation (2.58) is equal to zero. It reduces to the Laplace equation

∂2δφ

∂x2
+

∂2δφ

∂z2
= 0. (2.59)

Taking a plane wave of
δX(x, t) = δA exp(iωt − ikx), (2.60)

equation (2.59) is reduced to
∂2δφ

∂z2
− k2δφ = 0. (2.61)

This has a solution which does not diverge at the infinity z = ±∞ as

δφ = δφ(z = 0) exp(−k|z|). (2.62)

On the other hand, integrating equation (2.58) from z = −0 to z = +0 or in other word, applying the
Gauss’ theorem to the region containing the z = 0 surface, it is shown that the gravity δgz = −∂δφ/∂z
has a jump crossing the z = 0 surface as

∂δφ

∂z

∣∣∣∣
z=+0

− ∂δφ

∂z

∣∣∣∣
z=−0

= 4πGδσ. (2.63)

Equations (2.62) and (2.63) lead a final form of the potential as

δφ = −2πGδσ

k
exp(−k|z|). (2.64)

Putting this to equations (2.57), and using equations (2.56) and (2.57), we obtain the dispersion
relation for the gravitational instability in a thin disk as

ω2 = c2
isk

2 − 2πGσ0k. (2.65)

This reduces to the dispersion relation of the sound wave for the short wave k � 2πGσ0/c2
is. While

for a longer wave than λcr = c2
is/Gσ0, an exponential growth of δσ is expected. The dispersion

relation is shown in Fig.2.2.

2.7 Super- and Subsonic Flow

Flow whose velocity is faster than the sound speed is called supersonic, while that slower than the
sound speed is called subsonic. The subsonic and supersonic flows are completely different.

2.7.1 Flow in the Laval Nozzle

Consider a tube whose cross-section, S(x), changes gradually, which is called Laval nozzle. Assuming
the flow is steady ∂/∂t = 0 and is essentially one-dimensional, the continuity equation (2.1) is
rewritten as

ρuS = constant, (2.66)
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Figure 2.4: Left: Explanation of Laval nozzle. Right: The relation between the cross-section S(x)
and the flow velocity vx.

or
1
ρ

∂ρ

∂x
+

1
u

∂u

∂x
+

1
S

∂S

∂x
= 0. (2.67)

Equation of motion (2.2) becomes

u
∂u

∂x
= −1

ρ

∂p

∂x
= −c2

s

ρ

∂ρ

∂x
, (2.68)

where we used the relationship of

∂p

∂x
=

(
∂p

∂ρ

)
s

∂ρ

∂x
= c2

s

∂ρ

∂x
. (2.69)

When the flow is isothermal, use the isothermal sound speed c2is instead of the adiabatic one. From
equations (2.67) and (2.68), we obtain(

u2

c2
s

− 1

)
1
u

∂u

∂x
=

1
S

∂S

∂x
, (2.70)

where the factor M = u/cs is called the Mach number. For supersonic flow M > 1, while M < 1
for subsonic flow.

In the supersonic regime M > 1, the factor in the parenthesis of the lhs of equation (2.69) is
positive. This leads to the fact that the velocity increases (du/dx > 0) as long as the cross-section
increases (dS/dx > 0). On the other hand, in the subsonic regime, the velocity decreases (du/dx < 0)
while the cross-section increases (dS/dx > 0). See right panel of 2.4.

If M = 1 at the point of minimum cross-section (throat), two curves for M < 1 and M > 1 have
an intersection. In this case, gas can be accelerated through the Laval nozzle. First, a subsonic flow
is accelerated to the sonic speed at the throat of the nozzle. After passing the throat, the gas follows
the path of a supersonic flow, where the velocity is accelerated as long as the cross-section increases.

2.7.2 Steady State Flow under an Influence of External Fields

Consider the flow under the force exerted on the gas whose strength varies spatially. Let g(x) represent
the force working per unit mass. Assuming the cross-section is constant

ρu = constant, (2.71)
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Figure 2.5: Left: External field potential. Right: Velocity and density variations. Gas flows in the
external field whose potential is shown in the left panel. The upper panel represents a subsonic flow.
The lower panel does a supersonic flow.
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immediately we have
1
ρ

∂ρ

∂x
+

1
u

∂u

∂x
= 0. (2.72)

On the other hand, the equation motion is

u
∂u

∂x
= −c2

s

ρ

∂ρ

∂x
+ g(x), (2.73)

From equations (2.72) and (2.73), we obtain(
u2

c2
s

− 1

)
1
u

∂u

∂x
=

g(x)
c2
s

. (2.74)

Consider an external field whose potential is shown in Fig.2.5(Left). (1) For subsonic flow, the
factor in the parenthesis is negative. Before the potential minimum, since g(x) > 0, u is decelerated.
On th other hand, after the potential minimum, u is accelerated owing to g(x) < 0. Using equation
(2.71), this leads to a density distribution in which density peaks near the potential minimum. (2)
For supersonic flow, the factor is positive. In the region of g(x) > 0, u is accelerated. After passing
the potential minimum, u is decelerated. The velocity and the density distribution is shown in
Fig.2.5(right-lower panel).

The density distribution of the subsonic flow in an external potential is similar to that of hydro-
static one. That is, considering the hydrostatic state in an external potential, the gas density peaks at
the potential minimum. On the other hand, The density distribution of the supersonic flow looks like
that made by ballistic particles which are moving freely in the potential. Owing to the conservation
of the total energy (kinetic + potential energies), the velocity peaks at the density minimum. And
the condition of mass conservation leads to the distribution in which the density decreases near the
potential minimum.

2.7.3 Stellar Wind — Parker Wind Theory

Stellar winds are observed around various type of stars. Early type (massive) stars have large lu-
minosities; the photon absorbed by the bound-bound transition transfers its outward momentum to
the gas. This line-driven mechanism seems to work around the early type stars. On the other hand,
acceleration mechanism of less massive stars are thought to be related to the coronal activity or dust
driven mechanism (dusts absorb the emission and obtain outward momentum from the emission).

Here, we will see the identical mechanism in §2.7.1 and §2.7.2 works to accelerate the wind from
a star. Consider a steady state and ignore ∂/∂t = 0. The continuity equation (2.1) gives

r2ρu = const, (2.75)

where we used
divρv =

1
r2

∂

∂r

(
r2ρu

)
. (2.76)

This leads to
2
r

+
1
r

∂ρ

∂r
+

1
u

∂u

∂r
= 0. (2.77)

The equation of motion (2.2) is as follows:

u
∂u

∂r
= −c2

s

ρ

∂ρ

∂r
− GM∗

r2
, (2.78)
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Figure 2.6: Right-hand side of equation (2.79) is plotted against the distance from the center r.

where we used g = −GM∗/r2 (M∗ means the mass of the central star). From these two equations
(2.77) and (2.78) we obtain (

M2 − 1
) 1

u

∂u

∂r
=

2
r
− GM∗

c2
s

1
r2

, (2.79)

where M represents the Mach number of the radial velocity. Take notice that this is similar to
equations (2.70) and (2.74). That is, the fact that the rhs of equation (2.79) is positive corresponds
to increasing the cross-section dS/dx > 0. On the contrary, when the rhs is negative, the fluid acts
as the cross-section S is decreasing.

For simplicity, we assume the gas is isothermal. The rhs of equation (2.79) varies shown in Figure
2.6. Therefore, near to the star, the flow acts as the cross-section of nozzle is decreasing and far
from the star it does as the cross-section is increasing. This is the same situation that the gas flows
through the Laval nozzle.

Using a normalized distance x ≡ r/(GM∗/2c2
is), equation (2.79) becomes

(
M2 − 1

) 1
M

∂M
∂x

=
2
x
− 2

x2
. (2.80)

This is rewritten as
d

dx

(
M2

2
− logM− 2 log x − 2

x

)
= 0, (2.81)

we obtain the solution of equation (2.80) as

M2 − 2 logM = 4 log x +
4
x

+ C. (2.82)

This gives how the Mach number M varies changing x. To explore this, we define two functions:

f(M) = 2M2 − 2 logM (2.83)

is a function only depending on M and

g(x) = 4 log x +
4
x

+ C (2.84)
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Figure 2.7: f(M) (left) and g(x) for C = −3 (right)

is a function only depending on x.
Since the minima of f(M) and g(x) are respectively 1 and C +4, the permitted region in (x,M)

changes for values of C.

1. If C = −3, for all values of x > 0 there exist M which satisfies f(M) = g(x). This corresponds
to the two curves which pass through a critical X-point of (x,M) = (1, 1) in Figure 2.8.

2. If C < −3, the minimum of g(x) is smaller than that of f(M). In this case, for x where
g(x) < 1 = min(f(M)), there is no solution. Thus, f(M) = g(x) has solutions for x < x1
and x > x2, where x1 < x2, and g(x1) = g(x2) = 1. This corresponds to the curves running
perpendicularly in Figure 2.8.

3. If C > −3, the minimum of f(M) is smaller than that of g(x). In this case, f(M) = g(x) has
solutions for M < M1 and M > M2, where M1 < M2, and f(M1) = f(M2) = C + 4. This
corresponds to curves running horizontally in Figure 2.8.

Out of the two solutions of C = −3, a wind solution is one with increasing M while departing
from the star. This shows us the outflow speed is slow near the star but it is accelerated and a
supersonic wind blows after passing the critical point. Since the equations are unchanged even if we
replace u with −u, the above solution is valid for an accreting flow u < 0. Considering such a flow,
the solution running from the lower-right corner to the upper-left corner represents the accretion flow,
in which the inflow velocity is accelerated reaching the star and finally accretes on the star surface
with a supersonic speed.
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Figure 2.8: M vs x (the x-axis is the normalized distance from the center x ≡ r/(GM∗/2c2
is) and the

y-axis is the Mach number M.)





Chapter 3

Galactic Scale Star Formation

3.1 Schmidt Law

Schmidt (1959) speculated that the star formation rate is proportional to a power of the surface
density of the interstellar medium

Σ̇SF ∝ Σn
gas, (3.1)

where the power n seems between 1 and 2 around the solar vicinity. If n = 2, the star formation
rate is thought to be determined by the collision rate of interstellar clouds. At that time Schmidt
showed us n � 2. On the other hand, if the gas passing through the galactic arms forms stars, the
star formation rate seems proportional to the gas surface density and the arm-to-arm period. Thus
this predicts n = 1.

3.1.1 Global Star Formation

The star formation rate is estimated by the intensity of Hα emission (Kennicutt, Tamblyn, & Congdon
1994) as

SFR(M�yr−1) =
L(Hα)

1.26 × 1041erg s−1
, (3.2)

which is used for normal galaxies. While in the starburst galaxies which show much larger star
formation rate than the normal galaxies, FIR luminosity seems a better indicator of star formation
rate

SFR(M�yr−1) =
L(FIR)

2.2 × 1043erg s−1
=

L(FIR)
5.8 × 109L�

. (3.3)

Kennicutt (1998) summarized the relation between SFRs and the surface gas densities [Fig.3.1 (left)]
for 61 normal spiral and 36 infrared-selected starburst galaxies. As seen in Fig.3.1, the star formation
rate averaged over a galaxy (ΣSFR(M� yr−1 kpc−2)), which is called the global star formation rate,
is well correlated to the average gas surface density Σgas(M� pc−2). He gave the power of the global
Schmidt law as n = 1.4 ± 0.15. That is,

ΣSFR � (1.5 ± 0.7) × 10−4

(
Σgas

1M� kpc−2

)1.4±0.15

M� yr−1 pc−2. (3.4)

The fact that the power is not far from 3/2 seems to be explained as follows: Star formation
rate should be proportional to the gas density (Σgas) but it should also be inversely proportional to
the time scale of forming stars in respective gas clouds, which is essentially the free-fall time scale.

45
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Figure 3.1: Taken from Figs.6 and 7 of Kennicutt (1998). Left: The x-axis means the total (HI+H2)
gas density and the y-axis does the global star formation rate. Right: The x-axis means the total
(HI+H2) gas density divided by the orbital time-scale. The y-axis is the same.

Remember the fact that the free-fall time given in equation (2.26) is proportional to τff ∝ 1/(Gρ)1/2.
Therefore

ρSFR ∝ ρgas × (Gρgas)1/2 ∝ ρ3/2
gas , (3.5)

where ρgas and ρSFR are the volume densities of gas and star formation.
He found another correlation between the quantity of gas surface density divided by the orbital

period of galactic rotation and the star formation rate [Fig.3.1 (right)]. Although the actual slope is
equal to 0.9 instead of 1, the correlation in Fig.3.1(right) is well expressed as

ΣSFR � 0.017ΣgasΩgas = 0.21
Σgas

τarm−to−arm
, (3.6)

where Ωgas represents the angular speed of galactic rotation. This means that 21 % of the gas mass is
processed to form stars per orbit. These two correlations [eqs (3.4) and (3.6)] implicitly ask another
relation of Ωgas ∝ Σ1/2

gas .

3.1.2 Local Star Formation Rate

In Figure 3.2 (left), the correlation between star formation rate and gas density is plotted for specific
galaxies (NGC 4254 and NGC 2841). This shows us that Hα surface brightness (star formation
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Figure 3.2: Distributions of ΣSF and Σgas. (Left:) Relation between ΣSF and Σgas for an Sc galaxy
NGC 4254 and an Sb galaxy NGC 2841. (Right:) Relation between ΣSF and Σgas for various galaxies.
These are taken from Figs.7 and 8 of Kennicutt (1989).

rate) and the gas column density are well correlated each other. Figure 3.2 (left) also indicates
that there seems a critical gas density below which star formation is not observed. The value of
this threshold column density is approximately � 4M�pc−2 for both galaxies in Figure 3.2 (left).
The same correlation is seen in other spiral galaxies [Fig.3.2(right)]. Fitting the correlation with a
power-law, he obtained

ΣSFR ∝ Σ1.3±0.3
gas , (3.7)

for the region active in star formation. Take notice that this power is very close to that of the
global Schmidt law [eq.(3.4)] The threshold surface gas density ranges from 1 M�pc−2 to 10M�pc−2

(1020 − 1021H cm−2). Therefore, theory of star formation must explain (1) the Schmidt law (clear
correlation between star formation rate and the gas surface density) above the threshold column
density and (2) the fact that there is no evidence for star formation in the gas deficient region below
the threshold column density.

3.2 Gravitational Instability of Rotating Thin Disk

Here, we will derive the dispersion relation for the gravitational instability of a rotating thin disk. We
will see the spatial variation of Toomre’s Q parameter, which determines the stability of the rotating
disk, explains the nonlinearity of star formation rate, that is, there is a threshold density and no stars
are formed in the low density region.
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Use the cylindrical coordinate (R, Z, φ) and the basic equations for thin disk in §2.6. In linear
analysis, we assume Σ(R, φ) = Σ0(R)+ δΣ(R,φ), u(R, φ) = 0+ δu(R, φ), v(R,φ) = v0(R)+ δv(R, φ),
where u and v represent the radial and azimuthal component of the velocity. Linearized continuity
equation is

∂δΣ
∂t

+
1
R

∂

∂R
(RΣ0δu) + Ω

∂δΣ
∂φ

+
Σ0

R

∂δv

∂φ
= 0, (3.8)

where Ω = v0/R.
Linearized equations of motion are

(
∂

∂t
+ Ω

∂

∂φ

)
δu − 2Ωδv = − ∂

∂R
(δΦ + δh), (3.9)

and (
∂

∂t
+ Ω

∂

∂φ

)
δv +

κ2

2Ω
δu = − 1

R

∂

∂φ
(δΦ + δh), (3.10)

where h is a specific enthalpy as dh = dp/Σ and

κ2 = 4Ω2 + R
dΩ2

dR
(3.11)

is the epicyclic frequency.
We assume any solution of equations (3.8), (3.9) and(3.10) can be written as a sum of terms of

the form

δu = ua exp[i(mφ − ωt)], (3.12)
δv = va exp[i(mφ − ωt)], (3.13)

δΣ = Σa exp[i(mφ − ωt)], (3.14)
δh = ha exp[i(mφ − ωt)], (3.15)
δΦ = Φa exp[i(mφ − ωt)]. (3.16)

Using the equation of state of p = KΣγ,

ha = c2
sΣa/Σ0. (3.17)

Using equations (3.12)-(3.16), equations (3.8), (3.9), and (3.10) are rewritten as

i(mΩ − ω)Σa +
1
R

∂

∂R
(RΣ0ua) + im

Σ0va

R
= 0, (3.18)

ua[κ2 − (mΩ − ω)2] = −i

[
(mΩ − ω)

d

dR
(Φa + ha) + 2mΩ

(Φa + ha)
R

]
, (3.19)

and

va[κ2 − (mΩ − ω)2] =

[
κ2

2Ω
d

dR
(Φa + ha) + m(mΩ − ω)

(Φa + ha)
R

]
, (3.20)
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Figure 3.3: Tightly wound (left) vs loosely wound (right) spirals.

3.2.1 Tightly Wound Spirals

We assume the wave driven by the self-gravity has a form of tightly-wound spiral [Fig.3.3(left)].
When we move radially, the density δΣ varies rapidly. While, it changes its amplitude slowly in the
azimuthal direction. In a mathematical expression, if we write the density perturbation δΣ as

δΣ = A(R, t) exp[imφ + i f(R, t)], (3.21)

where the amplitude of spiral A(R, t) is a slowly varing function of R, a tightly wound spiral means
the shape function varies fast (the radial wavenumber k � df/dR is large enough). We consider the
gravitational force from the vicinity of (R0, φ0), since the δΣ oscillates and cancels even if we integrate
over large region. Thus,

δΣ(R, φ, t) � Σa exp[ik(R0, t)(R − R0)], (3.22)

where
Σa = A(R0, t) exp[imφ0 + f(R0, t)]. (3.23)

Notice that the density perturbation [eq.(3.22)] is similar to that studied in §2.6. The potential should
be expressed in a similar form to equation (2.64) as

δΦ � −2πGΣa

|k| exp[ik(R0, t)(R − R0)], (3.24)

which simply means

Φa = −2πGΣa

|k| . (3.25)

If we set R = R0, we obtain our final result for the potential due to the surface density perturbation

δΦ(R, φ, t) � −2πG

|k| A(R, t) exp[imφ + f(R, t)]. (3.26)

Differentiating this equation with R and ignoring the term dA(R, t)/dR compared to that of df(R, t)/dR =
k, we obtain

δΣ(R, φ, t) = i
sign(k)
2πG

dδΦ(R, φ, t)
dR

, (3.27)
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Table 3.1: Epicyclic frequency vs rotation law.

Rotation κ

Rigid-body rotation Ω =const. 2Ω
Flat rotation vφ =const.

√
2Ω

Kepler rotation vφ ∝ r−1/2 Ω

Neglecting the terms ∝ 1/R compared to the terms containing ∂/∂R, equations (3.18), (3.19),
and (3.20) are rewritten as

i(mΩ − ω)Σa + ikΣ0ua = 0, (3.28)

ua[κ2 − (mΩ − ω)2] = (mΩ − ω)k(Φa + ha), (3.29)

and
va[κ2 − (mΩ − ω)2] = i

κ2

2Ω
k(Φa + ha), (3.30)

Using these equations [(3.28), (3.29), and (3.30)], Φa = −2πGΣa/|k|, and ha = c2
sΣa/Σ0, we obtain

the dispersion relation for the self-gravitating instability of the rotating gaseous thin disk

(mΩ − ω)2 = k2c2
s − 2πGΣ0|k| + κ2. (3.31)

Generally speaking, the epicyclic frequency depends on the rotation law but is in the range of Ω<∼κ<∼2Ω
(see Table 3.1 for κ for typical rotation laws). It is shown that the system is stabilized due to the the
epicyclic frequency compared with a nonrotating thin disk [eq.(3.38)].

3.2.2 Toomre’s Q Value

Consider the case of m = 0 axisymmetric perturbations. Equation (3.31) becomes

ω2 = k2c2
s − 2πGΣ0|k| + κ2 = c2

s

(
k − πGΣ0

c2
s

)2

+ κ2 −
(

πGΣ0

cs

)2

. (3.32)

If ω2 > 0 the system is stable against the axisymmetric perturbation, while if ω2 < 0 the system is
unstable. Defining

Q =
κcs

πGΣ0
, (3.33)

if Q > 1, ω2 > 0 for all wavenumbers k. On the other hand, if Q < 1, ω2 becomes negative for
some wavenumbers k1 < k < k2. Therefore, the Toomre’s Q number gives us a criterion whether the
system is unstable or not for the axisymmetric perturbation. [Recommendation for a reference book
of this section: Binney & Tremaine (1988).]

The condition is expressed as

Σ0 > Σcr =
κcs

πG
(Q < 1). (3.34)

Kennicutt plotted Σ0/Σcr against the normalized radius as R/RHII for various galaxies, where RHII

represents the maximum distance of HII regions from the center (Fig.3.4). Since Σ0/Σcr = Q, Figure
shows that HII regions are observed mainly in the region with Q < 1 but those are seldom seen in
the outer low-density Q > 1 region. This seems the gravitational instability plays an important role.
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Figure 3.4: Σ0/Σcr vs R/RHII. RHII represents the maximum distance of HII regions from the center.
The sound speed is assumed constant cs = 6kms−1. Taken from Fig.11 of Kennicutt (1989).

The above discussion is for the gaseous disk. The Toomre’s Q value is also defined for stellar
system as

Q =
σRκ

3.36GΣ0
, (3.35)

where σR represents the radial velocity dispersion.
For non-axisymmetric waves, even if 1<∼Q<∼2 the instability grows. To explain this, the swing

amplification mechanism is proposed (Toomre 1981). If there is a leading spiral perturbation in the
disk with 1<∼Q<∼2, the wave unwinds and finally becomes a trailing spiral pattern. At the same time,
the amplitude of the wave (perturbations) is amplified (see Fig.3.5).

3.3 Spiral Structure

Fig.3.6 shows the B- (left) and I-band images of M51. B light which originates from the massive
early type stars. Although the image taken in B-band shows a number of spiral arms, that of I-band
shows clearly two arms. The I-band light seems to come from mainly less-massive long-lived stars,
while the B−band light is essentially coming from the massive short-lived stars which are formed in
the spiral arm. On the contrary, the less-massive stars are not necessarily born in the spiral arm.
This suggests that there are two kinds of spiral patterns: one is made by stars (mainly less-massive)
and the other is the gaseous spiral arm where massive stars are born and contribute to the B-band
image.

In this section, first, we will briefly describe the density wave theory which explains the former
spiral pattern in stellar component. You will find the amplitude of the spiral pattern in stellar
component is not so large. However, the response of gaseous components (HI and H2 gas) to the spiral
density wave potential with small amplitude is much more nonlinear than that of stellar component
and a high-contrast spiral pattern appears in gaseous component .
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Figure 3.5: Numerical simulation of the swing amplification mechanism. The number attached each panel
shows the time sequence. This is obtained by the time-dependent linear analysis. First, perturbation with
leading spiral pattern is added to the Mestel disk with Q = 1.5. The leading spiral gradually unwinds and
become a trailing spiral. Loosely wound spiral pattern winds gradually and the last panel shows a tightly
wound leading spiral pattern. The final amplitude is ∼ 100 times larger than that of the initial state.

3.4 Density Wave Theory

We have derived the dispersion relation of the gravitational instability in the rotating thin disk as

(mΩ − ω)2 = k2c2
s − 2πGΣ0|k| + κ2, (3.36)

where m represents the number of spiral arms. Although the stability of the stellar system is a little
different, we assume this is valid for the stellar system after cs is replaced to the velocity dispersion.
Since

(mΩ − ω)2 = k2c2
s − 2πGΣ0|k| + κ2 = c2

s

(
k − πGΣ0

c2
s

)2

+ κ2 −
(

πGΣ0

cs

)2

, (3.37)

we obtain
|k| = kT

2
Q2

[
1 ±

√
1 − Q2(1 − ν2)

]
, (3.38)

where ΩP = ω/m is a pattern speed, ν = m(ΩP −Ω)/κ is the normalized frequency, kT = κ2/2πGΣ0

is the Toomre’s critical wavenumber for a cold (cs = 0) system. ν = ±1, which leads to |k| = 0,
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Figure 3.6: B- (left), and I-band (right) images of M51. Taken from Fig. 3 of Elmegreen et al.
(1989).
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Figure 3.7: (Left:) A plot of the dispersion relation eq.(3.38). x- and y-axes are ν and k/kT. Re-
spective lines are for Q = 1 (straight lines), Q = 1.2, Q = 1.5, and Q = 2. The trailing part k > 0 is
only plotted. Points ν = −1, ν = 0, and ν = 1 correspond respectively to Inner Lindbrad Resonance
(ILR), Corotation Resonance (CR), and Outer Lindbrad Resonance (OLR). The relation is symmetric
against the x-axis and the curve of k < 0 represents the leading wave. (Right:) Leading vs trailing
spiral.
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represents the Lindbrad resonance and is rewriten as

ΩP =
ω

m
= Ω ± κ

2
. (3.39)

Assuming m = 2, the resonance when ΩP = Ω+κ/2 is called outer Lindbrad resonance while that of
ΩP = Ω−κ/2 is called inner Lindbrad resonance. ν = 0 means the co-rotation resonance ΩP = Ω.

Writing down equation (3.38) [Fig.3.7(left)], it is shown that, in the case of Q = 1, the wavenumber
exists for all ν. Since ν = −1, 0, and +1 correspond to the points of ILR, CR, and OLR and these
three resonance points appear in accordance with the radial distance, the x-axis of Figure 3.7(left)
seems to correspond to the radial distance from the center. In the case of Q > 1, it is shown that a
forbidden region appears around the co-rotation resonance point. Waves cannot propagate into the
region. Figure 3.7(left) shows that the k/kT has two possible wavenumbers in the permitted region.
The waves with larger k and smaller k are called short waves and long waves.

Consider a wave expressed by Σ ∝ exp[imφ + ikr]. If k < 0, moving from a point (R0, φ0) in the
direction ∆φ > 0 and ∆r > 0 the phase difference between the two points [m(φ0 + ∆φ) + k(R0 +
∆r)] − [mφ0 + kR0] can be equal to zero. That is, in the case of k < 0 the wave is leading. On
the other hand, if k > 0, moving in the direction ∆φ < 0 and ∆r > 0 the phase will be unchanged.
In this case the wave pattern is trailing. Since the dispersion relation is symmetric for k > 0 and
k < 0, there are two waves, trailing waves and leading waves. Therefore there are four waves: a short
trailing wave, a long trailing wave, a short leading wave, and a long leading wave.

Group Velocity

The wave transfers the energy with the group velocity. Whether the group velocity is positive or
negative is quite important considering the energy transfer. Using the dispersion relation, equation
(3.37), The group velocity

vg(R) =
dω

dk
= sign(k)

|k|c2
s − πGΣ0

ω − mΩ
. (3.40)

For a region R > RCR, ω −mΩ > 0 or ν > 0. On the other hand, for a region R < RCR, ω −mΩ < 0
or ν < 0. Consider first the trailing wave. In the region R > RCR, long-waves propagate inwardly
to the CR, since |k|c2

s < πGΣ0 for long-waves and ν > 0. Short-waves propagate outwardly from the
CR, since |k|c2

s > πGΣ0 for short-waves and ν > 0. In the region R < RCR, long-waves propagate
outwardly to the CR since |k|c2s < πGΣ0 and ν < 0. Short-waves propagate inwardly from the CR,
since |k|c2

s > πGΣ0 and ν < 0. As a result, it is concluded that the long-wave propagates toward the
CR and the short-wave does away from the CR. As for the leading wave, the short-wave propagates
toward the CR and the long-wave does away from the CR.

Assuming that the wave packet is made near the Lindblad resonance points, (1) the long-trailing
waves propagate toward the co-rotation resonance points; (2) they are reflected by the Q-barrier;
(3) they change their character to short-waves and propagate away from the co-rotation resonance
points; and finally (4) the waves are absorbed at the center or propagate away to the infinity. (1) the
short-leading waves propagate toward the co-rotation resonance points; (2) they are reflected by the
Q-barrier; (3) they change their character to long-waves and propagate away from the co-rotation
resonance points; and finally (4) they reach the Lindblad resonance points and the energy may be
converted to the long-trailing waves there.

The wave obtains its energy at the resonance points. The density wave transfer the energy to
the co-rotation points. Therefore, the density wave theory predicts the galactic stellar disk has spiral
density pattern between the inner Lindblad resonance points and the outer Lindblad resonance point
if Q>∼1.
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Figure 3.8: Spiral coordinate. Along a curve of constant η, r ∝ exp(θ tan i).

3.5 Galactic Shock

In the preceding section, we have seen that a spiral pattern of density perturbation is made by the
gravitational instability in the stellar system with Q>∼1. This forms a grand design spiral observed
in the I-band images which represent the mass distribution which consists essentially in less-massive
stars. The amplitude of the pattern is smaller than that observed in B-band images. In this section
we will see how the distribution early type stars is explained. [Recommendation for a reference book
of this section: Spitzer (1978).]

Gas flowing through a spiral gravitational potential, even if its amplitude is relatively small, acts
rather nonlinearly. Consider the gravitational potential in the sum of an axisymmetric term, Φ0(R)
and a spiral term Φ1(R). The spiral gravitational field is rotating with a pattern speed ΩP. We use
a reference frame rotating with ΩP. u = (u, v), where u and v are radial (R) and azimuthal (φ)
component of the flow velocity. Consider the reference system rotating with the angular rotation
speed ΩP. We assume the variables with suffix 0 represent those without the spiral potential Φ1

and variables with suffix 1 are used to express the difference between before and after Φ1 is added.
u = u0 + u1 = 0 + u1, v = v0 + v1, and

v0 = R(Ω − ΩP) = R

[(
1
R

∂Φ0

∂R

)1/2

− ΩP

]
, (3.41)

where Ω means the circular rotation speed. The equation of motion in the r-direction is

∂u

∂t
+ u

∂u

∂r
+

v

r

∂u

∂θ
− v2

1

r
= −c2

s

Σ
∂Σ
∂r

− ∂Φ1

∂r
+ 2Ωv1, (3.42)

and that in the φ direction is

∂v

∂t
+ u

(
∂v1

∂r
+

v1

r

)
+

v

r

∂v1

∂φ
= − c2

s

Σr

∂Σ
∂φ

− 1
r

∂Φ1

∂φ
− κ2

2Ω
u, (3.43)

and the continuity equation is
∂ΣRu

∂R
+

∂Σv

∂φ
= 0. (3.44)
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As seen in Figure 3.8, we introduce the spiral coordinate (η, ξ) in which ξ-axis is parallel to the spiral
pattern which has a pitch angle i and η-axis is perpendicular to the ξ-axis.

rdη = dr cos i + rdφ sin i, (3.45)
rdξ = −dr sin i + rdφ cos i. (3.46)
vη = u cos i + v sin i, (3.47)
vξ = −u sin i + v cos i (3.48)

Assuming that i � 1 (tightly wound spiral), equations (3.44) (3.42) and (3.43) become

∂vη

∂t
+ vη

∂vη

∂η
= −c2

s

Σ
∂Σ
∂η

− ∂Φ1

∂η
+ 2Ω(vξ − vξ0), (3.49)

∂vξ

∂t
+ vη

∂vξ

∂η
= − κ2

2Ω
(vη − vη0), (3.50)

∂Σ
∂t

+
∂Σvη

∂η
= 0. (3.51)

Similar to §2.7 we look for a steady state solution. Equation (3.51) becomes

dΣ
dη

= − Σ
vη

dvη

dη
. (3.52)

Using this, equation (3.49) reduces to

(
v2
η − c2

s

) dvη

dη
= 2Ω(vξ − vξ0) −

dΦ1

dη
. (3.53)

Equation (3.50) becomes

vη
dvξ

dη
= − κ2

2Ω
(vη − vη0), (3.54)

In these equations we used following quantities:

vη = vη0 + vη1, (3.55)
vξ = vξ0 + vξ1, (3.56)

vη0 = v0 sin i, (3.57)
vξ0 = v0 cos i, (3.58)

v0 is given in equation (3.41).
Equations (3.52), (3.53), and (3.54) are solved under the periodic boundary condition: X(η =

right end) = X(η = left end). Since equation (3.53) is similar to the equations in §2.7, you may think
the solution seems like Figure 2.5. However, it contains a term which expresses the effect of Coliois
force 2Ω(vξ − vξ0), the flow becomes much complicated.

Taking care of the point that a shock front exists for a range of parameters, the solution of
the above equations are shown in Figure 3.9. Numerical hydrodynamical calculations which solve
equations (3.49), (3.50), and (3.51) was done and steady state solutions are obtained (Woodward
1975). It is shown that F ≤ 0.7%, the velocity (vη: velocity perpendicular to the wave) does not
show any discontinuity. In contrast, for F > 2%, a shock wave appears. Steady state solution
is obtained from the ordinary differential equations (3.52) (3.53), and (3.54) by Shu, Milione, &
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Roberts (1973). Inside the CR, v0 > 0 (Gas has a faster rotation speed than the spiral pattern). As
long as vη > cs there is no shock. Increasing the amplitude of the spiral force F , an amplitude of the
variation in vη increases and finally vη becomes subsonic partially. When the flow changes its nature
from supersonic to subsonic, it is accompanied with a shock. (An inverse process, that is, changing
from subsonic to supersonic is not accompanied with a shock.)

In the outer galaxy (still inside CR) since Ω−ΩP decreases with the the distance from the galactic
center, vη0 = R(Ω − ΩP) sin i decreases. In this region, vη0 < cis and the flow is subsonic if there is
no spiral gravitational force, F = 0. In such a circumstance, increasing F amplifies the variation in
vη and vη finally reaches the sound speed. Transonic flow shows again a shock.

Summary of this section is:

1. There exists a spiral density pattern of the stellar component if the Toomre’s Q parameter is
1<∼Q<∼2.

2. This is driven by the self-gravity of the rotating thin disk.

3. If the amplitude of the non-axisymmetric force is as large as ∼ 1% of the axisymmetric one,
interstellar gas whose sound speed is as large as cis ∼ 8km s−1 forms the galactic shock. This
is observed when the flow is transonic.

4. The amplitude of the gas density fluctuation is much larger than that in the stellar density.

5. If stars are formed preferentially in the postshock region of the spiral arm, we expect clear spiral
arms made by early-type stars, which are massive and short-lived, as seen in the B band images
of spiral galaxies.
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Figure 3.9: Galactic shocks. The velocity perpendicular to the spiral wave front is plotted against
the phase of the spiral wave. The spiral potential takes its minimum at θ = 90. cs = 8.6kms−1,
i = 6.7 deg, R = 10kpc, RΩ = 250km s−1, Rκ = 313km s−1, RΩP = 135kms−1 The amplitude of
spiral gravity force is taken F =0.4%, 0.7%, 2%, and 5% of the axisymmetric force ∂Φ0/∂R. Taken
from Fig.13.3 of Spizer (1978) [originally Woodward (1975)].
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Figure 3.10: Galactic shock. (Left:) vη vs vξ plot. Increasing F from 0.5% to 0.9%, the variation
in vη increases. And at F = 0.97%, the minimum speed reaches the sound speed 8kms−1. Further
increasing F , a subsonic region appears (vη < cis for F = 1.05% and 5%) . When flow changes its
nature from supersonic to subsonic, a shock appears. R = 10kpc, cs = 8km s−1, i = 6.7 deg. Other
parameters are the same as Fig.3.9. (Right:) Comparison of two density distributions: F = 0.97and
F = 5% (shock). Taken from Shu, Milione, & Roberts (1973).





Chapter 4

Local Star Formation Process

4.1 Hydrostatic Balance

Consider a hydrostatic balance of isothermal cloud. By the gas density, ρ, the isothermal sound
speed, cis, and the gravitational potential, Φ, the force balance is written as

−c2
is

ρ

dρ

dr
− dΦ

dr
= 0, (4.1)

and the gravity is calculated from a density distribution as

−dΦ
dr

= −GMr

r2
= −4πG

r2

∫ r

0
ρr2dr, (4.2)

for a spherical symmetric cloud, and the expression for a cylindrical cloud is

−dΦ
dr

= −Gλr

r
= −2πG

r

∫ r

0
ρrdr, (4.3)

where λ represents the mass per unit length within a cylinder of radius being r.
For the spherical symmetric case, the equation becomes the Lane-Emden equation with the poly-

tropic index of ∞. This has no analytic solutions. However, the numerical integration gives us a
solution shown in Figure 4.1 (left). Only in a limiting case with the infinite central density, the
solution is expressed as

ρ(r) =
c2
is

2πG
r−2. (4.4)

Increasing the central density, the solution reaches the above Singular Isothermal Sphere (SIS) solu-
tion.

On the other hand, a cylindrical cloud has an analytic solution (Ostriker 1964) as

ρ(r) = ρc

(
1 +

r2

8H2

)−2

, (4.5)

where
H2 = c2

is/4πGρc. (4.6)

Far from the cloud symmetric axis, the distribution of equation (4.5) gives

ρ(r) ∝ r−4, (4.7)

while the spherical symmetric cloud has
ρ(r) ∝ r−2 (4.8)

distribution.

61
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Figure 4.1: Radial density distribution. A spherical cloud (left) and a cylindrical cloud (right). In the
right panel, solutions for polytropic gases with Γ = 1.1 (relatively compact) and Γ = 0.9 (relatively
extended) are plotted as well as the isothermal one.

4.1.1 Bonnor-Ebert Mass

In the preceding section [Fig.4.1 (left)], we have seen the radial density distribution of a hydrostatic
configuration of an isothermal gas. Consider a circumstance that such kind of cloud is immersed in
a low-density medium with a pressure p0. To establish a pressure equilibrium, the pressure at the
surface c2

isρ(R) must equal to p0. This means that the density at the surface is constant ρ(R) = p0/c2
is.

Figure 4.2 (left) shows three models of density distribution, ρc = ρ(r = 0) = 10ρs, 102ρs, and
103ρs. It should be noticed that the cloud size (radius) is a decreasing function of the central density
ρc. The mass of the cloud is obtained by integrating the distribution, which is illustrated against the
central-to-surface density ratio ρc/ρs in Figure 4.2 (right). The y-axis represents a normalized mass
as m = M/[4πρs(cis/

√
4πGρs)3]. The maximum value of m = 4.026 means

Mmax � 1.14
c2
is

G3/2p
1/2
0

. (4.9)

This is the maximum mass which is supported against the self-gravity by the thermal pressure with an
isothermal sound speed of cis, when the cloud is immersed in the pressure p0. This is called Bonnor-
Ebert mass [Bonnor (1956), Ebert (1955)]. It is to be noticed that the critical state M = Mmax is
achieved when the density contrast is rather low ρc � 16ρs.

(to be finished) Another important result from Figure4.2 (right) is the stability of an isothermal
cloud. Any clouds on the part of ∂m/∂ρc < 0 are unstable. This is because (1) if the ambient pressure
increases suddenly, a cloud on the part of ∂m/∂ρc > 0 will raise the central density

4.1.2 Equilibria of Cylindrical Cloud

In Figure 4.1 (right) we plotted the structure for a polytropic cloud. Inner structure is not dependent
of Γ, it is clear the slope of the outer envelope is related to Γ.

1. In the case of the spherically symmetric, consider a polytrope (p ∝ ρΓ) with Γ < 6/5 (at least
the envelope of Γ = 6/5 cloud extends to ∞.), in which gas extends to ∞. if ρ ∝ r−p, the
mass inside of r is proportional to Mr ∝ r3−p. Thus, the gravity per unit volume at a radius
r, GMρ/r2, is proportional to GMρ/r2 ∝ r1−2p. On the other hand the pressure force is
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Figure 4.2: (Left:) radial density distribution. Each curve has different ρc. It is shown that the radius
increases with decreasing ρc. A spherical cloud (left) and a cylindrical cloud (right).

|(∂p/∂r)| = (∂p/∂ρ)|(∂ρ/∂r)| ∝ (r−p)Γ−1r−p−1 ∝ r−pΓ−1. The two powers become the same,
only if p = 2/(2 − Γ).

2. In the case of cylindrical cloud, with Γ ≤ 1 the mass per unit length λ ∝ r2−p. The gravity at
r, Gλρ/r ∝ r1−2p. Note that the power is the same as the spherical case. Since the power of
the pressure force should be the same as the spherical case, the resultant p should be the same
p = 2/(2 − Γ).

The case of Γ = 0.9, an envelope extending to a large radius indicates the power-law distribution
much shallower than that of the isothermal Γ = 1 one.

4.2 Virial Analysis

Hydrodynamic equation of motion using the Eulerian derivative is

ρ

(
du
dt

)
= −∇p − ρ∇Φ. (4.10)

Multiplying the position vector r and integrate over a volume of a cloud, we obtain the Virial relation
as

1
2

d2I

dt2
= 2(T − T0) + W, (4.11)

where
I =

∫
ρr2dV, (4.12)

is an inertia of the cloud,

T =
∫ (

3
2
pth +

1
2
ρv2

)
dV =

3
2
P̄Vcl, (4.13)

is a term corresponding to the thermal pressure plus turbulent pressure,

T0 =
∫

S
Pthr · ndS =

3
2
P0Vcl (4.14)
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comes from a surface pressure, and

W = −
∫

ρr · ∇ΦdV = −3
5

GM2

R
(4.15)

is a gravitational energy. To derive the last expression in each equation, we have assumed the cloud
is spherical and uniform. Here we use a standard notation as the radius R, the volume Vcl = 4πR3/3,
the average pressure P̄ , and the mass M .

To obtain a condition of mechanical equilibrium, we assume d2I/dt2 = 0. Equation (4.11) becomes

4πp̄R3 − 4πp0R
3 − 3

5
GM2

R
= 0. (4.16)

Assuming the gas is isothermal p = c2isρ, the average pressure is written as

p̄ = c2
isρ̄ = c2

is

3M

4πR3
. (4.17)

Using equation (4.17) to eliminate p̄ from equation (4.11), the external pressure is related to the mass
and the radius as

p0 =
3c2

isM

4πR3
− 3GM2

20πR4
. (4.18)

Keeping M constant and increasing R from zero, p0 increases first, but it takes a maximum, p0,max =
3.15c8

is/(G3M2), and finally declines. This indicates that the surface pressure must be smaller than
p0,max for the cloud to be in an equilibrium. In other words, keeping p0 and changing R, it is shown
that M has a maximum value. The maximum mass is equal to

Mmax = 1.77
c4
is

G3/2p
1/2
0

, (4.19)

which corresponding to the Bonnor-Ebert mass, although the numerical factors are slightly different.

4.2.1 Magnatohydrostatic Clouds

Consider here the effect of the magnetic field. In the magnetized medium, the Lorentz force

F =
1
4π

(∇×B) ×B = − 1
8π

∇B2 +
1
4π

(B · ∇)B (4.20)

works in the ionized medium. The first term of equation (4.20), which is called the magnetic
pressure, has an effect to support the cloud against the self-gravity.

The virial analysis is also applicable to the magnetohydrostatic clouds. The terms related to the
magnetic fields are

M =
∫

B2

8π
dV +

∫
S
(r · B)B · ndS −

∫
S

B2

8π
r · ndS

�
∫

B2 − B2
0

8π
dV � 1

6π2

(
Φ2

B

R
− Φ2

B

R0

)
, (4.21)

where ΦB represents a magnetic flux and it is assumed to be conserved if we change the radius, R,
that is ΦB = πB0R

2
0 = πBR2. Equation (4.16) becomes

4πp̄R3 − 4πp0R
3 − 3

5
GM2

R
+

1
6π2

Φ2
B

R
= 0, (4.22)
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where we ignored the term 1
6π2

Φ2
B

R0
. The last two terms are rewritten as

3
5

G

R

(
M2 − M2

Φ

)
, (4.23)

where MΦ is defined as 3GM 2
Φ/5 = Φ2

B/6π2.
This shows the effects of the magnetic fields:

1. B-fields effectively reduce the gravitational mass as M2−M2
Φ = M2−5Φ2

B/(18π2G). This plays
a part to support a cloud.

2. However, even a cloud contracts (decreasing its radius from R0 to R), the ratio of the gravita-
tional to the magnetic terms keeps constant since these two terms are proportional to ∝ R−1.
Thus, if the magnetic term does not work initially, the gravitational term continues to predom-
inate over the magnetic term.

If M < MΦ, a sum of last two terms in equation (4.22) is positive. Since the second term of rhs of
equation (4.18) is positive, there is one R which satisfies equation (4.22) irrespective of the external
pressure p0. While, if M > MΦ, there is a maximum allowable p0. Therefore, M = MΦ gives a
criterion whether the magnetic fields work to support the cloud or not. More realistic calculation
[Mouschovias (1976), Tomisaka et al (1988)] gives us a criterion

G1/2 dm

dΦB
=

G1/2σ

B
= 0.17 � 1

2π
, (4.24)

where σ and B means the column density and the magnetic flux density. A cloud with a mass

M >
ΦB

2πG1/2
(4.25)

is sometimes called magnetically supercritical, while that with

M <
ΦB

2πG1/2
(4.26)

is subcritical.
More precisely speaking, the criterion showed in equations (4.25) and (4.26) should be applied for

a cloud which has a much larger mass than the Bonnor-Ebert mass. That is, even without magnetic
fields, the cloud less-massive than the Bonnor-Ebert mass has a hydrostatic configuration shown in
Figure 4.2 (left). The cloud with central density of ρc = 10 has a stable density distribution. To fit
the numerical results, Tomisaka et al (1988) obtained an expression for the critical mass when the
cloud has a mass-to-flux ratio dm/dΦB, the isothermal sound speed cis, and the external pressure p0

as

Mcr = 1.3

{
1 −

[
1/2π

G1/2dm/dΦB|r=0

]2
}−3/2

c4
s

p
1/2
0 G3/2

. (4.27)

This shows that the critical mass is a decreasing function of the mass-to-flux ratio or increasing
function of the magnetic flux. And the critical mass becomes much larger than the Bonnor-Ebert
mass � c4

s/(p1/2
0 G3/2) only when the mass-to-flux ratio at the center of the cloud is reaching 1/2π

at which the term in the curry bracket goes to zero. Hereafter, we call here the cloud/cloud core
with mass larger than the critical mass Mcr a supercritical cloud/cloud core. The cloud/cloud core
less-massive than the critical mass is subcritical.



66 CHAPTER 4. LOCAL STAR FORMATION PROCESS

4.3 Evolution of Cloud/Cloud Cores

We have seen there is a critical mass above which the cloud has no (magneto)hydrostatic configuration
but below which the cloud has at least an equilibrium state. This gives us an idea that there are
two kind of clouds/cloud cores: that with a mass larger than the critical mass which has to collapse
dynamically and that with a mass smaller than the critical mass which is in an equilibrium state.
In the density range of 104cm−3<∼n<∼1010cm−3, the interstellar gas is essentially isothermal. In this
region a major cooling agent is dusts; that is, the dust is heated by the collision of molecules. the
excess energy liberated at the collision increases the dust temperature. Finally the thermal emission
from the dust cools down the dust again. By this process, the thermal energy of the gas is reduced.
Therefore, we consider the cloud/cloud core is isothermal and study the collapse of the isothermal
cloud.

4.3.1 Subcritical Cloud vs Supercritical Cloud

Since the supercritical cloud has no hydrostatic configuration, it must evolve in a dynamical way. On
the other hand, since the subcritical cloud is in a static state, it evolves in much longer time-scale of
the free-fall time. Such cloud evolves by the effect of the ambipolar diffusion.

Ambipolar Diffusion

In the molecular cloud 104cm−3<∼n<∼1010cm−3, the ionization fraction is low. In such an interstellar
medium, the neutral molecules, a major component of the gas, are coupled with the magnetic field
indirectly via ionized ions. The ionized ions are affected by the Lorentz force. At the same time, if
the neutral molecules drift across the magnetic field lines and the ions, the ions collide with neutral
molecules and obtain momentum from the neutral molecule. This force acts as the drag force. The
force balance for the ions is written down as

FLorentzforce = Fdrag, (4.28)

and that for the molecules is
Fgravity = Fdrag + Fpressure, (4.29)

where we ignored the gravity and the pressure force for the ions which are much weaker than the
Lorentz force. Eliminating the mutual drag force, these reduce to an ordinary force balance as the
gravity is counter-balanced by the sum of the Lorentz force and the thermal pressure force. In this
sense, even the cloud with low ionization fraction is supported by the Lorentz force, if the cloud is
subcritical. However, for the drag force to play a role, the neutral have to drift against the ionized
component and thus the magnetic field lines. This means that the neutral molecules are convected
to the central part of the cloud. This increases the mass-to-flux ratio at the center dm/dΦB|r=0.
Equation 4.27 indicates that the critical mass decreases with increasing the mass-to-flux at the center.
If the critical mass becomes smaller than the cloud mass, the cloud becomes supercritical and the
cloud has no hydrostatic configuration. The cloud begins dynamical collapse. F.Shu considers this
is a major evolutional path to initiate star formation in a subcritical cloud/cloud core. Since the
hydrostatic state with high density contrast between the center and the surface has a characteristic
power-law density distribution as ∝ r−2, the final state of the subcritical cloud driven by the ambipolar
diffusion is considered to have a density distribution similar to the singular isothermal sphere (SIS).
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Figure 4.3: Evolution of isothermal clouds massive than the Bonnor-Ebert mass. Density (left) and
velocity (right) distributions are illustrated. Solid lines show the cores of the preprotostellar phase
(prestellar core) and dashed lines show those of protostellar phase (protostellar core). The evolution
of the protostellar phase is studied by the sink-cell method, where we assume the gas that entered in
the sink-cells is removed from finite-difference grids and add to the point mass sitting at the center
of the sink-cells which corresponds to a protostar.

Dynamical Collapse

In 1969, Larson (1969) and Penston (1969) found a self-similar solution which is suited for the
dynamical contraction. Figure 4.3 is a radial density distribution for a spherical collapse of an
isothermal cloud, where the cloud has a four-times larger mass than that of the Bonnor-Ebert mass.
Although the figure is taken from a recent numerical study by Ogino et al (1999), a similar solution
was obtained in Larson (1969). We can see that the solution has several characteristic points as

1. The cloud evolves in a self-similar way. That is, the spatial distribution of the density (left) at
t = 0.326 is well fitted by that at t = 0.293 after shifting in the −x and the +y directions. As
for the infall velocity spatial distribution, only a shift in the −x direction is needed.

2. The density distribution in the envelope, which is fitted by ∝ r−2, is almost unchanged. Only
the central part of the cloud (high-density region) contracts.

3. The time before the core formation epoch (the core formation time t0 is defined as the time at
which the central density increases greatly) is a good indicator to know how high the central
density is. That is, reading from the figure, at t − t0 = 0.003 (t = 0.326) the central density
reaches ρc � 104 and at t − t0 = 0.036 (t = 0.293) the density is equal to ρc � 102. This shows
the maximum (central) density is approximately proportional to (t − t0)2, which is reasonable
from the description of the free-fall time ∝ ρ−1/2.

The basic equations of spherical symmetric isothermal flow are

∂ρ

∂t
+

1
r2

∂

∂r
(r2ρv) = 0, (4.30)
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∂v

∂t
+ v

∂v

∂r
+

c2
is

ρ

∂ρ

∂r
+

GM

r2
= 0, (4.31)

M(r, t) = M(0, t) +
∫ r

0
4πr′2ρ(r′, t)dr′, (4.32)

where M(r, t) represents the mass included in the radius r and M(0, t) denotes the mass of the
protostar. A self-similar solution which has a form

ρ(r, t) =
Ω(ξ)

4πG(t − t0)2
, (4.33)

v(r, t) = cisV (ξ), (4.34)

M(r, t) =
c3
is|t − t0|

G
m(ξ) (4.35)

ξ =
r

crmis|t − t0|
, (4.36)

should be found, where Ω and V are functions only on ξ. Since

∂

∂t
=

d

dξ

∂ξ

∂t
=

r

cis|t − t0|2
, (4.37)

and
∂

∂r
=

d

dξ

∂ξ

∂r
=

1
cis|t − t0|

, (4.38)

the basic equations for the spherical symmetric model yield

m = (ξ − V )ξ2Ω, (4.39)

[
(ξ − V )2 − 1

] dV

dξ
=

[
Ω(ξ − V ) − 2

ξ

]
(ξ − V ), (4.40)

(ξ − V )2 − 1
Ω

dΩ
dξ

=
[
Ω − 2

ξ
(ξ − V )

]
(ξ − V ), (4.41)

Equations (4.40) and (4.41) have a singular point at which (ξ−V )2−1 = 0 or V = ξ±1. Since the point
of ξ =const moves with cis, the flow velocity relative to this ξ =const is equal to v− cisξ = (V − ξ)cis.
Thus the singular point ξ∗ at which V = ξ± 1 corresponds to a sonic point. Therefore, since the flow
has to pass the sonic point smoothly, the rhs of equations (4.40) and (4.41) have to be equal to zero
at the singular point ξ∗. This gives at the sonic pont ±ξ∗ > 0,

Ω − 2(ξ − V )
ξ

= Ω(ξ − V ) − 2
ξ

= 0, (4.42)

which leads to
V∗ = ξ∗ ∓ 1, (4.43)

Ω∗ = ± 2
ξ∗

. (4.44)

These equations (4.39), (4.40) and (4.41) have an analytic solution

V (ξ) = 0, Ω =
2
ξ2

, m = 2ξ, −∞ < ξ < ∞ (4.45)
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Figure 4.4: A self-similar solution indicating a dynamical collapse of isothermal spherical cloud
(Larson-Penston solution). Spatial distribution of the density and inflow velocity which are expected
from the self-similar solution are plotted. Dashed lines show the evolution prestellar core and solid
lines show that of protostellar core. Taken from Hanawa (1999).

This is a solution which agrees with the Chandrasekhar’s SIS. Generally, solutions are obtained only
by numerical integration. |ξ → ∞| the solution have to converge to an asymptotic form of

V (ξ) = V∞ − A − 2
ξ

+
V∞
ξ2

+
4V∞ + (A − 2)(A − 6)

6ξ2
+ O(ξ−4), (4.46)

Ω(ξ) =
A

ξ2
− Ω∞(A − 2)

2ξ2
+ O(ξ−6), (4.47)

This shows that for sufficiently large radius the gas flows with a constant inflow velocity V∞cis.
This has a solution in which the density and the infall velocity should be regular with reaching

the center (ξ � 1). Such kind of solution is plotted in Figure 4.4 (left). In Figure 4.4 (right) a time
evolution is shown expected from the self-similar solution. This shows that

ρ

{
� ρc

∝ r−2
(in the central region)
(in the outer envelope)

(4.48)

v

{
∝ r
� 3.28cis

(in the central region)
(in the outer envelope)

(4.49)

Reaching the outer boundary the numerical solution differs from the self-similar solution. For example,
v is reduced to zero in the numerical simulations, while it reaches a finite value 3.28 in the self-similar
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solution. And as for the density distribution, ρ drops near the outer boundary in the numerical
simulations while it decreases proportional to ∝ r−2. However, in the region except for the vicinity
of the outer boundary the self-similar solution expresses well the dynamical collapse of the spherical
isothermal cloud. This solution gives the evolution of a pre-protostellar core formed in a supercritical
cloud/cloud core.

Inside-out Collapse Solution

In 1977 Shu found another self-similar solution which is realized after a central protostar with in-
finitesimal mass is formed in the singular isothermal sphere solution. The gas begins to accrete to the
protostar. Outside the region where the accretion occurs, the initial SIS is kept unchanged, since the
SIS is a hydrostatic solution. And the front of accretion expands radially outward in time. Since the
inflow region expand outwardly, he called it the inside-out collapse solution. In Figure ??, the
evolution is shown for density and inflow velocity. This solution gives the evolution of a protostellar
core formed in a subcritical cloud/cloud core.

Using equations (4.46) and (4.47) and assuming the inflow velocity should reduce at large radius,
we obtain

V (ξ) = −A − 2
ξ

− (A − 2)(A − 6)
6ξ3

+ · · · , (4.50)

Ω(ξ) =
A

ξ2
− A(A − 2)

2ξ4
+ · · · . (4.51)

Since ξ →∞ means t → t0 (if r is finite), Ω(ξ) → A/ξ2 means that

ρ(r, t0) =
Ac2

is

4πGr2
. (4.52)

Comparing with the SIS, when A = 2 this gives the SIS and when A > 2 this gives a density
distribution in which the pressure is inefficient and the cloud is contracting. The solution with A > 2
is obtained by a procedure as (1) at a sufficiently large radius ξ1, calculate V (ξ1) and Ω(ξ1). (2) from
these values, integrate equations (4.40) and (4.41) inwardly. Figure 4.5 show the solution of this type.
The solution with A > 2 inflow speed is accelerated towards the center. Decreasing A (A → 2), it is
shown that an outer part ξ>∼1 reaches V → 0. For A = 2+1 , the solution reaches the singular line
V = −ξ + 1 at ξ = 1 (V = 0). Since V = 0 and Ω = 2 at ξ = 1, this solution with A = 2+ converges
to the SIS at ξ = 1. This means that if there is an infinitesimally small amount of excess mass at the
center of SIS, the accretion begins from the center while outside a radius the cloud is left static. The
inner part of the solution ξ<∼1, V and Ω are well expressed as V ∝ ξ

1/2 and Ω ∝ ξ
3/2.

The power-law distributions of V ∝ ξ
1/2 and Ω ∝ ξ

3/2 are explained as follows: Conservation of
the total energy of an inflowing gas shell is expressed as

v2

2
− GMr

r
= −GMr0

r0
, (4.53)

where r0 denotes the initial radius of a gas shell and Mr0 = Mr represents the mass inside the gas
shell. Neglecting GMr0/r0 compared with the term GMr/r, this gives

v �
(

2GMr

r

)1/2

∝ r−1/2, (4.54)

1 This means A = 2 + ε and ε > 0 and → 0
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Figure 4.5: Self-similar solution which shows the inside-out collapse. (Left:) Infall velocity (−V =
−v/cis) is plotted against the similarity variable ξ ≡ r/cis(t− t0). Three curves correspond to models
A = 2.4, 2.1, and 2.01. (Right:) Density (Ω = 4πGρ(t− t0)2) is plotted against the similarity variable
ξ ≡ r/cis(t − t0).

where we assumed a major part of Mr comes from the mass of a protostar M∗, that is, Mr = M∗ +∫ r
0 ρ4πr2dr � M∗ Since the average density inside the radius r ρ̄(< r) =

∫ r
0 ρ4πr2dr/

∫ r
0 4πr2dr = ρ(r),

the time necessary for a gas shell to reach the center is proportional to ∝ ρ̄(< r)−1/2 = ρ(r)−1/2 ∝
r1 ∝ (t − t0)1, where we used a fact that the front of accretion expands with a constant speed csis.
This means that the time necessary for the gas shell to travel from the radius of the accretion wave
front to the center is proportional to t − t0. Since the mass of the shell which begins accretion in a
unit time is equal to ρ(r)4πr2cis and is constant irrespective of t − t0. These two facts indicate that
the mass accretion rate is constant in time. That is,

Ṁ = 4πr2ρv = const. (4.55)

Using this equation, equation 4.54 indicates that the spatial density distribution is expressed by a
power-law as

ρ(r) ∝ r−3/2, (4.56)

which is valid for the region except for the vicinity of the front of the accretion.

4.3.2 Protostellar Evolution of Supercritical Clouds

What is a protostellar core formed in a supercritical cloud/cloud core? Is this different from the
inside-out solution of Shu (1977)? A solution which corresponds to the protostellar core is obtained
by Hunter (1977) and Whitworth and Summers (1985). This is a solution with t > t0 in equation
4.36. The asymptotic behaviors of the density and infall velocity reaching the center are different
from that of the Larson-Penston self-similar solution for a prestellar collapse. That is,

Ω

{
→ finite
→ infinite

(LP)
(Inside − out)

(4.57)
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V

{
→ finite
→ infinite

(LP)
(Inside − out)

(4.58)

Using the boundary conditions suitable for the inside-out type solution, another self-similar solution
is obtained. In Figure 4.4 (right), such kind of solution is also plotted.

Take notice that the solutions of t < t0 (prestellar) and t > t0 (protostellar) agree with each
other at t = t0. Even if the boundary conditions at the center for the similarity variables, V and
Ω, are completely different, the difference between the two is small in the physical variable v and
ρ. Therefore, the evolution of a supercritical core is thought to be expressed by the Larson-Penston
self-similar solution extended to the protostellar core phase by Hunter (1977) and Whitworth and
Summers (1985).

Assume that we observe a protostellar core and obtain their density and infall velocity spatial
distributions. Can we distinguish which solution is appropriate the Shu’s inside-out solution or the
extended Larson-Penston solution? This seems hard, because the structure of density and velocity
distributions are similar after the protostar is formed: the density and velocity show almost similar
power-law as ρ ∝ r−3/2 and v ∝ r−1/2 irrespective of the inside-out solution or the extended Larson-
Penston solution. The region where the infall velocity is accelerated toward the center (accretion-
dominated region) is expanding after the protostar is formed. Therefore, to distinguish between the
two solutions becomes harder and harder after the protostar is formed. The difference would be large
and we would have a definite answer which solution is appropriate to describe the cloud collapse, if we
can observe a very young protostellar core or a preprotostellar core which shows dynamical collapse.
However, since the timescale of such a phase is much shorter than the evolved protostellar phase
or a younger preprotostellar core, the number of such kind of objects would be small (τff ∝ ρ−1/2).
Therefore, we are looking for such objects just before or after the protostar formation.

4.4 Accretion Rate

Using equation 2.26, the necessary time for a mass-shell at R to reach the center (free-fall time) is
expressed as

T (R) ≡
(

R3

2GM(R)

)1/2
π

2
(4.59)

Consider two shells whose initial radii are R and R+∆R. The time difference for these two shells
to reach the center ∆T (R) can be written down using equation (4.59) as

∆T (R) =
πR1/2

23/2(GM(R))1/2

[
3
2
− R

2M(R)
dM(R)

dR

]
∆R. (4.60)

Mass in the shell between R and R+∆R, ∆M ≡ M(R+∆R)−M(R) = dM/dR∆R, accretes on the
central object in ∆T (R). Thus, mass accretion rate for a pressure-free cloud is expressed as ∆M/∆T .
This leads to the expression as

dM

dT
(R) =

23/2

π

G1/2M(R)3/2

R3/2

R
M(R)

dM(R)
dR

3
2 − R

2M(R)
dM(R)

dR

. (4.61)

This gives time variation of the accretion rate. Consider two clouds with the same density distribu-
tion ∂ log ρ/∂r but different absolute value. Since these two clouds have the same ∂ log M(R)/∂ log R,
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Figure 4.6: Mass accretion rate against the typical density of the cloud.

the mass accretion rate depends only on M(R)/R, and is expressed as

dM

dT
(R) ∝ M(R)3/2. (4.62)

This indicates that the accretion rate is proportional to ρ3/2, while the time scale is to ρ−1/2. This is
confirmed by hydrodynamical simulations of spherical symmetric isothermal clouds (Ogino et al.1999).
When the initial density distribution is the SIS as ρ ∝ r−2, the mass included inside R0 is proportional
to radius M(R) ∝ R. In this case, equation (4.61) gives a constant accretion rate in time. In Figure
4.6 we plot the mass accretion rate against the cloud density. α represents the cloud density relative
to that of a hydrostatic Bonnor-Ebert sphere. This shows clearly that the mass accretion rate is
proportional to α3/2 for massive clouds α > 4. This is natural since the assumption of pressure-less
is valid only for a massive cloud in which the gravity force is predominant against the pressure force.
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Appendix A

Basic Equation of Fluid Dynamics

A.1 What is fluid?

Gas and liquid change their shape according to the shape of the container. This is a definition of
fluid. Stress tensor

A.2 Equation of Motion

Newton’s second law of mechanics as
m

dv
dt

= F, (A.1)

where m, v, and F represent the mass, the velocity of a particle and force working on the particle. In
fluid dynamics, using the mass density ρ and the force working on the unit volume f equation (A.1)
is rewritten as

ρ
dv
dt

= f . (A.2)

Which kind of force works in a fluid? Gas pressure force does work in any fluids. Beside this, if
there is the gravity, ρg should be included in f. If the electric currents is running in the fluid and the
magnetic fields exist, the Lorentz force j×B should be added.

To write down the expression of the gas pressure force, consider a fluid element between x and
x + ∆x. Pressure force exerting on the surface S at x is p(x)S, while that on the opposite side is
−p(x+∆x)S. The net pressure force working on the volume of S∆x is equal to (p(x)−p(x+∆x))S,
which is approximated as −∂p/∂x∆xS + O(∆x2). Thus, the pressure force working on the unit
volume is written −∂p/∂x. Equation (A.2) can be rewritten as

ρ
dv
dt

= −∇p + ρg. (A.3)

A.3 Lagrangian and Euler Equation

The time derivative appearing in equation (A.1) expresses how the velocity of a specific particle
changes. Therefore, that appearing in equation (A.3) is also expressing the same meaning, that is,
the position of the gas element concerning in equation (A.3) moves and the positions at t and t +∆t
are generally different. However, considering the velocity field in the space, the time derivative of the
velocity should be calculated staying at a point x.
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These two time derivative are different each other and should be distinguished. The former time
derivative is called Lagrangian time derivative and is expressed using d/dt. On the other hand,
the latter is called Eulerian time derivative and is expressed using ∂/∂t. These two are related
with each other. Consider a function F whose independent variables are time t and position x, that is
F (x, t). The difference dF

dt ∆t, using the Lagrangian time derivative of F , represents the the difference
of F (t+ ∆t) from F (t) focusing on a specific fluid element, whose positions are different owing to its
motion. The element at the position of x0 at the epoch t0 moves to x0 + v0∆t in time span of ∆t.
Thus the difference is expressed as

dF

dt
∆t = F (x0 + v0∆t, t0 + ∆t) − F (x0, t0),

�
(

∂F

∂x

)
t

∣∣∣∣
x0,t0

· v0∆t +
(

∂F

∂t

)
x

∣∣∣∣
x0,t0

∆t, (A.4)

where we used the Taylor expansion of F . The difference regarding to the Eulerian derivative is
written down as

∂F

∂t
∆t = F (x0, t0 + ∆t) − F (x0, t0), (A.5)

and this is equal to the second term of the rhs of equation (A.4). Comparing equations (A.4) and
(A.5), the Lagrangian derivative contains an extra term besides the Eulerian derivative. That is, the
Lagrangian derivative is expressed by the Eulerian derivative as

d

dt
=

∂

∂t
+ v · ∂

∂x
=

∂

∂t
+ v · grad. (A.6)

Applying the above expression on equation of motion based on the Lagrangian derivative (A.3),
we obtain the Eulerian equation motion:

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p + ρg. (A.7)

A.4 Continuity Equation

Another basic equation comes from the mass conservation. This is often called the continuity equation,
which relates the change of the volume to its density. Consider a fluid element whose volume is equal
to ∆V . The mass contained in the volume is constant. Thus

dρ∆V

dt
=

dρ

dt
∆V +

d∆V

dt
ρ = 0. (A.8)

The variation of the volume d∆V
dt is rewritten as

d∆V

dt
=

∫
∂∆V

v · dS =
∫
∆V

divvdV, (A.9)

where ∂∆V represents the surface of the fluid element ∆V . From equations (A.8) and (A.9), we
obtain the mass continuity equation for Lagrangian time derivative as

dρ

dt
+ ρdivv = 0. (A.10)

Using equation (A.6) this is rewritten to Eulerian form as
∂ρ

∂t
+ div(ρv) = 0. (A.11)

Basic equations using the Lagrangian derivative are equations (A.3) and (A.10), while those of
the Euler derivative are equations (A.7) and (A.11).
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A.5 Energy Equation

The above basic equations (A.3) and (A.10) or equations (A.7) and (A.11) contain three dependent
variables ρ, p, and v. The number of the variables, 3, is larger than the number of equations, 2.
Therefore, an extra equation is needed to close the basic equations.

A.5.1 Polytropic Relation

If the pressure of the fluid, p, is expressed only by the density, ρ,

p = P (ρ), (A.12)

the number of dependent variables is reduced to two and the above equations are sufficient to describe
the dynamics of the fluid. Occasionally, the presure is assumed proportional to the power of ρ as

p = KρΓ, (A.13)

where Γ is a constant. This assumption is called polytropic relation.
The fact should be reminded that the validity of the assumption comes from the physical condition

of the system. In the case that the temperature of the gas is kept constant owing to the cooling and
heating process, the gas pressure is proportional to the density

p = c2
isρ, (A.14)

where cis = (kT/µmp)1/2 (k: Boltzmann constant, µ average molecular weight, and mp is the proton
mass) represents the isothermal sound speed and is constant.

Another example is the isentropic fluid, in which the entropy is kept constant. In this case the
pressure is proportional to ργ, as

p = c2
sρ

γ, (A.15)

where γ is the specific heat ratio = cp/cv and cs = (γkT/µmp)1/2 represents the adiabatic sound
speed and is constant. In these cases the polytropic replations of equations (A.14) and (A.15) plays
a role as the third equation of basic equations of hydrodynamics.

A.5.2 Energy Equation from the First Law of Theromodynamics

In more general cases, the last equation comes from the first law of the thermal physics,

∆Q = dU + pdV. (A.16)

where U and V represent the internal energy and the volume and ∆Q is the heat added or subtracted
from the system. Using the total energy per unit volume

ε =
1
2
ρv2 +

U

V
(A.17)

the above equation gives the equation for total energy:
∂ε

∂t
+ div(ε + p)v = ρv · g. (A.18)

Since the total energy per unit volume is expressed using the basic physical quantities as

ε =
1
2
ρv2 +

1
γ − 1

p, (A.19)

equation (A.18) is the final basic equation for hydrodynamics. Equations (A.7), (A.11), and (A.18)
are basic equations hydrodynamics using the Eulerian time derivative.
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A.6 Shock Wave

A.6.1 Rankine-Hugoniot Relation

Passing through a shock front moving with a speed Vs, the physical variables ρ, p, and u change
abruptly. Since the basic equations of hydrodynamics is unchanged after chosing the system moving
Vs, the continuity equation

∂ρ

∂t
+

∂ρu

∂x
= 0 (A.20)

gives an equation for a steady state as
∂ρu

∂x
= 0, (A.21)

from which we obtain the jump condition,

ρ1u1 = ρ2u2, (A.22)

after we integrate over a region overlapping the shock front. Here, the quatities with suffix 1 are for
preshock and those with suffix 2 are for postshock.

Equation of motion for steady state

ρu
∂u

∂x
= −∂p

∂x
, (A.23)

gives
p1 + ρ1u

2
1 = p2 + ρ2u

2
2, (A.24)

where we used equation(A.22).

Isotharmal shock

In the case of the gas is isothermal p = c2
isρ, equation (A.24) becomes

ρ1

(
c2
is + u2

1

)
= ρ2

(
c2
is + u2

2

)
. (A.25)

Eliminating ρ from equations (A.22) and (A.25), we obtain(
u1u2 − c2

s

)
(u1 − u2) = 0, (A.26)

which means
u1u2 = c2

s. (A.27)

From equation (A.22),
ρ2

ρ1
=

u1

u2
=

u2
1

c2
s

. (A.28)

This indicates the postshock velocity u1 � cs the ratio of the postshock density to the preshock
density becomes large.


