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Chapter 1

Introduction
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Figure 1.1: Multiphases of the interstellar medium. The temperature and number density of gaseous
objects of the interstellar medium in our Galaxy are summarized. Originally made by Myers (1978),
reconstructed by Saigo (2000).

Figure 1.1 shows the temperature and number density of gaseous objects in our Galaxy. Cold
interstellar medium forms molecular clouds (T ∼ 10K) and diffuse clouds (T ∼ 100K). Warm inter-
stellar medium 103K<∼T<∼104K are thought to be pervasive (wide-spread). HII regions are ionized
by the Ly continuum photons from the nearby early-type stars. There are coronal (hot but tenuous)
gases with T ∼ 106 K in the Galaxy, which are heated by the shock fronts of supernova remnants.
Pressures of these gases are in the range of 102Kcm−3<∼p<∼104Kcm−3, except for the HII regions.
This may suggest that gases are in the pressure equilibrium.
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2 CHAPTER 1. INTRODUCTION

In this figure, a theoretical path from the molecular cloud core to the star is also shown. We will
see the evolution more closely in Chapter 4.

Figure 1.2: (left) Temperature-density relation of interstellar gas in which thermal equilibrium is
achieved between two effects of heating and cooling. Above the line, cooling due to radiative loss is
dominated, while below it the heating is dominated over the cooling. (right) The same as the left one,
but for pressure-density relation. Figures are taken from Figs. 1.15 and 1.16 of Hayashi et al.(1978)
(see also Draine 2011).

From theoretical point of view, in Figure 1.2, we plot the temperature-density (left) and pressure-
density (right) relations for a gas in which the thermal equilibrium is achieved between two effects
to heat the gas and to cool the gas. If the interstellar pressure p is higher than p>∼10−13dyn cm−2,
Figure 1.2 (right) indicates that interstellar gas density is higher than ρ>∼10−22cm−3. On the other
hand, if the interstellar pressure p is lower than p<∼10−14dyn cm−2, low-density interstellar matter
exists ρ<∼10−26cm−3. Between these two pressures, there are three states coexisting in the interstellar
space. Since the middle state is unstable (because increasing the temperature leads to increasing the
heating rate or decreasing the cooling rate), there exist two stable phases in pressure equilibrium.
This is a picture of “two-phase interstellar medium” (Field et al. 1969; Spitzer 1978). Intercloud gas
and diffuse cloud gas are explained by this mechanism. Historically, the discovery of hot coronal gas
of T>∼several× 105K stimulated an idea that the interstellar gas is globally divided into three phases
(Cox & Smith 1974; McKee & Ostriker 1977).

Globally, the molecular form of Hydrogen H2 is much abundant inside the Solar circle, while the
atomic hydrogen HI is more abundant than molecular H2 in the outer Galaxy. In Figure 1.3 (left),
the radial distributions of molecular and atomic gases are shown. The right panel shows similar
distributions for four typical external galaxies (M51, M101, NGC6946, and IC342). This indicates
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these distributions are similar with each other. HI is distributed uniformly, while H2 density increases
greatly reaching the galaxy center. In other words, only in the region where the total (HI+H2) density
exceeds some critical value, H2 molecules are distributed.

Figure 1.3: Radial distribution of H2 (solid line) and HI (dashed line) gas density. (Left:) our Galaxy.
Converting from CO antenna temperature to H2 column deity, n(CO)/n(H2) = 6× 10−5 is assumed.
Taken from Gordon & Burton (1976). (Right:) Radial distribution of H2 and HI gas for external
galaxies. The conversion factor is assumed constant X(H2/CO) = 3× 1020H2/Kkms−1. Taken from
Honma et al (1995). About the X-factor refer to appendix G.

1.2 Case Study — Taurus Molecular Clouds

Figure 1.4 (left) shows the 13CO total column density map of the Taurus molecular cloud (Mizuno
et al 1995) whose distance is 140 pc far from the Sun. Since 13CO contains 13C, a rare isotope of
C, the abundance of 13CO is much smaller than that of 12CO (for isotopic abundances, see Table
H.3). Owing to the low abundance, the emission lines of 13CO are relatively optically thiner than
that of 12CO. Using 13CO line, we can see deep inside of the molecular cloud. The distributions of
T Tauri stars and 13CO column density coincide with each other. Since T Tauri stars are young
pre-main-sequence stars with M ∼ 1M�, which are in the Kelvin-Helmholtz contraction stage and
do not reach the main-sequence Hydrogen burning stage, it is shown that stars are newly formed in
molecular clouds.

Since 18O is much more rare isotope (18O/16O � 13C/12C, see Table H.3), the distribution of
much higher-density gases is explored using C18O lines. Figure 1.4 (right) shows C18O map of Heiles
cloud 2 in the Taurus molecular cloud by Onishi et al (1996). This shows us that there are many
molecular cloud cores which have much higher density than the average. Many of these molecular
cloud cores are associated with IRAS infrared sources and T Tauri stars. It is shown that star
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Figure 1.4: (Left) 13CO total column density map of the Taurus molecular cloud (Mizuno et al 1995).
Taken from their home page with URL of http://www.a.phys.nagoya-u.ac.jp/nanten/taurus.html (in
Japanese). T Tauri stars, which are thought to be pre-main-sequence stars in the Kelvin-Helmholtz
contraction stage, are indicated by bright spots. (Right) C18O map of Heiles cloud 2 region in the
Taurus molecular cloud (Onishi et al. 1996). This shows clearly that the cloud is composed of a
number of high-density regions.

formation occurs in the molecular cloud cores in the molecular cloud. They found 40 such cores in
the Taurus molecular cloud. Typical size of the core is ∼ 0.1 pc and the average density of the core
is as large as ∼ 104cm−3. The mass of the C18O cores is estimated as ∼ 1− 80M�.

H13CO+ ions are excited only after the density is much higher than the density at which CO
molecules are excited1. H13CO+ ions are used to explore the region with higher density than that
observed by C18O. Figure 1.5 shows the map of cores observed by H13CO+ ions. The cores shown in
the lower panels are accompanied with infrared sources. The energy source of the stellar IR radiation
is thought to be maintained by the accretion energy. Here we estimate the accretion luminosity Lacc

(energy released by accretion in a unit time). Since the gravitational potential energy per unit mass
at the surface of a protostar with a radius R∗ and a mass M∗ is equal to

Φ � −GM∗/R∗, (1.1)

the kinetic energy of the gas accreting on the stellar surface is approximately equal to ∼ GM∗/R∗.
The energy inflow rate owing to the accretion is

∼ GM∗
R∗

× Ṁ ∼ GM∗
R∗

×A
c3s
G
, (1.2)

where Ṁ = Ac3s/G is the mass accretion rate (cs represents the sound speed of accreting gas). This
rate was estimated as follows: (1) A mass of gravitationally bounded object (the Jeans mass) is given
as MJ ∼ ρ × c3st

3
ff , where tff represents the gravitational free-fall time tff ∼ (Gρ)−1/2 (eq.[2.26]).

(2) Thus, the accretion rate is estimated as Ṁ ∼ MJ/tff ∼ ρ × c3st
2
ff ∼ c3s/G. Thus, the “natural”

accretion rate is proportional to the sound speed cs cubed and the inverse of gravitational constant
G. (See also §§ 4.5.1 and 4.5.2.). Accretion rate of

Ṁ ∼ 1.6× 10−6M� yr−1
(

cs
190m s−1

)3

(1.3)

1In section 2.10.5 of the next chapter, we will touch the critical density, above which the upper state level are well
excited by collision with H2. In Table 2.1 we show the values of critical densities of CO and HCO+.
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Figure 1.5: Pre-protostellar vs protostellar cores (H13CO+ map). Upper panel shows the C18O cores
without associated IRAS sources. Lower panel shows the cores with IRAS sources. Taken from Fig.1
of Mizuno et al. (1994)

gives the accretion luminosity of

Lacc ∼ 5L�
(
M∗
1M�

)(
10R�
R∗

)(
cs

190m s−1

)3

. (1.4)

In the upper panels of Figure 1.5, the cores without IR sources are shown. This core does not show
accretion but collapse. That is, before a protostar is formed, the core itself contract owing to the
gravity, which is explained closely in chapter 4.

In Figure 1.5, H13CO+ total column density maps of the C18O cores are shown. Cores in the
lower panels have associated IRAS sources, while the cores in the upper panels have no IRAS sources.
Since the IRAS sources are thought to be protostars or objects in later stage, the core seems to evolve
from that without an IRAS sources to that with an IRAS source. From this, the core with an IRAS
source is called protostellar core, which means that the cores contain protostars. On the other
hand, the core without IRAS source is called pre-protostellar core or, in short, pre-stellar core.

Figure 1.5 shows that the prestellar cores are less dense and more extended than the protostellar
core. This seems to suggest the density distribution around the density peak changes between before
and after the protostar formation.

1.3 T Tauri Stars

T Tauri stars are observationally late-type stars with strong emission lines and irregular light varia-
tions associated with dark or bright nebulosities. T Tauri stars are thought to be low-mass pre-main-
sequence stars, which are younger than the main-sequence stars. Since these stars are connecting
between protostars and main-sequence stars, they attract attention today. More massive counter-
parts are called Herbig Ae-Be stars. They are doing the Kelvin-Helmholtz contraction in which the
own gravitational energies released as it contracts gradually and this is the energy source of the
luminosity.

The gravitational energy of a star with mass of M∗ and radius of R∗ is given as

W = −αGM
2∗

R∗
,



6 CHAPTER 1. INTRODUCTION

Figure 1.6: HR diagram of T Tauri stars. Many emission lines are found in the spectra of T Tauri
stars. WTTS (Weak Emission T Tauri Stars) and CTTS (Classical T Tauri Stars) are classified by
the equivalent widths of emission lines. That is, the objects with an EW of Hα emission < 1nm is
usually termed a WTTS. Taken from Fig.1.2 of Hartmann (1998).
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where α is a numerical factor of order of unity which depends on the radial density distribution ρ(r).
From the Virial theorem [eq.(2.118)], total energy of E = W/2 = −U for monoatomic gas γ = 5/3.
When the star loses its energy by radiation in a rate of L = −dE/dt, the gravitational energy
decreases as dW/dt = −2L∗ (in other words, absolute value of the gravitational energy increases).
Since dW/dt = αGM2∗ /R2∗ · dR∗/dt = −2L∗, the star is contracting in a rate of

dR∗
dt

= − 2L∗R2∗
αGM2∗

.

This process is called Kelvin-Helmholtz contraction. In short, the gravitational energy is used to
compensate the luminosity. When the system loses its energy, although the potential energy W
decreases, its thermal energy U increases. Thus, the central temperature increases and such a star
reaches to the main-sequence star in which the nuclear fusion reaction of 1H to create 4He produces
energy.

Problem

Obtain the Kelvin-Helmholtz time of our Sun. The Kelvin-Helmholtz time is given

τKH ∼ GM2∗
R∗L∗

.

Many emission lines are observed in the spectra of T Tauri stars. WTTS (Weak emission T Tauri
Stars or Weak line T Tauri Stars) and CTTS (Classical T Tauri Stars) are classified by their equivalent
widths (EWs) of emission lines. That is, the objects with an EW of Hα emission < 1nm = 10Å is
usually termed a WTTS. Figure 1.6 is the HR diagram (Teff −Lbol) of T Tauri stars in Taurus-Auriga
region (Kenyon & Hartman 1995). WTTSs distribute near the main-sequence while CTTSs are found
even far from the main-sequence. A number of theoretical evolution tracks for pre-main-sequence stars
with M ∼ 0.1M� − 2.5M� are shown in a solid line, while the isochorones for ages of 105yr, 106yr,
and 107yr are plotted in a dashed line. Vertical evolutionary paths are the Hayashi convective track.
Since D=2H has a much lower critical temperature (and density) for a fusion nuclear reaction to make
He than 1H, Deuterium begins to burn before reaching the zero-age-main sequence. This occurs near
the isochrone for the age of 105yr and some activities related to the ignition of Deuterium seem to
make the central star visible (Stahler 1983).

Disk Frequency

Infrared studies of T Tauri stars in star-forming regions have suggested that initial disk frequency
is rather high and that the disk lifetimes are relatively short 3 − 15Myr. From JHKL photometry,
Haish, Lada, & Lada (2001) obtained the fraction of disk-bearing stars for 6 star formation regions.
L band excess emission indicates an accompanied disk. The fraction is a decreasing function of age
of the cluster as in Figure 1.7. This figure shows clearly that the disk fraction is initially very high
(>∼80%) and rapidly decreases with increasing cluster age. In 3 Myr a half of the disk stars lose their
disks. Overall disk lifetime is estimated as ∼ 6Myr.

1.4 Spectral Energy Distribution (SED)

A tool to know the process of star formation is provided by the spectral energy distribution (SED)
mainly in the near- and mid-infrared light. T Tauri stars and protostars have typical respective SEDs.
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Figure 1.7: Fractions of IR excess sources in respective clusters are plotted against the age of the
clusters.

IR SEDs of T Tauri stars were classified into three as Class I, Class II, and Class III, from a stand-point
of relative importance of the radiation from a dust disk to the stellar black-body radiation. Today,
the classification is extended to the protostars, which is precedence of the T Tauri stars, and they
are called Class 0 objects. (Unfortunately, there is no zero in Roman numerals.) The classification
uses the slope in near- and mid-IR spectrum as α ≡ |d log λFλ/d log λ|λ=2.2μm−25μm. In Figure 1.8,
typical SEDs and models of emission regions are shown.

1. Class III is well fitted by a black-body spectrum, which shows the energy mainly comes from
a central star. This SED is observed in the weak-line T Tauri stars. Although T Tauri stars
show emission lines of such as the Hydrogen Balmar sequence, the weak-line T Tauri stars do
not show prominent emission lines, which indicates the amount of gas just outside the star
(this seems to be supplied by the accretion process) is small. In this stage, a disk has been
disappeared or only an extremely less-massive disk is still alive. α < −2.

2. Class II SED is fitted by a single-temperature black-body plus excess IR emission. This shows
that there is a dust disk around a pre-main sequence star and it is heated by the radiation
from a central star. The width of the spectrum of the disk component is much wider than that
expected from a single-temperature black-body radiation. Thus, the disk has a temperature
gradient which decreases with increasing the distance from the central star. In this stage, the
dust disk is more massive than that of Class III sources. Classical T Tauri stars have such
SEDs. −2 < α < 0.

3. In Class I SED, the mid infrared radiation which seems to come from the dust envelope is
predominant over the stellar black-body radiation. Since the stellar black-body radiation seems
to escape at least partially from the dust envelope, a relatively large solid angle is expected for
a region where the dust envelope does not intervene. α > 0.

4. Class 0 SED seems to be emitted by an isothermal dust with ∼ 30K. The protostar seems to
be completely covered by gas and dust and is obscured with a large optical depth by the dust
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Figure 1.8: Spectral Energy Distribution (SED) of young stellar objects (YSOs) and their models.
(Left:) ν − νFν plot taken from Lada (1999). (Right:) λ− λFλ plot taken from André (1994)

envelope. No contribution can be reached from the stellar-black body radiation.

The reason why the emission from the disk becomes wide in the spectral range is understood
(Fig.1.9) as follows: Temperature of the disk is determined by a balance of heating and cooling.
Assuming the disk is geometrically thin but optically thick, the cooling per unit area is given by
the equation of the black-body Planck radiation. Therefore, the temperature is determined by the
heating predominantly by viscous heating and extra heating by the radiation from the central star.
The flux density emitted by the disk is given by

νFν ∼
∫
νπBν [T (r)]2πrdr ∼ r(T or ν)2νBν. (1.5)

Assuming the radial distribution of temperature as

T = T0

(
R

R0

)−q

, (1.6)
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Figure 1.9: Explanation for the spectral index of the emission from a geometrically thin but optically
thick disk. Taken from Fig.16 of Lada (1999).

(q = 3/4 for the standard accretion disk) and taking notice that each temperature in the disk radiates
at a characteristic frequency ν ∝ T (the Wien’s law for black-body radiation)

νFν ∼ r2νBν ∝ ν4T−2/q ∝ ν4−2/q, (1.7)

where we used the fact that the peak value of Bν ∝ ν3. Therefore, it is shown that

νFν ∝ νn; n = 4− 2

q
. (1.8)

As shown in the previous section, we have no young stellar objects found by IR before a protostar
is formed. These kinds of objects (pre-protostellar core) are sometimes called Class −1. The classifi-
cation was originally based on the SED and did not exactly mean an evolution sequence. However,
today YSOs are considered to evolve as the sequence of the classes: Class −1 → Class 0 → Class I
→ Class II → Class III → main-sequence star.

1.5 Protostars

1.5.1 B335

Infall Motion

B335 is a dark cloud (Fig.1.10) with a distance of D � 250pc. Inside the dark cloud, a Class 0 IR
source is found. The object is famous for the discovery of gas infall motion. In Figure 1.11, the
line profiles of CS J = 2 − 1 line emissions are shown (Zhou et al. 1993). The relative position of
the profiles correspond to the position of the beam. (9,9) represents the offset of (9”,9”) from the
center. At the center (0,0), the spectrum shows two peaks and the blue-shifted peak is brighter than
the red-shifted one. This is believed to be a sign of gas infall motion. The blue-red asymmetry is
explained as follows:
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Figure 1.10: Near infrared images of B335, which is Class 0 source. Left is H band image and right
is K band image.

Figure 1.11: Line profile of CS J = 2 − 1 line radio emission. Model spectra illustrated in a dashed
line (Zhou 1995) are overlaid on to the observed spectra in a solid line (Zhoug et al 1993).
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Figure 1.12: Explanation of blue-red asymmetry when we observe a spherical symmetric inflow mo-
tion. An isovelocity curve for the red-shifted gas is plotted in a solid line. That for the blue-shifted
gas is plotted in a dashed line. Taken from Fig.14 of Lada (1999).

1. Considering a spherical symmetric inflow of gas, whose inflow velocity vr increases with reaching
the center (a decreasing function of r)

2. Considering a gas element at r moving at a speed of vr(r) < 0, the velocity projected on a
line-of-sight is equal to

vline−of−sight = vsystemic + vr cos θ, (1.9)

where vsystemic represents the systemic velocity of the cloud (line-of-sight velocity of the cloud
center) and θ is the angle between the line-of-sight and the position vector of the gas element.
The isovector lines, the line which connect the positions whose procession/recession velocities
are the same, become like an ellipse shown in Fig.1.12.

3. An isovelocity curve for the red-shifted gas is plotted in a solid line. That for the blue-shifted
gas is plotted in a dashed line. If the gas is optically thin, the blue-shifted and red-shifted gases
contribute equally to the observed spectrum and the blue- and red-shifted peaks of the emission
line should be the same.

4. In the case that the gas has a finite optical depth, for the red-shifted emission line a cold gas in
the fore side absorbs effectively the emission coming from the hot interior. On the other hand,
for the blue-shifted emission line, the emission made by the hot interior gas escapes from the
cloud without absorbed by the cold gas (there is no cold blue-shifted gas).

5. As a result, the blue peak of the emission line becomes more prominent than that of the red-
shifted emission. This is the explanation of the blue-red asymmetry.

In Figure 1.11, model spectra calculated with the Sobolev approximation or LVG (large-velocity
gradient; Zhou 1995) are shown. These show the blue-red asymmetry (the blue line > the red line).
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Figure 1.13: C18O total column density map (left) and H13CO+ channel map (right) of B335 along
with the position-velocity maps along the major and minor axes. Taken from Fig.3 of Saito et al
(1999).

Figure 1.14: Column density distribution NH(r) derived from the H13CO+ and C18O data taken by
the Nobeyama 45 m telescope. Taken from Fig.9 of Saito et al (1999).
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Outflow Motion and a Disk

Early observation of star forming regions have revealed fast molecular outflow are often ejected
from the central protostar with >∼10km s−1. B335 is also a typical outflow source. In Figure 1.13,
distributions of high density gases traced by the C18O and H13CO+ lines are shown as well as the
bipolar outflow whose outline is indicated by a shadow (Hirano et al 1988). Comparing left and right
panels, it is shown that the distribution of C18O gas is more extended than that of H13CO+ which
traces higher-density gas. And the distribution of the H13CO+ is more compact and the projected
surface density seems to show the the actual distribution is spherical. And the molecular outflow
seems to be ejected in the direction of the minor axis of the high-density gas. It may suggest that (1) a
molecular outflow is focused or collimated by the effect of density distribution or that (2) collimation
is made by the magnetic fields which run preferentially perpendicularly to the gas disk. This gas disk
is observed by these high density tracers.

Combining the C18O and H13CO+ distributions, the surface density distribution along the major
axis is obtained by Saito et al (1999). From the lower panel of Figure 1.14, the column density
distribution is well fitted in the range from 7,000 to 42,000 AU in radius,

Σ(r) = 6.3 × 1021cm−2
(

r

104AU

)−0.95

, (1.10)

where they omitted the data of r<∼7000 since the beam size is not negligible. Similar power-law
density distributions are found by the far IR thermal dust emission.

1.5.2 L1551 IRS 5

Figure 1.15: (Left:) 13CO column density distribution. The contour lines represent the distribution
of 13CO column density. 2.2 μm infra-red reflection nebula is shown in grey scale which was observed
by Hoddap (1994). (Right:) Schematic view of L1551 IRS5 region.

L1551 IRS 5 is one of the most well studied protostellar objects. This has an infra-red emission
nebulosity (Fig.1.15). It is believed that there is a hole perpendicular to the high-density disk and the
emission from the central star escapes through the hole and irradiate the nebulosity. In this sense this
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Figure 1.16: Isovelocity contours measured by the 13CO J = 1− 0 line. It should be noticed that the
isovelocity lines run parallelly to the major axis. The north-eastern side shows a red-shift and the
south-western side shows a blue-shift.

is a reflection nebula. L1551 IRS 5 has an elongated structure of dense gas similar to that observed
in B335. The gas is extending in the direction from north-west to south-east [Fig.1.15 (left)]. Since
the opposite side of the nebulosity is not observed, the opposite side of nebulosity seems to be located
beyond the high-density disk and be obscured by the disk. This is possible if we see the south surface
of the high-density disk as in Figure 1.15 (right).

Infall Motion

The inflow motion is measured. Figure 1.16 shows the isovelocity contours measured by the 13CO
J = 1−0 observation (Ohashi et al 1996). It should be noticed that the isovelocity lines run parallelly
to the major axis. The north-eastern side shows a red-shift and the south-western side shows a blue-
shift. Considering the configuration of the gas disk shown in Fig.1.15 (right), this pattern of isovelocity
contours indicates not outflow but inflow. That is, the north-east side is a near side of the disk and the
south-west side is a far side. Since a red-shifted motion is observed in the near side and a blue-shifted
motion is observed in the far side, it should be concluded that the gas disk of the L1551 IRS5 is now
infalling.

Optical Jet

HST found two optical jets emanating from L1551 IRS5. This has been observed by SUBARU
telescope, which found jet emission is dominated by [FeII] lines in the J- and H-bands. The jet
extents to the south-western direction and disappears at ∼ 10” � 1400AU from the IRS5. The
width-to-length ratio is very small <∼1/10 or less, while the bipolar molecular outflow shows a less
collimated flow. As for the origin of the two jets, these two jets might be ejected from a single source.
However, since there are at least two radio continuum sources in IRS5 within the mutual separation
of ∼ 0.”5 [see Fig.1.17 (right)], these jets seem to be ejected from the two sources independently.
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Figure 1.17: (Left:) Infrared image (J- and K-band) of the IR reflection nebula around L1551 IRS5
by SUBARU telescope. Taken from Fig.1 of Itoh et al. (2000). (A jpeg file is available from the
following url: http://SubaruTelescope.org/Science/press release/9908/L1551.jpg). (Right:)
Central 100 AU region map of L1551 IRS5. This is taken by the λ = 2.7cm radio continuum
observation. Deconvolved map (lower-left) shows clearly that IRS5 consists of two sources. Taken
from Looney et al. (1997).



1.6. L 1544: PRE-PROTOSTELLAR CORES 17

Figure 1.18: A mosaic image of HH 111 based on HST NICMOS images (left) and WFPC2 images
(right). Taken from Fig.1 of Reipurth et al (1999) and rotated clockwise.

Although the lengths of these jets are restricted to 10”, Herbig-Haro jets, which are much larger
than the jets in L1551 IRS5, have been found. HH30 has a ∼ 500 AU-scale jet whose emission is
mainly from the shock-excited emission lines. One of the largest ones is HH111, which is a member of
the Orion star forming region and whose distance is as large as D ∼ 400pc, and a jet with a length of
∼ 4pc is observed. Source of HH111 system is thought to consist of at least binary stars or possibly
triple stars [Reipurth et al (1999)]. Star A, which coincides with a λ = 3.6 cm radio continuum
source (VLA 1), shows an elongation in the VLA map whose direction is parallel to the axis of the
jet. Therefore, star A is considered to be a source of the jet. Since the VLA map of star A shows
another elongated structure perpendicular to the jet axis, star A may be a binary composed by two
outflow sources.

1.6 L 1544: Pre-protostellar Cores

L1544 is known as a pre-protostellar core (Taffala et al 1998). That shows an infall motion but this
contains no IR protostars. In Figure 1.19(left), CCS total column density map is shown, which shows
an elongated structure. Ohashi et al (1999) have found both rotation and infall motion in the cloud.
Position-velocity (PV) diagram along the minor axis shows the infall motion. That along the major
axis indicates a rotational motion, which is shown by a velocity gradient. Due to a finite size of the
beam, a contraction motion is also shown in the PV diagram along the major axis.

1.7 Rotation of Outflow

Figures 1.20 and 1.21 show that the outflow found in globule CB 26 is rotating. CB 26 is a Bok globule
with bipolar NIR refrection nebulae between which a very young T Tauri star and ∼ 200AU-scale
high-density disk are observed (Fig.1.20). Figure 1.21 shows the map of intensity-weighted velocity
(1st moment)

Vave =

∫
T (v)vdv∫
T (v)dv

, (1.11)

where T (v) represents the brightness temperature for line-of-sight velocity v. Left panel indicates
clearly that the right part gas is departing from us while the left part is approaching. This means
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Figure 1.19: CCS image of prestellar core L1544. (Left:) Total intensity map. (Right:) PV diagrams
along the minor axis (left) and along the major axis (right).

there exists a global velocity gradient perpendicular to the flow axis, or in other words, the rotation
motion in which the rotation axis coincides with the symmetric axis. The rotation is toward the same
direction of the high-density disk observed by 13CO (Launhardt & Sargent 2001). Right panel is an
expecting intensity-weighted velocity distribution for a simple model 12CO (J = 2− 1),

Vr(r) = v0

(
r

r0

)
, (1.12)

Vrot = VKep

(




0

)−1

, (1.13)

n(r) = n0

(
r

r0

)−3

, (1.14)

TK(r) = T0

(
r

r0

)−q

, (1.15)

in which we assume (i) the outflow is conical, (ii) gas element at (
, z) in cylindrical coordinate was
launched from a Keplerlian disk at 
0 conserving angular momentum, (iii) the radial expanding speed
Vr(r) is simply proportional to the distance from the central star r (eq.[1.12]). The assumption (ii)
leads to (eq.[1.13) as the rotation speed is inversely proportional to the distance from the rotation axis

 = (r2 − z2)1/2. (iv) Density and temperature distributions are assumed as the density decreases
with the distance r in proportion to r−3 (eq.[1.14]), and the kinetic temperature decreases with the
distance r in proportion to r−q (eq.[1.14]).

Comparing with a simple model (right panel), such global rotation motion is seen evidently only
when the outflow is observed from edge-on.
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Figure 1.20: Globule CB 26 has an outflow which seems to be seen edge-on. Grey-scale indicates the
K-band image of the bipolar refrection nebula. Red contours which show SMA 1.1 mm dust continuum
emission indicate a high-density disk exists between two lobes of the bipolar nebula. Green contours
represent the 12CO(J = 2− 1) integrated intensity.

Figure 1.21: Intensity weighted velocity is shown (left). Right one is a model.
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Figure 1.22: Explanation how the polarized radiation forms. Taken from Weintraub et al.(2000).

1.8 Magnetic Fields

Directions of magnetic field are studied by (1) measuring the polarization of light which is suffered
from interstellar absorption. In this case the direction of magnetic field is parallel to the polarization
vector. The reason is explained in Figure 1.22. In the magnetic fields, the dusts are aligned in a
way that their major axes are perpendicular to the magnetic field lines. Such aligned dusts absorb
selectively the radiation whose E-vector is parallel to their major axes. As a result, the detected light
has a linear polarization parallel to the magnetic field lines.

However, the polarization measurement in the near IR wavelength limited to the region with
low gas density, because background stars suffer severe absorption and becomes hard to be observed
if we want to measure the polarization of the high-density region. More direct method is (2) the
measurement of the linear polarization of the thermal emission from dusts in the mm (or sub-mm)
wavelengths; in this case the direction of magnetic field is perpendicular to the polarization vector.
The mechanism is explained in Figure 1.22b. The aligned dusts, whose major axes are perpendicular
to the magnetic field lines, emit the radiation whose E-vector is parallel to the major axes. Since the
absorption does not have a severe effect in this mm wavelengths, this gives information about the
magnetic fields deep inside the clouds.
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Figure 1.23: H band (left) and Ks band (right) polarizations shown by bars and λ = 1.1 mm dust
continuum image by ASTE/AzTEX. Distance is 260pc and this image covers ∼ 1.5 pc × 1.5 pc.

1.8.1 Serpens-South Cloud

Figure 1.23 shows the structure of the magnetic field measured with H and Ks band polarimetory
(Sugitani et al 2010). Serpens south cluster is located at the center of an elongated filament. At the
same time the location corresponds to the intersection of several minor filaments. This figure shows
clearly that magnetic field runs in a perpendicular direction to the axis of the filamentary cloud.
Although the configuration of magnetic field lines in the filament is not explored sufficiently by the
near IR polarimetory, in the envelope the magnetic field direction is perpendicular to the filament as
well as outside of the filament.

1.8.2 Prestellar Core

Figure 1.24 illustrates the polarization maps of three prestellar cores (L1544, L183, and L43) done
in the 850 μm band by JCMT-SCUBA. In L1544 and L183 the mean magnetic fields are at an angle
of 30 deg to the minor axes of the cores. L43 is not a simple object; there is a T Tauri star located
in the second core which extends to south-western side of the core (an edge of this core is seen near
the western SCUBA frame boundary). And a molecular outflow from the source seems to affect
the core. The magnetic field as well as the gas are swept by the molecular outflow. L43 seems an
exception. The fact that the mean magnetic fields are parallel to the minor axis of the high-density
gas distribution seems to mean gas contracts preferentially in the direction parallel to the magnetic
fields.

Figure 1.25(left) shows the optical image of dark cloud B68. Emission from background stars
suffers extinction due to the dust in the dark cloud. Figure 1.32(right) gives the distribution of
visual extinction AV against the distance from the center. The distribution is well fitted to that of
the isothermal cloud in a hydrostatic equilibrium. Thus, the amount of extinction gives an estimate
of the column density of interstellar dusts in the dark cloud. Since the absorption by the aligned
dust grains induces the polarization, the direction of magnetic field is obtained from the E vector of
the polarized emission. Figure 1.25(right) indicates the polarization vector and thus the direction of
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Figure 1.24: Directions of B-Field are shown from the linear polarization observation of 850 μm ther-
mal emission from dusts by JCMT-SCUBA. L1544 (upper-left) and L183 (upper-right), the magnetic
field and the minor axis of the molecular gas distribution coincide with each other within ∼ 30deg.
Configuration of magnetic field in L43 (lower) is not simple, which may be affected by the molecular
outflow. Taken from Ward-Thompson et al (2000).
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Figure 1.25: (left) Optical image of B68 (Alves et al. 2001) and (right) H band image and polarization
E-vector derived for background stars (Kandori et al. 2009). The region shown in (b) correspends to
the region shown by the square in (a).

interstellar magnetic field in B68. Figure indicates a magnetic field line like a “hour-glass.”

1.8.3 Cores with Protostars

Bok Globules

Bok globules are isolated dark clouds. Wolf, Launhardt & Henning (2003) have studied the relation
between the magnetic field and outflow directions. Figure 1.26 displays the direction of the magnetic
field obtained with JCMT-SCUBA polarization observation in 850μm as well as the outflow found
by 13CO observation of Chandler & Sargent (1993) and 12CO observation by Yun & Clemens (1994).
In B 335, CB 230 and CB 244 outflows are oriented in the direction perpendicular to the major
axis of the globules. The magnetic field is running parallel to the outflow but perpendicular to the
major axis. This means that a disk is formed with a gas flowing along the magnetic field. Further, the
outflow is generated by a twisted magnetic field which is an outcome of a rotating disk. In globule CB
54, the alignment is not perfect, that is, magnetic field direction is slightly aligned with the outflow
(Wolf, Launhardt & Henning 2003). This seems to strengthen the magnetic origin of the outflow and
magnetically guided disk formation.

It is clearly shown that the polarization anti-correlates with the intensity of the thermal emission.
This might be due to the observational error in the low intensity region (or low S/N region). This
may be related to physical processes such as (1) the alignment owing to the magnetic field becomes
inefficient in high density region or (2) the magnetic field is tangled in the dense region and the
polarization due to the aligned dust is canceled.

1.8.4 Magnetic Field ∼1000AU Scale

Single dish observation with JCMT can reveal a structure larger than 5000-10000AU (Fig.1.26).
Smaller-scale configuration of magnetic field is only able to be reached with interferometric observation
such as SMA. Figure 1.27 indicates a 1000 AU-scale configuration of magnetic field for a low-mass
star forming region NGC 1333 IRAS 4A (Girart, Rao & Marrone 2006). Although this is a complex
region, a core extends from the upper-left to the lower-right. The magnetic field (Fig.1.27(right))
runs from the upper-right to the lower-left and this clearly shows ’hour-glass’ shape. This means that
the magnetic field is squeezed by the effect of contraction in the star formation process.
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Figure 1.26: Directions of magnetic field are shown from the linear polarization observation of 850
μm thermal emission from dusts by JCMT-SCUBA. These four objects are known as Bok globules.
The bars with γ represent the average directions of polarization (E-vector), which are perpendicular
to the magnetic field.

Figure 1.27: SMA observation low-mass (NGC1333 IRAS 4A) star formation region. (middle) The
total intensity of 879 μm thermal dust emission (contour lines), that of polarized intensity (false color)
and polarization E-vector (red bars) are shown. (right) The polarization E-vector of the dust thermal
emissions is perpendicular to the direction of magnetic field (Fig.1.22). The direction of magnetic
field (red bars) is overlaid on the total intensity distribution (false color). 1′′ = 300AU. This clearly
shows that the magnetic field looks like a hour-glass within ∼ 1000 AU scale.
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Figure 1.28: SMA observation high-mass (G31.41+0.31) star formation region. (left) The total
thermal dust emission at 879 μm is shown with contour lines, while the intensity of polarized intensity
is shown with false-color. 1′′ = 7000AU. Directions of magnetic field are illustrated with solid thick
bars. (middle) Directions of magnetic field is overlaid on the flux-weighted velocity map of the CH3OH
147-156 line, which indicates the core has a systematic velocity gradient.

They fitted the magnetic field line by a polynomial as

y = g(1 + Cx2), (1.16)

where x and y, distances along the symmetic axis and along the major axis of the disk, respectively.
They obtained C = 0.12 ± 0.06sec−1.

SMA observation for G31.41+0.31 (Fig. 1.28) also reveals that the magnetic field configuration of
10000AU scale for high-mass star forming region is “hour-glass” shape (Girart et al. 2009). This may
indicate the magnetic field is draged by the infall motion. However, this can not be fitted with the
configuration of the magnetic field line obtained with single dish observations, since Fourier component
with the small wave-number k is not sufficiently picked up in the interferometric observation. In other
words, large-scale (more or less uniform) magnetic field is underestimated in the interferometric
observations.

T Tauri Disks

Magnetic field at the position of protostars and T Tauri stars are measured for IRAS 16293-2422,
L1551 IRS5, NGC1333 IRAS 4A, and HL Tau (Tamura et al. 1995). Although HL Tau is a T Tauri
star, it has a gas disk. Thus this is a Class I source. The others are believed to be in protostellar
phase (Class 0 sources). It is known that IRAS 16293-2422, L1551 IRS5, and HL Tau have disks
with the radii of 1500-4000 AU from radio observations of molecular lines. Further, near infrared
observations have shown that these objects have 300-1000 AU dust disks. Figure 1.29 shows the
E-vector of polarized light. If this is the dust thermal radiation, the direction of magnetic fields is
perpendicular to the polarization E-vector. Figure shows the magnetic fields run almost perpendicular
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Figure 1.29: Polarization of the radio continuum λ = 1mm, λ = 0.8mm. IRAS 16293-2422 (upper-left:
Class 0), L1551 IRS5 (upper-right: Class 0), NGC1333 IRAS 4A (lower-left: Class 0), and HL Tau
(lower-right: Class I). Taken from Tamura et al (1995).

to the elongation of the gas disk. Global directions of magnetic field outside the gas disk and the
direction of CO outflows are also shown in the figure by arrows. It is noteworthy that the directions
of local magnetic fields, global magnetic fields, and outflows coincide with each other within ∼ 30
deg.
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1.9 Density Distribution

Motte & André (2001) made λ =1.3 mm continuum mapping survey of the embedded young stellar
objects (YSOs) in the Taurus molecular cloud. Their maps include several isolated Bok globules,
as well as protostellar objects in the Perseus cluster. For the protostellar envelopes mapped in
Taurus, the results are roughly consistent with the predictions of the self-similar inside-out collapse
model of Shu and collaborators (§4.5.1). The envelopes observed in Bok globules are also qualitatively
consistent with these predictions, providing the effects of magnetic pressure are included in the model.
By contrast, the envelopes of Class 0 protostars in Perseus have finite radii <∼10000 AU and are a
factor of 3 to 12 denser than is predicted by the standard model.

Another method to measure the density distribution is to use the near IR extinction. From
(H −K) colors of background stars, the local value of AV in a dark cloud can be obtained using a
standard reddening law,

AV = 15.87E(H −K) (1.17)

if the intrinsic colors of background stars are known. Here, the color excess is defined as the difference
between the observed color and the intrinsic color: E(H −K) ≡ (H −K)obs − (H −K)intrinsic. We
can convert the extinction to the column density assuming the gas/dust ratio is constant

N(H + H2) = 2× 1021cm−2mag−1AV . (1.18)

This is a standard method to obtain the local column density of the dark cloud using the near IR
photometry.

See Figure 1.30. If the density distribution is expressed as

ρ(r) = ρ0

(
r

r0

)−α

, (1.19)

where r is a physical distance from the center. The column density distribution against the projected
distance of the line-of-sight from the center of the cloud is given as

Nρ(p) = 2

∫ (R2−p2)1/2

0
ρ
[
(s2 + p2)1/2

]
ds, (1.20)

where R represents the outer radius of the cloud. Using equation (1.18), this yields AV distribution

AV (p) = 10−23ρ0r
α
0

∫ (R2−p2)1/2

0
(s2 + p2)−α/2ds. (1.21)

If background stars are uniformly distributed, the number of stars with AV |obs is proportional to the
area which satisfies AV |obs = AV (p). That is, if we plot AV (p) against 2πpdp, this gives the number
distribution of background stars with AV . Figure 1.32 shows the result of L977 dark cloud by Alves
et al (1998).

Recently, Alves et al (2001) derived directly the radial distribution of NH by comparing the NH(p)
model distribution for B68 (see also Kandori et al 2009). They obtained a distribution is well fitted
by the Bonner-Ebert sphere in which a hydrostatic balance between the self-gravity and the pressure
force is achieved (lower panels of Fig.1.32) (see section 4.1.1).

In this field, we should pay attention to the density distribution in cylindrical clouds. As seen
in the Taurus molecular cloud, there are many filamentary structures in a molecular cloud. In §4.1,
we will give the distribution for a hydrostatic spherically symmetric and that of a cylindrical cloud.
The former is proportional to ρ ∝ r−2 and the latter is ρ ∝ r−4. Therefore, the distribution ρ ∝ r−4
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Figure 1.30: Schematic view to explain an AV distribution.

Figure 1.31: (Left:) Radial intensity profiles of the environment of 7 embedded YSOs (a-g) and 1
starless core (h). (Right:) Same as left panel but for 4 isolated globules (a-d) and 4 Perseus protostars
(e-h). Taken from Motte & Andre (2001).
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Figure 1.32: Density distribution of L977 (top) and B68 (bottom) dark clouds. (Top-left:) L977
dark cloud dust extinction map derived from the infrared (H-K) observations. (Top-right:) Observed
frequency distribution of extinction measurements for L977 and the predictions from clouds models
with density structures ρ(r) ∝ r−α having α = 1 (dashed line), 2 (solid line), 3 (dotted line), and
4 (dash-dotted line). (Bottom-left:) B68 images (false color images made from B, V, and I images
(top), and B, I, and K images (bottom)). (Bottom-right:) Spatial distribution of the column density.
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Figure 1.33: A structure of magnetic fields in the L1641 region. Polarization of light from embedded
stars (Vrba et al. 1988) is shown by a bar. The direction of magnetic fields in the line-of-sight is
observed using the HI Zeeman splitting, which is shown by a circle and cross (Heiles 1989).

was expected for cylindrical cloud. From near IR extinctions observation (Alves et al 1998), even if
a cloud is rather elongated [Fig.1.32 (top-left)], the power of the density distribution is equal to not
−4 but � −2. Fiege, & Pudritz (2001) proposed an idea that a toroidal component of the magnetic
field, Bφ, plays an important role in the hydrostatic balance of the cylindrical cloud (Fig.1.33).

1.10 Mass Spectrum

We have seen that a molecular cloud consists in many molecular cloud cores. For many years, there
are attempts to determine the mass spectrum of the cores.

From a radio molecular line survey, a mass of each cloud core is determined. Plotting a histogram
of number of cores against the mass, we have found that a mass spectrum can be fitted by a power
law as

dN

dM
=Mn (1.22)

where dN/dM represents the number of cores per unit mass interval. Many observation indicate that
n ∼ −1.5 as Table 1.1.

Figure 1.34(left) (André, Ward-Thomson, & Barsony 2000) shows a mass spectrum function
dN/dM for 59 ρ Oph cloud prestellar cores obtained at the IRAM 30-m telescope with the MPIfR
19-channel bolometer array. Presetellar cores with a mass ∼M� has a spectrum of dN/dM ∝M−2.5

(n = −2.5) for M>∼0.5M�. While the right panel (Motte et al 2001) shows the cumulative mass
spectrum (N(> M) vs. M) of the 70 starless condensations identified in NGC 2068/2071. The mass
spectrum for the 30 condensations of the NGC 2068 sub-region is very similar in shape. The best-fit
power-law is N(> M) ∝ Mn+1 ∝ M−1.1 above M>∼0.8M�. That is, n = −2.1. This power derived
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Table 1.1: Mass spectrum indicies derived with molecular line surveys.
Paper n Region Observation Mass range

Loren (1989) −1.1 ρ Oph 10M�<∼M<∼300M�
Stutzki &
Guesten (1990)

−1.7± 0.15 M17 SW C18O (J = 2−
1), S34S (J =
2−1, J = 3−2)

a few M�<∼M<∼a few 103M�

Lada et al. (1991) −1.6 L1630 CS (J = 2− 1) M>∼20M�
Nozawa et al.
(1991)

−1.7 ρ Oph North 13CO (J = 1−
0)

3M�<∼M<∼160M�

Tatematsu et al.
(1993)

−1.6± 0.3 Orion A CS (J = 1− 0) M>∼50M�

Dobashi et al.
(1996)

−1.6 Cygnus 13CO (J = 1−
0)

M>∼100M�

Onish et al (1996) −0.9± 0.2 Taurus C18O (J = 1−
0)

3M�<∼M<∼80M�

Motte, André, &
Neri (1998)

−1.5 ρOph λ = 1.3mm M<∼0.5M�

−2.5 M>∼0.5M�
Testi & Sargent
(1998)

−2.1 Sarpens λ = 3mm 1M�<∼M<∼30M�

Kramer et
al.(1998)

−1.6 ∼ −1.8 L1457 etc∗ 12CO, 13CO,
C18O (J = 1−
0, 2− 1)

10−4M�<∼M<∼104M�

Heithausen et al.
(1998)

−1.84 MCLD 123.5
+ 24.9, Polaris
Flare

12CO(J = 1−0
and 2− 1)

MJ<∼M<∼10M�

Johnstone et al.
(2000)

−2 ∼ −2.5 ρOph λ = 850μm M>∼0.6M�

−1.5 M<∼0.6M�
Johnstone et al.
(2001)

−2.5 ∼ −3 Ori B λ = 850μm M>∼M�

Onishi et al.
(2002)

−2.5 Taurus H13CO+ (J =
1− 0)

3.5M�<∼M<∼20.1M�

Ikeda, Sunada, &
Kitamura (2007)

−2.3± 0.1 Ori A H13CO+ (J =
1− 0)

M>∼9M�

−0.4± 0.1 M<∼9M�
Ikeda & Kitamura
(2009)

−2.3± 0.3 Ori A C18O (J = 1−
0)

M>∼5M�

∗ MCLD126.6+24.5, NGC 1499 SW, Orion B South, S140, M17 SW, and NGC 7538
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Figure 1.34: Cumulative mass distribution of the 70 pre-stellar condensations of NGC 2068/2071. The
dotted and dashed lines are power-laws corresponding to the mass spectrum of CO clumps (Kramer
et al. 1996) and to the IMF of Salpeter (1955), respectively. Taken from Fig.3 of Motte et al (2001).

from the dust thermal emission is different from that derived by the radio molecular emission lines.
Table 1.1 summarizes the observations to calculate the power index of core mass function.

The mass function of newborn stars is called as initial mass function (IMF). IMF for field stars in
the solar neighborhood has been obtained as shown in Figure 1.36. The most famous one is Salpeter’s
IMF as dN∗/dM∗ ∝ M−2.35∗ (Salpeter 1955). The low-mass end is flatter than that of M∗>∼M� as
dN∗/dM∗ ∝ M∗−1.2 for 0.1M�<∼M∗<∼1M� while dN∗/dM∗ ∝ M∗−2.7 for 1M�<∼M∗<∼10M� (Meyer
et al. 2000). The powers of stellar (−2.7 ∼ −2.35) and prestellar (−2.5 ∼ −2.1) mass functions are
similar. If one prestellar core forms one star, the stellar mass M∗ is proportional to the prestellar
core mass as M∗ = fMcore and f<∼1, the mass spectrum of prestellar cores completely determines the
IMF.

Figure 1.35 plots the power-law indices against the typical gas densities of respective observations,
in which the critical density is taken as a typical density for molecular line studies. The power-
law index is an increasing function of the typical gas density ngas (Ikeda 2007) and the cores with
ngas>∼105cm−3 have the same power-law index as the IMF. This may indicates these cores are the
sites of star formation or direct parents of new-born stars2.

1.11 Line Width - Size Relation

Larson (1981) compiled the observations for molecular cloud complexes, molecular cloud and molec-
ular clumps published in 1974-1979. He obtained an empirical relation that the size of a structure is
well correlated to the random velocity in the structure which is measured by the width of the emission
line (see Appendix F). Figure 1.37(left) shows this correlation and this is well expressed as

σ � 1.10km s−1
(
L

1pc

)0.38

, (1.23)

2However, the same authors (Ikeda and Kitamura 2009) obtained n � −2.3 ± 0.3 even for C18O cores (its critical
density ∼ 103cm−3) in OMC-1 region in the Orion A cloud. Thus, the relationship between the core mass function and
IMF has not been cleared yet.
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Figure 1.35: The power-law index of n = γ of core mass function dN(M)/dM ∝ M−n. n is plotted
against typical densities of observed molecular cores. In molecular line observations, the typical
densities are assumed equal to the critical densities of the transitions of respective molecular line
observations. For mm and sub-mm dust emission, the density is assumed ∼ 106cm−3. Taken from
Fig. 8.1 of PhD Thesis of Ikeda (2007).



34 CHAPTER 1. INTRODUCTION

Figure 1.36: Comparison of initial mass functions for field stars in the solar neighbourhood. Respec-
tive symbols represent S55: Salpeter (1955), MS: Miller & Scalo (1979), Scalo 86: Scalo (1986) and
KTG93: Kroupa, Tout, & Gilmore 1993. Taken from Fig. 1 of Meyer et al (2000).

where σ and L represent respectively the three-dimensional random speed of gas and the size of the
structure. A similar correlation is found only for giant molecular clouds (Sanders, Scoville, & Solomon
1985) as

σ =

(
3

23 ln 2

)1/2

ΔVFWHM = (0.535 ± 0.16)km s−1
(
L

1pc

)0.62

, (1.24)

for GMCs whose sizes are larger than 10pc (be careful the typos in their abstract: power was -0.62).
Larson (1981) also found another correlation between the massM and the random velocity like Figure
1.37 (right), which is expressed as

σ � 0.43km s−1
(

M

1M�

)0.20

. (1.25)

In the next chapter (§2.9), we will see the virial relation, that is, for an isolated system to achieve
a mechanical equilibrium the gravitational to thermal energy ratio has to be equal to 2:1 for γ = 5/3
gas. The ratio of the gravitational energy ∼ (3/5)GM2/(L/2) to the thermal energy Mσ2/2 is also
fitted as

12

5

GM

σ2L
� 1.1

(
L

1pc

)0.14

, (1.26)

which is weakly dependent of the size or the mass. This seems to mean the ratio is nearly constant
irrespective of the mass or size of the clouds.

Since there is a mutual relation between mass, size, and the velocity dispersion to achieve a
mechanical equilibrium (the Virial relation), there is only one independent correlation in the above two
correlations (eqs.[1.23] and [1.25]). Although several reasons to explain the correlation are proposed,
we have no consensus yet.
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Figure 1.37: The left shows the relation between cloud size (horizontal axis) and the three-dimensional
internal velocity (vertical axis). The right shows a similar correlation between mass and the random
velocity.



36 CHAPTER 1. INTRODUCTION



Chapter 2

Physical Background

2.1 Basic Equations of Hydrodynamics

The basic equation of hydrodynamics are (1) the continuity equation of the density [equation (B.11)],

∂ρ

∂t
+ div(ρv) = 0, (2.1)

(2) the equation of motion [equation (B.7)]

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+ ρg, (2.2)

and (3) the equation of energy [equation (B.23)]

∂ε

∂t
+ div(ε+ p)v = ρv · g. (2.3)

Occasionally barotropic relation p = P (ρ) substitutes the energy equation (2.3). Especially poly-
tropic relation p = KρΓ is often used on behalf of the energy equation. In the case that the gas is
isothermal or isentropic, the polytropic relations of

p = c2isρ (isothermal) (2.4)

and
p = c2sρ

γ (isentropic) (2.5)

are substitution to equation (2.3). [We can replace equation (2.3) with equations (2.4) and (2.5).]

2.2 The Poisson Equation of the Self-Gravity

In this section, we will show the basic equation describing how the gravity works. First, compare
the gravity and the static electric force. Consider the electric field formed by a point charge Q at a
distance r from the point source as

E =
1

4πε0

Q

r2
, (2.6)

where ε0 is the electric permittivity of the vacuum. On the other hand, the gravitational acceleration
by the point mass of M at the distance r from the point mass is written down as

g = −GM
r2
, (2.7)

37
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where G = 6.67 × 10−8dyn cm2 g−2 is the gravitational constant. Comparing these two, replacing Q
with M and at the same time 1/4πε0 to −G these equations (2.6) and (2.7) are identical with each
other.

The Gauss theorem for electrostatic field as

divE =
ρe
ε0
, (2.8)

and another expression using the electrostatic potential φe as

∇2φe = −ρe
ε0
, (2.9)

lead to the equations for the gravity as

div g = −4πGρ, (2.10)

and
∇2φ = 4πGρ, (2.11)

where ρe and ρ represent the electric charge density and the mass density. Equation (2.11) is called
the Poisson equation for the gravitational potential and describes how the potential φ is determined
from the mass density distribution ρ, after the boundary condition for φ is given.

Problem

Consider a spherically symmetric density distribution. Using the Poisson equation, obtain the poten-
tial (φ) and the gravitational acceleration (g) for a density distribution shown below.

ρ

{
= ρ0 for r < R
= 0 for r ≥ R

Hint: The Poisson equation (2.11) for the spherically symmetric system is

1

r2
∂

∂r

(
r2
∂φ

∂r

)
= 4πGρ.

2.3 Free-fall Time

Even if the pressure force can be neglected in the equation of motion (B.1), the gravitational force
remains. Assuming the spherical symmetry, consider the gravity gr(r) at the position of radial
distance from the center being equal to r. Using the Gauss’ theorem, gr is related to the mass
inside of r, which is expressed by the equation

Mr =

∫ r

0
ρ4πr2dr, (2.12)

and gr is written as

gr(r) = −GMr

r2
. (2.13)

This leads to the equation motion for a cold gas under a control of the self-gravity is written

d2r

dt2
= −GMr

r2
. (2.14)
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Analyzing the equation is straightforward, multiplying dr/dt gives

dv2/2

dt
= +

d

dt

(
GMr

r

)
, (2.15)

which leads to the conservation of mechanical energy as

1

2

(
dr

dt

)2

− GMr

r
= E, (2.16)

in which E represents the total energy of the pressureless gas element and it is obtained from the
initial condition. If the gas is static initially at the distance R, the total energy is negative as

E = −GMr(R)

R
, (2.17)

because at t = 0, r = R and dr/dt = 0.

The solutions of equation (2.16) are well known as follows:

1. the case of negative energy E < 0. Considering the case that the gas sphere is inflowing v < 0,
equation (2.16) becomes

dr

dt
= − [2GMr(R)]

1/2
(
1

r
− 1

R

)1/2

, (2.18)

where we assumed initially dr/dt = 0 at r = R. Using a parameter η(t), the radius of the gas
element at some epoch t is written

r = R cos2 η. (2.19)

In this case, equation (2.18) reduces to

cos2 η
dη

dt
=

(
GMr(R)

2R3

)1/2

. (2.20)

This gives us the expression of t as

t =

(
R3

2GMr(R)

)1/2 (
η +

sin 2η

2

)
. (2.21)

This corresponds to the closed universe in the cosmic expansion (Ω0 > 1).

2. if the energy is equal to zero, the solution of equation (2.16) is written as

(
r3/2 −R3/2

)2/3
=

(
9GMr(R)

2

)1/3

t2/3, (2.22)

where R = r(t = 0).

Problem

Solve equation (2.16) and obtain (2.22).
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Figure 2.1: Free-fall. x-axis and y-axis represent cos2 η and η + sin 2η/2.

3. If E > 0, the expansion law is given by

t =

(
R2

2E

)1/2 (
Ṙ2R

2GMr(R)

)−1 (
sinh 2η

2
− η

)
(2.23)

and

x =

(
E

GMr(R)

)
r = sinh2 η, (2.24)

where E represents the total energy

E =
Ṙ2

2
− GMr(R)

R
> 0. (2.25)

Problem

Solve equation (2.16) and obtain equations (2.23) and (2.24).

In the present case, at t = 0, since dr/dt = 0 the energy is negative. Equation (2.19) shows us r
becomes equal to zero (the gas collapses) if η = π/2 as well as η = 0 at t = 0. Equation (2.21)
indicates it occurs at the epoch of

t = tff =

(
R3

2GMr(R)

)1/2
π

2
,

=

(
3π

32Gρ̄

)1/2

, (2.26)

where ρ̄ represents the average density inside of r, that is Mr/(4πr
3/3). This is called “free-fall

time” of the gas. This gives the time-scale for the gas with density ρ̄ to collapse. In the actual
interstellar space, the gas pressure is not negligible. However, tff gives a typical time-scale for a gas
cloud to collapse and to form stars in it.

2.3.1 Accretion Rate

Equation (2.26) indicates that the gas shell with a large ρ̄ reaches the center earlier than that with
a small ρ̄. Immediately, this means a spherical cloud with a uniform density ρ0 contracts uniformly
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and all the mass reaches the center at t = tff = (3π/32Gρ0)
1/2. In this case, the mass accretion

rate to a central source becomes infinity at an epoch t = tff . In contrast, consider a cloud whose
density gradually decreases outwardly. In this case, the outer mass shell has smaller ρ̄ than the inner
mass shell. Therefore even when the inner mass shell collapses and reaches the center, the outer
mass shell are contracting and does not reach the center. This gives a smaller mass accretion rate
than a uniform cloud. If the gas pressure is neglected, the accretion rate is determined by the initial
spatial distribution of the density. We will compare the accretion rate derived here with results of
hydrodynamical calculation in §4.7

2.4 Gravitational Instability

Here, we will study a typical size where the self-gravity plays an important role and forms density
inhomogeneities with the Jean wavelength.

2.4.1 Linear Analysis

Consider a uniform gas with density ρ0 and pressure p0 without motion u0 = 0. In this uniform gas
distribution, we assume small perturbations. As a result, the distributions of the density, the pressure
and the velocity are perturbed from the uniform ones as

ρ = ρ0 + δρ, (2.27)

p = p0 + δp, (2.28)

and

u = u0 + δu = δu, (2.29)

where the amplitudes of perturbations are assumed much small, that is, |δρ|/ρ0 � 1, |δp|/p0 � 1
and |δu|/cs � 1. We assume the variables changes only in the x-direction. In this case the basic
equations for isothermal gas are

∂ρ

∂t
+
∂ρu

∂x
= 0, (2.30)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x
+ ρgx, (2.31)

and

p = c2isρ, (2.32)

where u and gx represent the x-component of the velocity and that of the gravity, respectively.

Using equations (2.27), (2.28), and (2.29), equation (2.30) becomes

∂ρ0 + δρ

∂t
+
∂(ρ0 + δρ)(u0 + δu)

∂x
= 0. (2.33)

Noticing that the amplitudes of variables with and without δ are completely different, two equations
are obtained from equation(2.33) as

∂ρ0
∂t

+
∂ρ0u0
∂x

= 0, (2.34)

∂δρ

∂t
+
∂ρ0δu+ δρu0

∂x
= 0, (2.35)
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where the above is the equation for unperturbed state and the lower describes the relation between the
quantities with δ. Equation (2.34) is automatically satisfied by the assumption of uniform distribution.
In equation (2.35) the last term is equal to zero. Equation of motion

(ρ0 + δρ)

(
∂u0 + δu

∂t
+ (u0 + δu)

∂u0 + δu

∂x

)
= −∂p0 + δp

∂x
+ (ρ0 + δρ)

∂φ0 + δφ

∂x
, (2.36)

gives the relationship between the terms containing only one variable with δ as follows:

ρ0
∂δu

∂t
= −∂δp

∂x
− ρ0

∂δφ

∂x
. (2.37)

The perturbations of pressure and density are related with each other as follows: for the isothermal
gas

δp

δρ
=

(
∂p

∂ρ

)
T

=
p0
ρ0

= c2is, (2.38)

and for isentropic gas
δp

δρ
=

(
∂p

∂ρ

)
ad

= γ
p0
ρ0

= c2s. (2.39)

2.4.2 Sound Wave

If the self-gravity is ignorable, equation (2.35)

∂δρ

∂t
+ ρ0

∂δu

∂x
= 0, (2.40)

and equation (2.37)

ρ0
∂δu

∂t
= −c2is

∂δρ

∂x
, (2.41)

where we assumed the gas is isothermal, these two equations describe the propagation and growth of
perturbations. If the gas acts adiabatically, replace cis with cs.

Making ∂/∂x×(2.40) and ∂/∂t×(2.41) vanishes δρ and we obtain

∂2δu

∂t2
− c2is

∂2δu

∂x2
= 0. (2.42)

Since this leads to

∂δu

∂t
− cis

∂δu

∂x
= 0, (2.43)

∂δu

∂t
+ cis

∂δu

∂x
= 0, (2.44)

equation (2.42) has a solution that a wave propagates with a phase velocity of ±cs. Since the
displacement (∝ δu) is parallel to the propagation direction x, and the restoring force comes from
the pressure, this seems the sound wave.

Problem

Interstellar gas contains mainly Hydrogen and Helium, whose number ratio is approximately 10:1.
Obtain the value of average molecular weight for the fully ionized interstellar gas with temperature
T = 104K (components are ionized H+ (HII) and He+2 (HeIII) and electron e−1). How about the
molecular gas (T = 10K) containing molecular H2, neutral He (HeI) and no electron?
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2.5 Jeans Instability

Sound wave seems to be modified in the medium where the self-gravity is important. Beside the
continuity equation (2.35)

∂δρ

∂t
+ ρ0

∂δu

∂x
= 0, (2.45)

and the equation of motion (2.37)

ρ0
∂δu

∂t
= −c2is

∂δρ

∂x
− ρ0

∂δφ

∂x
, (2.46)

the linearized Poisson equation
∂2δφ

∂x2
= 4πGδρ, (2.47)

should be included. ∂/∂x× (2.46) gives

ρ0

(
∂2δu

∂x∂t

)
= −c2is

∂2δρ

∂x2
− 4πGρ0δρ. (2.48)

where we used equation (2.47) to eliminate δφ. This yields

∂2δρ

∂t2
= c2is

∂2δρ

∂x2
+ 4πGρ0δρ. (2.49)

where we used ∂/∂t× (2.45).

This is the equation which characterizes the growth of density perturbation owing to the self-
gravity. Here we consider the perturbation are expressed by the linear combination of plane waves
as

δρ(x, t) =
∑

A(ω, k) exp(iωt− ikx), (2.50)

where k and ω represent the wavenumber and the angular frequency of the wave. Picking up a plane
wave and putting into equation (2.49), we obtain the dispersion relation for the gravitational
instability as

ω2 = c2isk
2 − 4πGρ0. (2.51)

Reducing the density to zero, the equation gives us the same dispersion relation as that of the sound
wave as ω/k = cis. For short waves (k � kJ = (4πGρ0)

1/2/cis), since ω
2 > 0 the wave is ordinary

oscillatory wave. Increasing the wavelength (decreasing the wavenumber), ω2 becomes negative for
k < kJ = (4πGρ0)

1/2/cis. For negative ω
2, ω can be written ω = ±iα using a positive real α. In this

case, since exp(iωt) = exp(∓αt), the wave which has ω = −iα increases its amplitude exponentially.
This means that even if there are density inhomogeneities only with small amplitudes, they grow in
a time scale of 1/α and form density inhomogeneities with large amplitudes.

The critical wavenumber

kJ = (4πGρ0)
1/2/cis (2.52)

corresponds to the wavelength

λJ =
2π

kJ
=

(
πc2is
Gρ0

)1/2

, (2.53)

which is called the Jeans wavelength. Ignoring a numerical factor of the order of unity, it is shown
that the Jeans wavelength is approximately equal to the free-fall time scale (eq.[2.26]) times the
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Figure 2.2: Dispersion Relation

Figure 2.3: Thin disk.

sound speed. The short wave with λ� λJ does not suffer from the self-gravity. For such a scale, the
analysis we did in the preceding section is valid.

Typical values in molecular clouds, such as cis = 200m s−1, ρ0 = 2 × 10−20g cm−3, give us the
Jeans wavelength as λJ = 1.7 × 1018cm = 0.56pc. The mass contained in a sphere with a radius
r = λJ/2 is often called Jeans mass, which gives a typical mass scale above which the gas collapses.
Typical value of the Jeans mass is as follows

MJ � 4π

3
ρ0

(
λJ
2

)3

=
π

6

(
π

Gρ0

)3/2

c3isρ0. (2.54)

Using again the above typical values in the molecular clouds, cis = 200m s−1, ρ0 = 2× 10−20g cm−3,
the Jeans mass of this gas is equal to MJ � 27M�.

2.6 Gravitational Instability of Thin Disk

Disks are common in the Universe. Spiral and barred spiral galaxies have disks where stars are
formed. In more small scale, gas and dust disks are often found around protostars. Moreover, such
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a disk may become a proto-planetary disk. It is valuable to study how the self-gravity works in such
thin structures. Here, we assume a thin disk extending in x- and y-directions whose surface density
is equal to σ =

∫∞
−∞ ρdz, in other word the density is written using the Dirac’s delta function δ(z) as

ρ(x, y, z) = σ(x, y)δ(z). (2.55)

Integrating along the z-direction basic equations (2.45) and (2.46),the linearized basic equations for
the thin disk are as follows:

∂δσ

∂t
+ σ0

∂δu

∂x
= 0, (2.56)

σ0
∂δu

∂t
= −c2is

∂δσ

∂x
− σ0

∂δφ

∂x
, (2.57)

∂2δφ

∂x2
+
∂2δφ

∂z2
= 4πGδσδ(z), (2.58)

where we assumed σ = σ0 + δσ, u = δu, φ = φ0 + δφ and took the first order terms (those contain
only one δ).

Outside the disk, the rhs of equation (2.58) is equal to zero. It reduces to the Laplace equation

∂2δφ

∂x2
+
∂2δφ

∂z2
= 0. (2.59)

Taking a plane wave of

δX(x, t) = δA exp(iωt− ikx), (2.60)

equation (2.59) is reduced to
∂2δφ

∂z2
− k2δφ = 0. (2.61)

This has a solution which does not diverge at the infinity z = ±∞ as

δφ = δφ(z = 0) exp(−k|z|). (2.62)

On the other hand, integrating equation (2.58) from z = −0 to z = +0 or in other word, applying the
Gauss’ theorem to the region containing the z = 0 surface, it is shown that the gravity δgz = −∂δφ/∂z
has a jump crossing the z = 0 surface as

∂δφ

∂z

∣∣∣∣
z=+0

− ∂δφ

∂z

∣∣∣∣
z=−0

= 4πGδσ. (2.63)

Equations (2.62) and (2.63) lead a final form of the potential as

δφ = −2πGδσ

k
exp(−k|z|). (2.64)

Putting this to equations (2.57), and using equations (2.56) and (2.57), we obtain the dispersion
relation for the gravitational instability in a thin disk as

ω2 = c2isk
2 − 2πGσ0k. (2.65)

This reduces to the dispersion relation of the sound wave for the short wave k � 2πGσ0/c
2
is. While

for a longer wave than λcr = c2is/Gσ0, an exponential growth of δσ is expected. The dispersion
relation is shown in Fig.2.2.
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2.6.1 Rotating Disk

In the case of a rotating disk with an angular rotation speed Ω, basic equations are

∂δσ

∂t
+ σ0

∂δu

∂x
= 0, (2.66)

σ0
∂δu

∂t
= −c2is∇δσ − σ0∇δφ− 2σ0Ω× δu, (2.67)

∂2δφ

∂z2
− k2δφ = 4πGδσδ(z), (2.68)

where the third term of r.h.s. of equation (2.67) represents the Colioris force. Equation (2.68) gives
a solution identical to equation (2.64) as

δφ = −2πGδσ

k
exp [i(ωt− kx)− k|z|] . (2.69)

Choosing a direction in which the wavenumber vector can be expressed as k = (k, 0, 0), we can reduce
equations (2.66) and (2.67) to

iωδσ − ikσ0δux = 0, (2.70)

iωδux = −c2is(−ik)
δσ

σ0
− 2πiGδσ + 2Ωδuy , (2.71)

iωδuy = −2Ωδux. (2.72)

These three equations together with equation (2.69) bring us a dispersion relation as

ω2 = c2isk
2 − 2πGσ0k + 4Ω2. (2.73)

Comparing with equation(2.65), this indicates rotation works to stabilize the system.

Equation (2.73) is rewritten as

ω2 = c2is

(
k − πGσ0

c2is

)2

+
(πGσ0)

2

c2is

[
4Ω2c2is
(πGσ0)2

− 1

]
. (2.74)

Defining

Q ≡ 2Ωcis/πGσ0, (2.75)

we can see that ω2 > 0 for all wavenumbers if Q > 1 and that if Q < 1 for some range of wavenumber
ω2 becomes negative. A rotating disk with Q < 1 is unstable for some range of wavenumber. This
number is called Toomre’s Q. This is useful to see whether a galactic disk is stable or not. For the
galactic disk, Toomre’s Q must be modified as

Q ≡ κcis/πGσ0 (2.76)

where κ represents the epicyclic frequency as

κ ≡
(
R
dΩ2

dR
+ 4Ω2

)1/2

. (2.77)

See section 3.5 for the galactic disk.
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Figure 2.4: Convection.

2.7 Convective Instability

If water is heated from the bottom and temperature difference between the top and the bottom
exceeds a limit, convection is driven. Water heated from the bottom climbs and cool water on the top
descends. This transfers the thermal energy from the bottom to the top. In this section, we describe
the condition in which convection is driven.

Consider a hydrostatic balanced atmosphere in which the hydrostatic balance equation is satisfied:

−dp
dz

− ρ
dφ

dz
= −dp

dz
+ ρg = 0, (2.78)

where we assumed v = 0 in equation (2.2) and the gravity is working downwards in z-direction (g < 0)
The pressure and density of the atmosphere are p(z) and ρ(z). We consider a gas element (hatched
region in Fig.2.4), whose density ρ∗ and p∗ are equal to those of the atmosphere ρ(z) and p(z) as

ρ∗(z) = ρ(z), p∗(z) = p(z). (2.79)

Further, we assume this gas element to move from z to z +Δz adiabatically, that is,

p∗(z +Δz)

[ρ∗(z +Δz)]γ
=

p∗(z)
[ρ∗(z)]γ

. (2.80)

Pressure balance is required between the pressures of the gas element at z + Δz, p∗(z + Δz), and
the atmosphere p(z +Δz). If the density of the gas element at z +Δz, ρ∗(z + Δz), is smaller than
that of the atmosphere, the gravity force in equation (2.78) is weaker than the pressure force and the
element keeps climbing. Thus the condition for the convective instability is written as

ρ∗(z +Δz) < ρ(z +Δz). (2.81)

Using

p(z +Δz) = p(z) +
dp

dz
Δz and ρ(z +Δz) = ρ(z) +

dρ

dz
Δz, (2.82)
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Figure 2.5: Left: Explanation of Laval nozzle. Right: The relation between the cross-section S(x)
and the flow velocity vx.

we can rewrite equation (2.81) into the relation in the variables of the atmosphere (variables without
*) as

d ln p

dz
< γ

d ln ρ

dz
(2.83)

or
d ln(p/ργ)

dz
< 0 (2.84)

This means the specific entropy s = ln(p/ργ) + K decreases upwardly. Thus, if we consider the
adiabatic process, the atmosphere in which a specific entropy decreases upwardly is unstable for the
convection.

Problem
Obtain equation (2.83) from equation (2.81) using equation (2.82).

2.8 Super- and Subsonic Flow

Flow whose velocity is faster than the sound speed is called supersonic, while that slower than the
sound speed is called subsonic. The subsonic and supersonic flows are completely different.

2.8.1 Flow in the Laval Nozzle

Consider a tube whose cross-section, S(x), changes gradually, which is called Laval nozzle. Assuming
the flow is steady ∂/∂t = 0 and is essentially one-dimensional, the continuity equation (2.1) is
rewritten as

ρuS = constant, (2.85)

or
1

ρ

∂ρ

∂x
+

1

u

∂u

∂x
+

1

S

∂S

∂x
= 0. (2.86)

Equation of motion (2.2) becomes

u
∂u

∂x
= −1

ρ

∂p

∂x
= −c

2
s

ρ

∂ρ

∂x
, (2.87)
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where we used the relationship of

∂p

∂x
=

(
∂p

∂ρ

)
s

∂ρ

∂x
= c2s

∂ρ

∂x
. (2.88)

When the flow is isothermal, use the isothermal sound speed c2is instead of the adiabatic one. From
equations (2.86) and (2.87), we obtain(

u2

c2s
− 1

)
1

u

∂u

∂x
=

1

S

∂S

∂x
, (2.89)

where the factor M = u/cs is called the Mach number. For supersonic flow M > 1, while M < 1
for subsonic flow.

In the supersonic regime M > 1, the factor in the parenthesis of the lhs of equation (2.88) is
positive. This leads to the fact that the velocity increases (du/dx > 0) as long as the cross-section
increases (dS/dx > 0). On the other hand, in the subsonic regime, the velocity decreases (du/dx < 0)
while the cross-section increases (dS/dx > 0). See right panel of 2.5.

If M = 1 at the point of minimum cross-section (throat), two curves for M < 1 and M > 1 have
an intersection. In this case, gas can be accelerated through the Laval nozzle. First, a subsonic flow
is accelerated to the sonic speed at the throat of the nozzle. After passing the throat, the gas follows
the path of a supersonic flow, where the velocity is accelerated as long as the cross-section increases.

2.8.2 Steady State Flow under an Influence of External Fields

Consider a flow under a force exerted on the gas whose strength varies spatially. Let g(x) represent
the force working per unit mass. Assuming the cross-section is constant

ρu = constant, (2.90)

immediately we have
1

ρ

∂ρ

∂x
+

1

u

∂u

∂x
= 0. (2.91)

On the other hand, the equation motion is

u
∂u

∂x
= −c

2
s

ρ

∂ρ

∂x
+ g(x), (2.92)

From equations (2.91) and (2.92), we obtain(
u2

c2s
− 1

)
1

u

∂u

∂x
=
g(x)

c2s
. (2.93)

Consider an external field whose potential is shown in Figure 2.6(Left). (1) For subsonic flow, the
factor in the parenthesis is negative. Before the potential minimum, since g(x) > 0, u is decelerated.
On th other hand, after the potential minimum, u is accelerated owing to g(x) < 0. Using equation
(2.90), this leads to a density distribution in which density peaks near the potential minimum. (2)
For supersonic flow, the factor is positive. In the region of g(x) > 0, u is accelerated. After passing
the potential minimum, u is decelerated. The velocity and the density distribution is shown in Figure
2.6(right-lower panel).

The density distribution of the subsonic flow in an external potential is similar to that of hydro-
static one. That is, considering the hydrostatic state in an external potential, the gas density peaks at
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Figure 2.6: Left: External potential field. Right: Velocity and density variations. Gas flows in the
external field whose potential is shown in the left panel. The upper panel represents a subsonic flow.
The lower panel does a supersonic flow.
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the potential minimum. On the other hand, The density distribution of the supersonic flow looks like
that made by ballistic particles which are moving freely in the potential. Owing to the conservation
of the total energy (kinetic + potential energies), the velocity peaks at the potential minimum. And
the condition of mass conservation leads to the distribution in which the density decreases near the
potential minimum.

2.8.3 Stellar Wind — Parker Wind Theory

Stellar winds are observed around various type of stars. Early type (massive) stars have large lu-
minosities; the photon absorbed by the bound-bound transition transfers its outward momentum to
the gas. This line-driven mechanism seems to work around the early type stars. On the other hand,
acceleration mechanism of less massive stars are thought to be related to the coronal activity or dust
driven mechanism (dusts absorb the emission and obtain outward momentum from the emission).

Here, we will see the identical mechanism in §2.8.1 and §2.8.2 works to accelerate the wind from
a star. Consider a steady state and ignore ∂/∂t = 0. The continuity equation (2.1) gives

r2ρu = const, (2.94)

where we used

divρv =
1

r2
∂

∂r

(
r2ρu

)
. (2.95)

This leads to
2

r
+

1

r

∂ρ

∂r
+

1

u

∂u

∂r
= 0. (2.96)

The equation of motion (2.2) is as follows:

u
∂u

∂r
= −c

2
s

ρ

∂ρ

∂r
− GM∗

r2
, (2.97)

where we used g = −GM∗/r2 (M∗ means the mass of the central star). From these two equations
(2.96) and (2.97) we obtain (

M2 − 1
) 1

u

∂u

∂r
=

2

r
− GM∗

c2s

1

r2
, (2.98)

where M ≡ u/cs represents the Mach number of the radial velocity. Take notice that this is similar
to equations (2.89) and (2.93). That is, the fact that the rhs of equation (2.98) is positive corresponds
to increasing the cross-section dS/dx > 0. On the contrary, when the rhs is negative, the fluid acts
as the cross-section S is decreasing.

For simplicity, we assume the gas is isothermal. The rhs of equation (2.98) varies shown in Figure
2.7. Therefore, near to the star, the flow acts as the cross-section of nozzle is decreasing and far
from the star it does as the cross-section is increasing. This is the same situation that the gas flows
through the Laval nozzle.

Using a normalized distance x ≡ r/(GM∗/2c2is), equation (2.98) becomes

(
M2 − 1

) 1

M
∂M
∂x

=
2

x
− 2

x2
. (2.99)

This is rewritten as
d

dx

(
M2

2
− logM− 2 log x− 2

x

)
= 0, (2.100)
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Figure 2.7: Right-hand side of equation (2.98) is plotted against the distance from the center r.

we obtain the solution of equation (2.99) as

M2 − 2 logM = 4 log x+
4

x
+ C. (2.101)

This gives how the Mach number M varies changing x. To explore this, we define two functions:

f(M) = 2M2 − 2 logM (2.102)

is a function only depending on M and

g(x) = 4 log x+
4

x
+ C (2.103)

is a function only depending on x.
Since the minima of f(M) and g(x) are respectively 1 and C +4, the permitted region in (x,M)

changes for the values of C.

1. If C = −3, for all values of x > 0 there exist M which satisfies f(M) = g(x). This corresponds
to the two curves which pass through a critical X-point of (x,M) = (1, 1) in Figure 2.9.

2. If C < −3, the minimum of g(x) is smaller than that of f(M). In this case, for x where
g(x) < 1 = min(f(M)), there is no solution. Thus, f(M) = g(x) has solutions for x < x1
and x > x2, where x1 < x2, and g(x1) = g(x2) = 1. This corresponds to the curves running
perpendicularly in Figure 2.9.

3. If C > −3, the minimum of f(M) is smaller than that of g(x). In this case, f(M) = g(x) has
solutions for M < M1 and M > M2, where M1 < M2, and f(M1) = f(M2) = C + 4. This
corresponds to curves running horizontally in Figure 2.9.

Out of the two solutions of C = −3, a wind solution is one with increasing M while departing
from the star. This shows us the outflow speed is slow near the star but it is accelerated and a
supersonic wind blows after passing the critical point. Since the equations are unchanged even if we
replace u with −u, the above solution is valid for an accreting flow u < 0. Considering such a flow,
the solution running from the lower-right corner to the upper-left corner represents the accretion flow,
in which the inflow velocity is accelerated reaching the star and finally accretes on the star surface
with a supersonic speed.
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Figure 2.8: f(M) (left) and g(x) for C = −3 (right)

Figure 2.9: M vs x (the x-axis is the normalized distance from the center x ≡ r/(GM∗/2c2is) and the
y-axis is the Mach number M.)
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2.9 Virial Analysis

For a system to achieve a mechanical equilibrium, a relation must be satisfied between energies
such as potential, thermal and kinetic energies. This is called the Virial relation. For example,
a harmonic oscillator md2x/dt2 = −kx has a potential energy of WH = (1/2)kx2 and a kinetic
energy KH = (1/2)mẋ2. Averaging these two energies over one period, both energies give the
same absolute value proportional to the oscillation amplitude a squared as < WH >= (1/4)ka2 and
< KH >= (1/4)ka2. Another example is a Kepler problem. For simplicity, consider mass m running
on a circular orbit with a radius a from a body with a massM . The gravitational and kinetic energies
are equal to WK = −GmM/a and KK = (1/2)mv2 = (1/2)GmM/a, where we used the centrifugal
balance as mv2/a = GMm/a2. As a result, for the harmonic oscillator < WH >:< KH >= 1 : 1
while for the circular Kepler problem WK : KK = −2 : 1. This ratio is known to be related to the
power n of the potential as φ ∝ xn. Important nature of the self-gravity is understood only with this
relation without solving the hydrostatic balance equations. In the following, we describe the Virial
relation satisfied with isolated systems such as stars.

Hydrodynamic equation of motion using the Lagrangean time derivative [eq.(B.3)] is

ρ
dv

dt
= −∇p− ρ∇Φ. (2.104)

For simplicity, consider a spherical symmetric configuration. The equation of motion is expressed as

ρ
dv

dt
= −∂p

∂r
− ρ

∂Φ

∂r
. (2.105)

Multiplying radius r to the equation and integrating by the volume dV = 4πr2dr over a volume from
r = 0 to r = R, we obtain the Virial relation as

1

2

d2I

dt2
− 2T = 3(γ − 1)U +W, (2.106)

where

I =

∫
ρr2dV =

∫
r2dM, (2.107)

is an inertia of this body, and T and U are, respectively, the kinetic and thermal energies as

T =

∫
1

2
ρv2dV =

∫
1

2
v2dM, (2.108)

U =

∫
p

γ − 1
dV. (2.109)

Further,

W = −
∫
ρ
GMr

r
dV = −

∫
GMr

r
dM, (2.110)

is a gravitational energy, where dM = 4πr2ρdr and Mr =
∫ r
0 dM =

∫ r
0 4πr2ρdr

Since

r
dv

dt
=

1

2

d2r2

dt2
− u2, (2.111)
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the lefthand-side of equation (2.105) is rewritten as

∫ R

0
ρr
dv

dt
4πr2dr =

∫ R

0

(
1

2

d2r2

dt2
− u2

)
ρ4πr2dr,

=
1

2

d2

dt2

∫ R

0
r2dm−

∫ R

0
v2dm

=
1

2

d2I

dt2
− 2T, (2.112)

using equations (2.107) and (2.108).
On the other hand, the first term of the rhs of equation (2.105) becomes

−
∫ R

0
r
dp

dr
4πr2dr = −

{[
4πr3p

]R
0
− 3

∫ R

0
4πr2pdr

}
,

= 3

∫ R

0
pdV,

= 3(γ − 1)U. (2.113)

To derive this equation, we have assumed the pressure diminishes at a radius r = R and the surface
pressure term does not appear in the final expression. This is valid for an isolated system such as a
star.

The last term of the rhs of equation (2.105) is written as

−
∫ R

0
rρ
dΦ

dr
4πr2dr = −

∫ R

0
ρ
GMr

r2
4πr2dr, (2.114)

where we used equation (2.13). This is rewritten as

−
∫ R

0
ρ
GMr

r2
4πr2dr =

∫ R

0
−GMr

r
dM

= W. (2.115)

The energy +GMr/r per unit mass is necessary for a gas element to move from the radius r, inside
which mass Mr is contained, to the infinity. Adding the energy +GMr/rdM for all the gas, the
potential energy is obtained. In the case of a star composed of uniform density ρ0,

W = −3

5

GM2

R
, (2.116)

where M = 4πR3ρ0/3.
To obtain a condition for the mechanical equilibrium, we assume d2I/dt2 = 0. Equation (2.106)

becomes
2T + 3(γ − 1)U +W = 0. (2.117)

Assuming the system is static v = 0, the above equation reduces to

3(γ − 1)U +W = 0. (2.118)

In the case of γ = 5/3 this reduces to 2U +W = 0. The total energy E = U +W is expressed as

E = (4− 3γ)U = −U (for γ = 5/3)

= − 4−3γ
3(γ−1)W =

1

2
W (for γ = 5/3). (2.119)
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Figure 2.10: Virial relation for stars composed of γ = 5/3 gas.

For the gas with γ > 4/3, equation (2.119) gives a negative total energy E < 0 and the system is in
a confined state. However, if γ < 4/3, the gravity can not confine the gas.

For γ = 5/3 > 4/3, equation (2.118) gives

2U +W = 0. (2.120)

This shows us a strange nature of the self-gravitating gas (see Fig. 2.10). That is, if the heat
flux flows outward, the total energy decreases ΔE < 0. The system must contract and equation
(2.119) indicates ΔW = 2ΔE < 0 (the gravitational energy decreases: the absolute value of the
gravitational energy increases). However, for the thermal energy, equation (2.120) indicates that
ΔU = −ΔE = −(1/2)ΔW > 0 for this system to be static. This shows that if the heat flux flows
out from the system the thermal energy increases in the self-gravitating system. This comes from the
contraction due to the gravity.

2.9.1 Virial Mass

Consider γ = 5/3 gas, the gravitational energy is equal to twice of the kinetic+thermal energy
[eq.(2.120)] in the equilibrium state. This gives a definition of Virial mass. The kinetic energy is
obtained from the 3D velocity dispersion σ3D as

U =
1

2
Mσ23D (2.121)

for globular clusters and elliptical galaxies, where M is the mass of the object. For molecular cloud
this is estimated from the width of the emission line. Equation (F.7) of Appendix F gives

σ23D =
3

2 ln 2
v2x,HWHM. (2.122)
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where vx,HWHM is the half width of the half maximum of the emission line (if the radiation is optically
thin; see Fig.F.1). Since the gravitational energy is proportional to M2 as

W = −εGM
2

R
, (2.123)

the Virial theorem gives

M =
Rσ23D
εG

(2.124)

if the surface term is ignored. This gives an estimation of mass of astronomical object.

2.10 Radiative Transfer

2.10.1 Radiative Transfer Equation

Specific intensity of radiation fields I(x,n, ν) is defined by the radiation energy dE transferred by
photons with wavelength ν through a unit surface placed at x whose normal is directed to n per unit
time per unit wavelength, and per unit steradian. Average intensity of radiation J(x, ν) is defined as

J(x, ν) =

∫
I(x,n, ν)

dΩ

4π
, (2.125)

where J is obtained by averaging I for the solid angle. This is related to the energy density of
radiation u(x, ν) as

u(x, ν) =
4π

c
J(x, ν). (2.126)

If the radiation is absorbed in the displacement δs as δI(x,n, ν), δI must be proportional to δs
and I(x,n, ν) as

δI(x,n, ν) = −κI(x,n, ν)δs, (2.127)

where κ is a coefficient and called volume absorption coefficient. The dimension of κ is cm−1. We
can rewrite the above to the differential equation as

dI(x,n, ν)

ds
= −κI(x,n, ν) = −κρρI(x,n, ν), (2.128)

where we used mass absorption coefficient κρ which represents the absorption per mass. Equation
(2.127) is reduced to

dI(x,n, ν)

κds
≡ dI

dτ
= −I(x,n, ν), (2.129)

where

τ =

∫ s

0
κδs, (2.130)

is called the optical depth. This means that τ is a measure for absorption as the intensity decreases
at a factor exp(−1) from τ = 0 to τ = 1.

If the ray runs δs crossing a volume whose volume emissivity equal to ε the intensity increases

δI(x,n, ν) = ε(x, ν)δs. (2.131)

The volume emissivity ε(x, ν) is the energy emitted by a unit volume at a position x per unit time
per unit solid angle per unit wavelength. From equations (2.127) and (2.131), the radiation transfer
is written as

dI(x,n, ν)

ds
= −κI(x,n, ν) + ε(x, ν). (2.132)
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Figure 2.11:

Using the optical depth τ =
∫ s
0 κds, this gives

dI(ν)

dτ
= −I(ν) + S(ν), (2.133)

where S(ν) is called the source function and is defined as S(ν) = ε(ν)/κ(ν). Assuming the specific
intensity I = I0 at the point of τ = 0, that at the point τ on the same ray is given

I = I0 exp (−τ) +
∫ τ(x)

0
S(s(τ ′)) exp (τ ′ − τ(s)

)
dτ ′. (2.134)

In the case of constant source term S =const it reduces to

I = I0 exp (−τ) + S (1− exp (−τ)) . (2.135)

Equation (2.134) gives

I �
{

S . . . τ � 1,
τS + I0(1 − τ) . . . τ � 1.

(2.136)

This indicates that if we see an optically thick cloud τ � 1 the specific intensity reaches us represents
S, while if we see an transparent cloud τ � 1, I represents that of background.
Problem
Show that equations (2.134) and (2.134) are solutions of equation (2.133).

2.10.2 Einstein’s Coefficients

In this section, we describe the absorption coefficient κ and the emissivity ε for the line emission
and absorption. Here, consider a hypothetical atom which has only three levels named nd, n, nu.
and assume the energy of each level is, respectively, End

, En, and Enu . When the atom changes
its state from nu to n, an photon with energy of hνnu→n = Enu − En is emitted, if this transition
is radiative. Besides the radiative process, atom changes its state exchanging its energy with other
atoms, molecules and electrons.

Spontaneous Emission

Atoms in an excited state nu changes its state from nu to n spontaneously. The number of transitions
is proportional to the number of atoms in the nu state Nnu as

Anu→nNnu , (2.137)
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where Anu→n represents the probability of transition from nu to n in unit time. This coefficient is
called Einstein’s A coefficient. The lifetime of nu level is related to this coefficient as

τlife(nu) =
1

Anu→n +Anu→nd

, (2.138)

for this three-level atom.

Absorption

Photon with energy Enu −En is absorbed by the atom in the state of n. At the same time the atom
is excited from the state n to nu. The number of this transition is proportional to the number of
atoms in the state n, Nn, the number of photons passing and a cross-section of this absorption. This
is written as

Bn→nuJνn→nu
Nn, (2.139)

where J represents the average specific intensity of radiation with corresponding wavelength. This
coefficient is called Einstein’s B coefficient for absorption.

Induced Emission

When atoms in the state nu are in the radiation field with the average intensity of Jnu→n, downward
transition from nu to n is induced and atoms emit photons with energy hνnu→n. This is called the
induced emission or stimulated emission. This rate is expressed as

Bnu→nJnu→nNnu . (2.140)

Collisional Excitation and Deexcitation

Beside radiative processes, energy states of atoms are changed by collisions with other atoms and
molecules, which are called collisional excitation and deexcitation. Since such transitions are pro-
portional to the density of atoms or molecules, the number of transitions is written as follows: for
excitation from n to nu

Cn→nuNnnH, (2.141)

and deexcitation from nu to n

Cnu→nNnunH, (2.142)

where the coefficients C are determined by laboratory experiments and quantum mechanics calcula-
tions.

2.10.3 Relation of Einstein’s Coefficients to Absorption and Emissivity

Emissivity and absorption coefficients shown in §2.10.1 are related to the Einstein’s coefficients in
§2.10.2. Net absorption is defined as the absorption minus the induced emission. Energy absorbed in
unit volume is expressed as follows: integrating equation (2.127) over the solid angle, the first term
of the rhs becomes ∫

κ(ν)I(ν)dνdΩ = hνnu→n (Bn→nuNn −Bnu→nNnu)Jnu→n. (2.143)
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Assuming isotropic radiation field, since ∫
IdΩ = 4πJ, (2.144)

the absorption coefficient integrated over the frequency range of one transition is written as∫
κ(ν)dν =

1

4π
hνnu→n (Bn→nuNn −Bnu→nNnu) . (2.145)

As for the emission, the second term of equation (2.127) becomes∫ ∫
ε(ν)dνdΩ = hνnu→nAnu→nNnu . (2.146)

Thus, ∫
ε(ν)dν =

hνnu→n

4π
Anu→nNnu . (2.147)

Relation between Einstein’s Coefficients∗

Analysis using the Einstein’s coefficients is applicable to the state in which the thermal equilibrium is
not achieved. However, if this is applied to the thermal equilibrium, we can obtain relations between
these coefficients.

Assume the detailed balance is achieved between the spontaneous emission, the induced emission
and the absorption as

Nnu (Anu→n +Bnu→nJnu→n) = NnBn→nuJnu→n. (2.148)

In the thermal equilibrium, the population of atoms is given by the Boltzmann distribution as

Nnu

Nn
=
gnu

gn
exp

(
−Enu n

kT

)
, (2.149)

where gn represents the statistical weight for the state n.
Equation (2.148) gives

NnuAnu→n

Nn
= Jnu→n

(
Bn→nu − Nnu

Nn
Bnu→n

)
. (2.150)

In the case of thermal equilibrium, the average specific intensity agrees with the Planck function
B(ν, T ) as

J(ν) = B(T, ν) =
2hν3

c2
1

exp (hν/kT )− 1
, (2.151)

Using equations (2.149) and (2.151), equation (2.148) reduces to

gnu

gn
Anu→n =

2hν3

c2
Bn→nu

exp (hν/kT )− gnu
gn

Bnu→n
Bn→nu

exp (hν/kT )− 1
. (2.152)

Lefthand-side of the equation is not dependent on the temperature. For this equation to be valid for
various temperature,

gnu

gn

Bnu→n

Bn→nu

= 1, (2.153)

and
gnu

gn
Anu→n =

2hν3

c2
Bn→nu. (2.154)
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Non-Local Thermal Equilibrium∗

2.10.4 Excitation Temperature

When the Boltzman distribution is achieved, the level population of 1 and 2 levels are written as

N2

N1
=
g2
g1

exp(−E21/kT ), (2.155)

where g1 and g2 represent the statistical weight of 1 and 2 levels, respectively. In the case that the
Boltzman distribution is not achieved, the temperature that satisfys eq(2.155) is called the excitation
temperature and is expressed as

Tex = −E21

k
/ loge

(
g1N2

g2N1

)
. (2.156)

2.10.5 Critical Density

Consider a two-level atom (a hypothetical atom which has only two levels), in which the spontaneous
downward transitions and collisional excitations and deexcitations are in balance as

(A21 + C21n)N2 = C12nN1. (2.157)

Using
C12g1 = C21g2 exp [−(E2 − E1)/kT ], (2.158)

the number fraction of upper level is written

N2

N1 +N2
=

C12

C21

1 +
A21

C21n
+
C12

C21

=

g2
g1

exp [−(E2 − E1)/kT ]

1 +
ncr
n

+
g2
g1

exp [−(E2 − E1)/kT ]
, (2.159)

where

ncr ≡ A21

C21
, (2.160)

is called critical density. When n � ncr, the second term of the denominator is small and the level
population is given by the Boltzmann distribution. As long as n � ncr, the number of upper-level
population is much smaller than that expected for the Boltzmann distribution. Such a low-density
gas emits only weakly.

Since B-coefficients, which has a meaning of the cross-section for the radiation, is proportional to
the electric dipole moment of the molecule, A-coefficients are large for molecules with large electric
dipole moment (eq.[2.154]). In the case of rotational levels, A-coefficients increase ∝ (J+1)3 and thus
the critical density increases for higher transition. In Table 2.1, the critical densities for rotational
transitions of typical molecules are shown as well as A and C coefficients. Comparing J = 1 − 0
transitions of CO, CS, and HCO+, CS and HCO+ trace higher-density gas than CO. And higher
transition J = 5− 4 lines trace higher-density gas than lower transition J = 1− 0 lines.

In the discussion above, we ignored the effect of transition induced by absorption. The above
critical density is defined for optical thin case. For a gas element with a finite optical depth, photons
are effectively trapped in the gas element (photon trapping). If we use the probability for a photon
to escape from the gas element, βν , the critical density is reduced to

ncr ∼ A21

C21
βν . (2.161)
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Table 2.1: A and C coefficients and critical densities for rotational transition of typical molecules

CO CS HCO+

A10(s
−1) 7.2× 10−8 1.8× 10−6 4.3 × 10−5

C10(cm
−3 s) 2.8× 10−11 3.7× 10−11 2.6 × 10−10

ncr 10(cm
−3) 2.7× 103 5× 104 1.6 × 105

A54(s
−1) 1.3× 10−5 3.0× 10−4 7.2 × 10−3

C54(cm
−3 s) 9.3× 10−11 3.3× 10−11 4.2 × 10−10

ncr 54(cm
−3) 1.4× 105 9× 106 1.7 × 107

The most abundant CO, 12C16O, is sometimes optically thick, while rare molecules 13C16O and
12C18O, which have almost the same Einstein’s coefficients as 12C16O, are optically thin. In such a
cloud, the critical density of 12C16O is smaller than that of 13C16O and 12C18O.



Chapter 3

Galactic Scale Star Formation

3.1 Schmidt Law

Schmidt (1959) speculated that the star formation rate is proportional to a power of the surface
density of the interstellar medium

Σ̇SF ∝ Σn
gas, (3.1)

where the power n seems between 1 and 2 around the solar vicinity. If n = 2, the star formation
rate is thought to be determined by the collision rate of interstellar clouds. At that time Schmidt
showed us n � 2. On the other hand, if the gas passing through the galactic arms forms stars, the
star formation rate seems proportional to the gas surface density and the arm-to-arm period. Thus
this predicts n = 1.

3.1.1 Global Star Formation

The star formation rate is estimated by the intensity of Hα emission (Kennicutt, Tamblyn, & Congdon
1994) as

SFR(M�yr−1) =
L(Hα)

1.26 × 1041erg s−1
, (3.2)

which is used for normal galaxies. While in the starburst galaxies which show much larger star
formation rate than the normal galaxies, FIR luminosity seems a better indicator of star formation
rate

SFR(M�yr−1) =
L(FIR)

2.2× 1043erg s−1
=

L(FIR)

5.8 × 109L�
. (3.3)

Kennicutt (1998) summarized the relation between SFRs and the surface gas densities [Fig.3.1 (left)]
for 61 normal spiral and 36 infrared-selected starburst galaxies. As seen in Figure 3.1, the star for-
mation rate averaged over a galaxy (ΣSFR(M� yr−1 kpc−2)), which is called the global star formation
rate, is well correlated to the average gas surface density Σgas(M� pc−2). He gave the power of the
global Schmidt law as n = 1.4 ± 0.15. That is,

ΣSFR � (1.5± 0.7) × 10−4
(

Σgas

1M� pc−2

)1.4±0.15

M� yr−1 k pc−2. (3.4)

The fact that the power is not far from 3/2 seems to be explained as follows: Star formation
rate should be proportional to the gas density (Σgas) but it should also be inversely proportional to
the time scale of forming stars in respective gas clouds, which is essentially the free-fall time scale.

63
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Figure 3.1: Taken from Figs.6 and 7 of Kennicutt (1998). Left: The x-axis means the total (HI+H2)
gas density and the y-axis does the global star formation rate. Right: The x-axis means the total
(HI+H2) gas density divided by the orbital time-scale. The y-axis is the same.

Remember the fact that the free-fall time given in equation (2.26) is proportional to τff ∝ 1/(Gρ)1/2.
Therefore

ρSFR ∝ ρgas × (Gρgas)
1/2 ∝ ρ3/2gas , (3.5)

where ρgas and ρSFR are the volume densities of gas and star formation.
He found another correlation between a quantity of gas surface density divided by the orbital

period of galactic rotation and the star formation rate [Fig.3.1 (right)]. Although the actual slope is
equal to 0.9 instead of 1, the correlation in Fig.3.1(right) is well expressed as

ΣSFR � 0.017ΣgasΩgas = 0.21
Σgas

τarm−to−arm
, (3.6)

where Ωgas represents the angular speed of galactic rotation. This means that 21 % of the gas mass is
processed to form stars per orbit. These two correlations [eqs. (3.4) and (3.6)] implicitly ask another

relation of Ωgas ∝ Σ
1/2
gas .

3.1.2 Local Star Formation Rate

In Figure 3.2 (left), the correlation between star formation rate and gas density is plotted for specific
galaxies (NGC 4254 and NGC 2841). This shows us that Hα surface brightness (star formation
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Figure 3.2: Distributions of ΣSF and Σgas. (Left:) Relation between ΣSF and Σgas for an Sc galaxy
NGC 4254 and an Sb galaxy NGC 2841. (Right:) Relation between ΣSF and Σgas for various galaxies.
These are taken from Figs.7 and 8 of Kennicutt (1989).

rate) and the gas column density are well correlated each other. Figure 3.2 (left) also indicates
that there seems a critical gas density below which star formation is not observed. The value of
this threshold column density is approximately � 4M�pc−2 for both galaxies in Figure 3.2 (left).
The same correlation is seen in other spiral galaxies [Fig.3.2(right)]. Fitting the correlation with a
power-law, he obtained

ΣSFR ∝ Σ1.3±0.3
gas , (3.7)

for the region active in star formation. Take notice that this power is very close to that of the
global Schmidt law [eq.(3.4)] The threshold surface gas density ranges from 1 M�pc−2 to 10M�pc−2

(1020 − 1021Hcm−2). Therefore, theory of star formation must explain (1) the Schmidt law (clear
correlation between star formation rate and the gas surface density) above the threshold column
density and (2) the fact that there is no evidence for star formation in the gas deficient region below
the threshold column density.

Star Formation Seen with Akari

Figure 3.3 represents the far-IR observation of M101 with Akari (Suzuki et al.2007). Using 4 bands of
Akari FIS and 3 bands of ISO, the SED of this galaxy is fitted with two components of dust emissions
with temperatures Tw = 55+9

−25K and Tc = 18+4
−9K. Spiral galaxies (not classified with either AGN or

starburst galaxy) have a far-IR temperature with 20K–50K as a whole from Revised Shapley-Ames
galaxy survey by IRAS De Jong et al 1984). As shown in Fig.3.4 (a), cold component well correlates
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Figure 3.3: Akari far-IR observation of M101 (Suzuki et al.2007). (Left) SED of M101. Dotted and
dashed lines represent best-fit modified blackbody spectrum with Tw = 55+9

−25K and Tc = 18+4
−9K.

(a) (b)

Figure 3.4: Akari far-IR observation of M101 (Suzuki et al.2007). (a) Distribution of emissions from
cold dust with Tc (left) and warm dust with Tw (right). (b) The warm-to-cold intensity ratio is
plotted.
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with that of gas distribution, while warm one has a relation to star formation regions. Fig.3.4(b) plots
the warm-to-cold ratio of intensities, which seems to show the distribution of star formation efficiency
≡ star formation rate/gas mass. Some peaks in this plot correspond to famous HII regions. Center
of the galaxy and the end of the galactic bar indicate peaks in this map. Since barred galaxies have
larger star formation rate than spiral galaxies without bars, the central peaks are regarded as a region
where gas is accumulated by the effect of a bar potential. Equations (eq:Kennicutt-correlation-1) and
(3.7) indicates that the star formation efficiency

ΣSFR/Σgas ∝ Σ0.3−0.4
gas , (3.8)

M101 galaxy do not seem to be explained by a simple law as the star formation efficiency is an
increasing function of gas density.

3.2 Distributions of Atomic and Molecular Hydrogen

We believe that stars form in molecular clouds, in which major component of Hydrogen is “molecule.”
MHI is larger than MH2 and HI gas distributes rather uniformly than H2 gas. Figure 3.5(a) shows
distributions integrated intensities of HI (red) and CO (blue) for Large Magellanic Cloud (Fukui et
al. 2009). CO gas is found as GMCs with a mass M ∼ 105−6M�, while HI gas is distributed more
uniform than that of CO gas.

Figure 3.5(b) shows that line width of HI is much larger than that of CO. The comparison in the
phase-space (position VS line-of-sight velocity) indicates us that the HI gas coexisting with H2 gas
was overestimated when the comparison is made for the column density σ. H2 gas associated with
GMCs may be a small fraction of HI gas.

Figure 3.6 displays the distributions of HI and CO gas. CO and HI data are divided into pixels
whose 3D size is 40pc× 40pc ×0.17km s−1. The number of pixels where HI (> 7.2K) and CO
(> 0.21K) are both detected are plotted by a histogram with dark color. While that of Tb(HI) > 7.2K
but Tb(CO) < 0.21K (light-shade histogram) shows a different distribution. The ratio of pixels
associated with CO increases with Tb(HI) (Figure 3.6 bottom). This may indicates an accretion of
HI gas to form GMCs.

Another important finding of NANTEN survey is a classification of GMCs from a stand point of
massive star formation. Kawamura et al (2009) indicate that “Type I shows no signature of massive
star formation, Type II is associated with relatively small HII region(s), and Type III with both HII
region(s) and young stellar cluster(s),” as shown in Figure 3.6(right). The lifetime of a GMC through
Type I to Type III is estimated to be a few 107 yr. The average HI intensity for Types I, II, and III
are estimated as 34± 16K, 47± 17K, and 56± 19K. The HI intensity increases with the sequence of
star formation.
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Figure 3.5: (Left) Distributions integrated intensities of HI (red) and CO (blue) for LMC. The HI
integrated intensity is obtained from combination of aperture synthesis and single-dish observations.
(Kim et al. 03). (Right) Spectra of HI and CO for a direction are shown.

Figure 3.6: (Left, upper) Number of pixels are plotted against the brightness temperature of HI.
CO and HI data are divided into pixels whose 3D size is 40pc× 40pc×0.17km s−1. (Left, bottom)
Number of pixels associated with CO emission increases with higher HI brightness temperature (Fukui
et al.2009). (Right) Classification of GMCs. Type I GMCs are observed without any indication
of massive star formation; Type II’s are GMCs with HII regions. However, young clusters are
embedded in the GMCs and not observed. Type III are associated with HII regions and young
clusters (Kawamura et al.2009)
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3.3 Gravitational Instability of Rotating Thin Disk

Here, we will derive the dispersion relation for the gravitational instability of a rotating thin disk. We
will see the spatial variation of Toomre’s Q parameter, which determines the stability of the rotating
disk, explains the nonlinearity of star formation rate, that is, there is a threshold density and no stars
are formed in the low density region.

Use the cylindrical coordinate (R,Z, φ) and the basic equations for thin disk in §2.6. In linear
analysis, we assume Σ(R,φ) = Σ0(R)+ δΣ(R,φ), u(R,φ) = 0+ δu(R,φ), v(R,φ) = v0(R)+ δv(R,φ),
where u and v represent the radial and azimuthal components of the velocity. Linearized continuity
equation is

∂δΣ

∂t
+

1

R

∂

∂R
(RΣ0δu) + Ω

∂δΣ

∂φ
+

Σ0

R

∂δv

∂φ
= 0, (3.9)

where Ω = v0/R.
Linearized equations of motion are(

∂

∂t
+Ω

∂

∂φ

)
δu− 2Ωδv = − ∂

∂R
(δΦ + δh), (3.10)

and (
∂

∂t
+Ω

∂

∂φ

)
δv +

κ2

2Ω
δu = − 1

R

∂

∂φ
(δΦ + δh), (3.11)

where h is a specific enthalpy as dh = dp/Σ and

κ =

(
4Ω2 +R

dΩ2

dR

)1/2

(3.12)

is the epicyclic frequency.
We assume any solution of equations (3.9), (3.10) and(3.11) can be written as a sum of terms of

the form

δu = ua exp[i(mφ− ωt)], (3.13)

δv = va exp[i(mφ− ωt)], (3.14)

δΣ = Σa exp[i(mφ− ωt)], (3.15)

δh = ha exp[i(mφ− ωt)], (3.16)

δΦ = Φa exp[i(mφ− ωt)]. (3.17)

Using the equation of state of p = KΣγ ,

ha = c2sΣa/Σ0. (3.18)

Using equations (3.13)-(3.17), equations (3.9), (3.10), and (3.11) are rewritten as

i(mΩ− ω)Σa +
1

R

∂

∂R
(RΣ0ua) + im

Σ0va
R

= 0, (3.19)

ua[κ
2 − (mΩ− ω)2] = −i

[
(mΩ− ω)

d

dR
(Φa + ha) + 2mΩ

(Φa + ha)

R

]
, (3.20)

and

va[κ
2 − (mΩ− ω)2] =

[
κ2

2Ω

d

dR
(Φa + ha) +m(mΩ− ω)

(Φa + ha)

R

]
, (3.21)
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Figure 3.7: Tightly wound (left) vs loosely wound (right) spirals.

3.3.1 Tightly Wound Spirals

We assume the wave driven by the self-gravity has a form of tightly-wound spiral [Fig.3.7(left)].
When we move radially, the density δΣ varies rapidly. While, it changes its amplitude slowly in the
azimuthal direction. In a mathematical expression, if we write the density perturbation δΣ as

δΣ = A(R, t) exp[imφ+ i f(R, t)], (3.22)

where the amplitude of spiral A(R, t) is a slowly varing function of R, a tightly wound spiral means
the shape function varies fast (the radial wavenumber k � df/dR is large enough). We consider the
gravitational force from the vicinity of (R0, φ0), since the δΣ oscillates and cancels even if we integrate
over large region. Thus,

δΣ(R,φ, t) � Σa exp[ik(R0, t)(R −R0)], (3.23)

where

Σa = A(R0, t) exp[imφ0 + f(R0, t)]. (3.24)

Notice that the density perturbation [eq.(3.23)] is similar to that studied in §2.6. The potential should
be expressed in a similar form to equation (2.64) as

δΦ � −2πGΣa

|k| exp[ik(R0, t)(R−R0)], (3.25)

which simply means

Φa = −2πGΣa

|k| . (3.26)

If we set R = R0, we obtain our final result for the potential due to the surface density perturbation

δΦ(R,φ, t) � −2πG

|k| A(R, t) exp[imφ+ f(R, t)]. (3.27)

Differentiating this equation with R and ignoring the term dA(R, t)/dR compared to that of df(R, t)/dR =
k, we obtain

δΣ(R,φ, t) = i
sign(k)

2πG

dδΦ(R,φ, t)

dR
, (3.28)
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Table 3.1: Epicyclic frequency vs rotation law.

Rotation κ

Rigid-body rotation Ω =const. 2Ω

Flat rotation vφ =const.
√
2Ω

Kepler rotation vφ ∝ r−1/2 Ω

Neglecting the terms ∝ 1/R compared to the terms containing ∂/∂R, equations (3.19), (3.20),
and (3.21) are rewritten as

i(mΩ− ω)Σa + ikΣ0ua = 0, (3.29)

ua[κ
2 − (mΩ− ω)2] = (mΩ− ω)k(Φa + ha), (3.30)

and

va[κ
2 − (mΩ − ω)2] = i

κ2

2Ω
k(Φa + ha), (3.31)

Using these equations [(3.29), (3.30), and (3.31)], Φa = −2πGΣa/|k|, and ha = c2sΣa/Σ0, we obtain
the dispersion relation for the self-gravitating instability of the rotating gaseous thin disk

(mΩ− ω)2 = k2c2s − 2πGΣ0|k|+ κ2. (3.32)

Generally speaking, the epicyclic frequency depends on the rotation law but is in the range of Ω<∼κ<∼2Ω
(see Table 3.1 for κ for typical rotation laws). It is shown that the system is stabilized due to the
epicyclic frequency compared with a nonrotating thin disk [eq.(2.65)].

3.3.2 Toomre’s Q Value

Consider the case of m = 0 axisymmetric perturbations. Equation (3.32) becomes

ω2 = k2c2s − 2πGΣ0|k|+ κ2 = c2s

(
k − πGΣ0

c2s

)2

+ κ2 −
(
πGΣ0

cs

)2

. (3.33)

If ω2 > 0 the system is stable against the axisymmetric perturbation, while if ω2 < 0 the system is
unstable. Defining

Q =
κcs
πGΣ0

, (3.34)

if Q > 1, ω2 > 0 for all wavenumbers k. On the other hand, if Q < 1, ω2 becomes negative for
some wavenumbers k1 < k < k2. Therefore, the Toomre’s Q number gives us a criterion whether the
system is unstable or not for the axisymmetric perturbation. [Recommendation for a reference book
of this section: Binney & Tremaine (1988).]

The condition is expressed as

Σ0 > Σcr =
κcs
πG

(Q < 1). (3.35)

Kennicutt plotted Σ0/Σcr against the normalized radius as R/RHII for various galaxies, where RHII

represents the maximum distance of HII regions from the center (Fig.3.8). Since Σ0/Σcr = Q, Figure
3.8 shows that HII regions are observed mainly in the region with Q < 1 but those are seldom seen
in the outer low-density Q > 1 region. This seems the gravitational instability plays an important
role.
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Figure 3.8: Σ0/Σcr vs R/RHII. RHII represents the maximum distance of HII regions from the center.
The sound speed is assumed constant cs = 6km s−1. Taken from Fig.11 of Kennicutt (1989).

The above discussion is for the gaseous disk. The Toomre’s Q value is also defined for stellar
system as

Q =
σRκ

3.36GΣ0
, (3.36)

where σR represents the radial velocity dispersion.

For non-axisymmetric waves, even if 1<∼Q<∼2 the instability grows. To explain this, the swing
amplification mechanism is proposed (Toomre 1981). If there is a leading spiral perturbation in the
disk with 1<∼Q<∼2, the wave unwinds and finally becomes a trailing spiral pattern. At the same time,
the amplitude of the wave (perturbations) is amplified (see Fig.3.9).

3.4 Spiral Structure

Figure 3.10 shows the B- (left) and I-band images of M51. B-band light originates from the massive
early type stars. Although the image taken in B-band shows a number of spiral arms, that of I-band
shows clearly two arms. The I-band light seems to come from mainly less-massive long-lived stars,
while the B-band light is essentially coming from the massive short-lived stars which are formed in
the spiral arm. On the contrary, the less-massive stars are not necessarily born in the spiral arm.
This suggests that there are two kinds of spiral patterns: one is made by stars (mainly less-massive)
and the other is the gaseous spiral arm where massive stars are born and contribute to the B-band
image.

In this section, first, we will briefly describe the density wave theory which explains the former
spiral pattern in the stellar component. You will find the amplitude of the spiral pattern in stellar
component is not so large. However, the response of gaseous components (HI and H2 gas) to the
spiral density wave potential with small amplitude is much more nonlinear than that of the stellar
component and a high-contrast spiral pattern appears in the gaseous component .
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Figure 3.9: Numerical simulation of the swing amplification mechanism. The number attached each panel

shows the time sequence. This is obtained by the time-dependent linear analysis. First, perturbation with

leading spiral pattern is added to the Mestel disk with Q = 1.5. The leading spiral gradually unwinds and

become a trailing spiral. Loosely wound spiral pattern winds gradually and the last panel shows a tightly

wound leading spiral pattern. The final amplitude is ∼ 100 times larger than that of the initial state.

3.5 Density Wave Theory

We have derived the dispersion relation of the gravitational instability in the rotating thin disk as

(mΩ− ω)2 = k2c2s − 2πGΣ0|k|+ κ2, (3.37)

where m represents the number of spiral arms. Although the stability of the stellar system is a little
different, we assume this is valid for the stellar system after cs is replaced to the velocity dispersion.
Since

(mΩ− ω)2 = k2c2s − 2πGΣ0|k|+ κ2 = c2s

(
k − πGΣ0

c2s

)2

+ κ2 −
(
πGΣ0

cs

)2

, (3.38)

we obtain

|k| = kT
2

Q2

[
1±

√
1−Q2(1− ν2)

]
, (3.39)

where ΩP = ω/m is a pattern speed, ν = m(ΩP −Ω)/κ is the normalized frequency, kT = κ2/2πGΣ0

is the Toomre’s critical wavenumber for a cold (cs = 0) system. ν = ±1, which leads to |k| = 0,
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Figure 3.10: B- (left), and I-band (right) images of M51. Taken from Fig. 3 of Elmegreen et al.
(1989).
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Figure 3.11: (Left:) A plot of the dispersion relation eq.(2.65). x- and y-axes are ν and k/kT.
Respective lines are for Q = 1 (straight lines), Q = 1.2, Q = 1.5, and Q = 2. The trailing part
k > 0 is only plotted. Points ν = −1, ν = 0, and ν = 1 correspond respectively to Inner Lindbrad
Resonance (ILR), Corotation Resonance (CR), and Outer Lindbrad Resonance (OLR). The relation
is symmetric against the x-axis and the curve of k < 0 represents the leading wave. (Right:) Leading
vs trailing spiral.
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represents the Lindbrad resonance and is rewriten as

ΩP =
ω

m
= Ω± κ

2
. (3.40)

Assuming m = 2, the resonance when ΩP = Ω+ κ/2 is called outer Lindbrad resonance while that of
ΩP = Ω−κ/2 is called inner Lindbrad resonance. ν = 0 means the co-rotation resonance ΩP = Ω.

Plotting the wavenumber k against the normalized frequency ν of equation (3.39) as Figure
3.11(left), it is shown that, in the case of Q = 1, the wavenumber exists for all ν. Since ν = −1, 0,
and +1 correspond to the points of ILR, CR, and OLR and these three resonance points appear in
accordance with the radial distance, the x-axis of Figure 3.11(left) seems to correspond to the radial
distance from the center. In the case of Q > 1, it is shown that a forbidden region appears around
the co-rotation resonance point. Waves cannot propagate into the region. Figure 3.11(left) shows
that the k/kT has two possible wavenumbers in the permitted region. The waves with larger k and
smaller k are called short waves and long waves, respectively.

Consider a wave expressed by Σ ∝ exp[imφ+ ikr]. If k < 0, moving from a point (R0, φ0) in the
direction Δφ > 0 and Δr > 0 the phase difference between the two points [m(φ0 + Δφ) + k(R0 +
Δr)] − [mφ0 + kR0] can be equal to zero. That is, in the case of k < 0 the wave is leading. On
the other hand, if k > 0, moving in the direction Δφ < 0 and Δr > 0 the phase will be unchanged.
In this case, the wave pattern is trailing. Since the dispersion relation is symmetric for k > 0 and
k < 0, there are two waves, trailing waves and leading waves. Therefore there are four waves: a short
trailing wave, a long trailing wave, a short leading wave, and a long leading wave.

3.5.1 Group Velocity

The wave transfers the energy with the group velocity. Whether the group velocity is positive or
negative is quite important considering the energy transfer. Using the dispersion relation, equation
(3.38), The group velocity

vg(R) =
dω

dk
= sign(k)

|k|c2s − πGΣ0

ω −mΩ
. (3.41)

For a region R > RCR, ω−mΩ > 0 or ν > 0. On the other hand, for a region R < RCR, ω−mΩ < 0
or ν < 0. Consider first the trailing wave. In the region R > RCR, long-waves propagate inwardly
to the CR, since |k|c2s < πGΣ0 for long-waves and ν > 0. Short-waves propagate outwardly from the
CR, since |k|c2s > πGΣ0 for short-waves and ν > 0. In the region R < RCR, long-waves propagate
outwardly to the CR since |k|c2s < πGΣ0 and ν < 0. Short-waves propagate inwardly from the CR,
since |k|c2s > πGΣ0 and ν < 0. As a result, it is concluded that the long-wave propagates toward the
CR and the short-wave does away from the CR. As for the leading wave, the short-wave propagates
toward the CR and the long-wave does away from the CR.

Assuming that the wave packet is made near the Lindblad resonance points, (1) the long-trailing
waves propagate toward the co-rotation resonance points; (2) they are reflected by the Q-barrier;
(3) they change their character to short-waves and propagate away from the co-rotation resonance
points; and finally (4) the waves are absorbed at the center or propagate away to the infinity. (1) the
short-leading waves propagate toward the co-rotation resonance points; (2) they are reflected by the
Q-barrier; (3) they change their character to long-waves and propagate away from the co-rotation
resonance points; and finally (4) they reach the Lindblad resonance points and the energy may be
converted to the long-trailing waves there.

The wave obtains its energy at the resonance points. The density wave transfer the energy to
the co-rotation points. Therefore, the density wave theory predicts the galactic stellar disk has spiral
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Figure 3.12: Spiral coordinate. Along a curve of constant η, r ∝ exp(θ tan i).

density pattern between the inner Lindblad resonance points and the outer Lindblad resonance point
if Q>∼1.

3.6 Galactic Shock

In the preceding section, we have seen that a spiral pattern of density perturbation is made by the
gravitational instability in the stellar system with Q>∼1. This forms a grand design spiral observed
in the I-band images which represent the mass distribution which consists essentially in less-massive
stars. The amplitude of the pattern is smaller than that observed in B-band images. In this section
we will see how the distribution early type stars is explained. [Recommendation for a reference book
of this section: Spitzer (1978).]

Gas flowing through a spiral gravitational potential, even if its amplitude is relatively small, acts
rather nonlinearly. Consider the gravitational potential in the sum of an axisymmetric term, Φ0(R)
and a spiral term Φ1(R). The spiral gravitational field is rotating with a pattern speed ΩP. We use
a reference frame rotating with ΩP. u = (u, v), where u and v are radial (R) and azimuthal (φ)
component of the flow velocity. Consider the reference system rotating with the angular rotation
speed ΩP. We assume the variables with suffix 0 represent those without the spiral potential Φ1

and variables with suffix 1 are used to express the difference between before and after Φ1 is added.
u = u0 + u1 = 0 + u1, v = v0 + v1, and

v0 = R(Ω− ΩP) = R

[(
1

R

∂Φ0

∂R

)1/2

− ΩP

]
, (3.42)

where Ω means the circular rotation speed. The equation of motion in the r-direction is

∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
− v21

r
= −c

2
s

Σ

∂Σ

∂r
− ∂Φ1

∂r
+ 2Ωv1, (3.43)

and that in the φ direction is

∂v

∂t
+ u

(
∂v1
∂r

+
v1
r

)
+
v

r

∂v1
∂φ

= − c2s
Σr

∂Σ

∂φ
− 1

r

∂Φ1

∂φ
− κ2

2Ω
u, (3.44)
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and the continuity equation is
∂ΣRu

∂R
+
∂Σv

∂φ
= 0. (3.45)

As seen in Figure 3.12, we introduce the spiral coordinate (η, ξ) in which ξ-axis is parallel to the
spiral pattern which has a pitch angle i and η-axis is perpendicular to the ξ-axis.

rdη = dr cos i+ rdφ sin i, (3.46)

rdξ = −dr sin i+ rdφ cos i. (3.47)

vη = u cos i+ v sin i, (3.48)

vξ = −u sin i+ v cos i (3.49)

Assuming that i� 1 (tightly wound spiral), equations (3.45) (3.43) and (3.44) become

∂vη
∂t

+ vη
∂vη
∂η

= −c
2
s

Σ

∂Σ

∂η
− ∂Φ1

∂η
+ 2Ω(vξ − vξ0), (3.50)

∂vξ
∂t

+ vη
∂vξ
∂η

= − κ2

2Ω
(vη − vη0), (3.51)

∂Σ

∂t
+
∂Σvη
∂η

= 0. (3.52)

Similar to §2.8 we look for a steady state solution. Equation (3.52) becomes

dΣ

dη
= − Σ

vη

dvη
dη

. (3.53)

Using this, equation (3.50) reduces to

(
v2η − c2s

) dvη
dη

= 2Ω(vξ − vξ0)− dΦ1

dη
. (3.54)

Equation (3.51) becomes

vη
dvξ
dη

= − κ2

2Ω
(vη − vη0). (3.55)

In these equations we used following quantities:

vη = vη0 + vη1, (3.56)

vξ = vξ0 + vξ1, (3.57)

vη0 = v0 sin i, (3.58)

vξ0 = v0 cos i, (3.59)

v0 is given in equation (3.42).
Equations (3.53), (3.54), and (3.55) are solved under the periodic boundary condition: X(η =

right end) = X(η = left end). Since equation (3.54) is similar to the equations in §2.8, you may think
the solution seems like Figure 2.6. However, it contains a term which expresses the effect of Coliois
force 2Ω(vξ − vξ0), the flow becomes much complicated.

Taking care of the point that a shock front exists for a range of parameters, the solution of
the above equations are shown in Figure 3.13. Numerical hydrodynamical calculations which solve
equations (3.50), (3.51), and (3.52) was done and steady state solutions are obtained (Woodward
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1975). It is shown that F ≤ 0.7%, the velocity (vη: velocity perpendicular to the wave) does not
show any discontinuity. In contrast, for F > 2%, a shock wave appears. Steady state solution
is obtained from the ordinary differential equations (3.53) (3.54), and (3.55) by Shu, Milione, &
Roberts (1973). Inside the CR, v0 > 0 (Gas has a faster rotation speed than the spiral pattern). As
long as vη > cs there is no shock. Increasing the amplitude of the spiral force F , an amplitude of the
variation in vη increases and finally vη becomes subsonic partially. When the flow changes its nature
from supersonic to subsonic, it is accompanied with a shock. (An inverse process, that is, changing
from subsonic to supersonic is not accompanied with a shock.)

In the outer galaxy (still inside CR) since Ω−ΩP decreases with the the distance from the galactic
center, vη0 = R(Ω − ΩP) sin i decreases. In this region, vη0 < cis and the flow is subsonic if there is
no spiral gravitational force, F = 0. In such a circumstance, increasing F amplifies the variation in
vη and vη finally reaches the sound speed. Transonic flow shows again a shock.

Summary of this section is:

1. There exists a spiral density pattern of the stellar component if the Toomre’s Q parameter is
1<∼Q<∼2.

2. This is driven by the self-gravity of the rotating thin disk.

3. If the amplitude of the non-axisymmetric force is as large as ∼ 1% of the axisymmetric one,
interstellar gas whose sound speed is as large as cis ∼ 8km s−1 forms the galactic shock. This
is observed when the flow is transonic.

4. The amplitude of the gas density fluctuation is much larger than that in the stellar density.

5. If stars are formed preferentially in the postshock region of the spiral arm, we expect clear
spiral arms made by early-type stars, which are massive and short-lived, as seen in the B-band
images of spiral galaxies.
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Figure 3.13: Galactic shocks. The velocity perpendicular to the spiral wave front is plotted against the
phase of the spiral wave. Gas flows from the left to the right. The spiral potential takes its minimum
at θ = 90deg. Parameters are taken as cs = 8.6km s−1, i = 6.deg 7, R = 10kpc, RΩ = 250km s−1,
Rκ = 313km s−1, RΩP = 135km s−1. The amplitude of spiral gravity force is taken F =0.4%, 0.7%,
2%, and 5% of the axisymmetric force ∂Φ0/∂R. Taken from Fig.13.3 of Spizer (1978) [originally
Woodward (1975)].
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Figure 3.14: Galactic shock. (Left:) vη vs vξ plot. Increasing F from 0.5% to 0.9%, the variation
in vη increases. And at F = 0.97%, the minimum speed reaches the sound speed 8km s−1. Further
increasing F , a subsonic region appears (vη < cis for F = 1.05% and 5%). When flow changes its
nature from supersonic to subsonic, a shock appears. R = 10kpc, cs = 8km s−1, and i = 6.deg 7 are
taken. Other parameters are the same as Fig.3.13. (Right:) Comparison of two density distributions:
there are no shocks only cusps for F < 0.97%, while shochs and high compressions in the postshock
region appear for models with F = 5%. Taken from Shu, Milione, & Roberts (1973).



Chapter 4

Local Star Formation Process

4.1 Hydrostatic Balance

Consider a hydrostatic balance of isothermal cloud. By the gas density, ρ, the isothermal sound
speed, cis, and the gravitational potential, Φ, the force balance is written as

−c
2
is

ρ

dρ

dr
− dΦ

dr
= 0, (4.1)

and the gravity is calculated from a density distribution as

−dΦ
dr

= −GMr

r2
= −4πG

r2

∫ r

0
ρr2dr, (4.2)

for a spherical symmetric cloud, where Mr represents the mass contained inside the radius r. The
expression for a cylindrical cloud is

−dΦ
dr

= −2Gλr
r

= −4πG

r

∫ r

0
ρrdr, (4.3)

where λr represents the mass per unit length within a cylinder of radius being r.

For the spherical symmetric case, the equation becomes the Lane-Emden equation with the poly-
tropic index of ∞ (see Appendix D.1). This has no analytic solutions. However, the numerical
integration gives us a solution shown in Figure 4.1 (left). Only in a limiting case with the infinite
central density, the solution is expressed as

ρ(r) =
c2is
2πG

r−2. (4.4)

Increasing the central density, the solution reaches the above Singular Isothermal Sphere (SIS) solu-
tion.

On the other hand, a cylindrical cloud has an analytic solution (Ostriker 1964) as

ρ(r) = ρc

(
1 +

r2

8H2

)−2

, (4.5)

where

H2 = c2is/4πGρc. (4.6)

81
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Figure 4.1: Radial density distribution. A spherical cloud (left) and a cylindrical cloud (right). In the
right panel, solutions for polytropic gases with Γ = 1.1 (relatively compact) and Γ = 0.9 (relatively
extended) are plotted as well as the isothermal one.

Far from the cloud symmetric axis, the distribution of equation (4.5) gives

ρ(r) ∝ r−4, (4.7)

while the spherical symmetric cloud has

ρ(r) ∝ r−2 (4.8)

distribution.

Problem 1

Show that the SIS is a solution of equations (4.1) and (4.2).

Problem 2

Show that the density distribution of [equation (4.5)] is a solution of equations (4.1) and (4.3).

4.1.1 Bonnor-Ebert Mass

In the preceding section [Fig.4.1 (left)], we have seen the radial density distribution of a hydrostatic
configuration of an isothermal gas. Consider a circumstance that such kind of cloud is immersed in
a low-density medium with a pressure p0. To establish a pressure equilibrium, the pressure at the
surface c2isρ(R) must equal to p0. This means that the density at the surface is constant ρ(R) = p0/c

2
is.

Figure 4.2 (left) shows three models of density distribution, ρc = ρ(r = 0) = 10ρs, 10
2ρs, and

103ρs. Comparing these three models, it should be noticed that the cloud size (radius) decreases with
increasing the central density ρc. The mass of the cloud is obtained by integrating the distribution,
which is illustrated against the central-to-surface density ratio ρc/ρs in Figure 4.2 (right). The y-axis
represents a normalized mass as m = M/[4πρs(cis/

√
4πGρs)

3]. The maximum value of m = 4.026
means

Mmax � 1.14
c2is

G3/2p
1/2
0

. (4.9)
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This is the maximum mass which is supported against the self-gravity by the thermal pressure with an
isothermal sound speed of cis, when the cloud is immersed in the pressure p0. This is called Bonnor-
Ebert mass [Bonnor (1956), Ebert (1955)]. It is to be noticed that the critical state Mcl = Mmax is
achieved when the density contrast is rather low ρc � 16ρs ≡ ρcr.

Another important result from Figure 4.2 (right) is the stability of an isothermal cloud. Even for
a cloud with Mcl < Mmax, any clouds on the part of ∂Mcl/∂ρc < 0 are unstable, whose clouds are
distributed on the branch with ρc > ρcr. This is understood as follows: For a hydrostatic cloud the
mass should be expressed with the external pressure and the central density [Fig.4.2 (right)] as

Mcl =Mcl(pext, ρc). (4.10)

In this case, a relation between the partial derivatives such as

(
∂Mcl

∂pext

)
ρc

·
(
∂pext
∂ρc

)
Mcl

·
(
∂ρc
∂Mcl

)
pext

= −1, (4.11)

is satisfied, unless each term is equal to zero. Figure 4.1 (left) shows that the cloud mass Mcl is a
decreasing function of the external pressure pext = ρsc

2
is, if the central density is fixed. Since this

means (
∂Mcl

∂pext

)
ρc

< 0, (4.12)

equation (4.11) gives us (
∂pext
∂ρc

)
Mcl

·
(
∂ρc
∂Mcl

)
pext

> 0. (4.13)

For a cloud with ρc < ρcr = 16pext/c
2
is the mass is an increasing function of the central density as

(
∂Mcl

∂ρc

)
pext

> 0. (4.14)

Thus, equation (4.13) leads to the relation

(
∂ρc
∂pext

)
Mcl

> 0, (4.15)

for ρ < ρcr. This means that gas cloud contracts (the central density and pressure increase), when
the external pressure increases. This is an ordinary reaction of a stable gas.

On the other hand, the cloud on the part of (∂Mcl/∂ρc)pext < 0 (for 16<∼ρc/(pext/c2is)<∼2000)
behaves (

∂ρc
∂pext

)
Mcl

< 0, (4.16)

and this represents that an extra external pressure decreases the central density and thus the pressure.
Pressure encourages expansion. This reaction is unstable.

4.1.2 Equilibria of Cylindrical Cloud

In Figure 4.1 (right) we plotted the structure for a polytropic cloud. Inner structure is not dependent
of Γ, it is clear the slope of the outer envelope is dependent on Γ.
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Figure 4.2: (Left) radial density distribution. Each curve has different ρc. The x-axis denotes the
radial distance normalized by a scale-length as c2is/

√
4πGpext. It is shown that the radius increases

with decreasing ρc in this range (ρc = (10, 102, 103) × pext/c
2
is). (Right) The relation between mass

(Mcl) and the central density (ρc) is plotted, under the condition of constant external pressure. The
x-axis represents the central density normalized by ρs ≡ pext/c

2
is. The y-axis represents the cloud

mass normalized by 4πρs(cis/
√
4πGρs)

3.

1. In the case of the spherically symmetric, consider a polytrope (p ∝ ρΓ) with Γ < 6/5 (at least
the envelope of Γ = 6/5 cloud extends to ∞.), in which gas extends to ∞. if ρ ∝ r−p, the
mass inside of r is proportional to Mr ∝ r3−p. Thus, the gravity per unit volume at a radius
r, GMρ/r2, is proportional to GMρ/r2 ∝ r1−2p. On the other hand the pressure force is
|(∂p/∂r)| = (∂p/∂ρ)|(∂ρ/∂r)| ∝ (r−p)Γ−1r−p−1 ∝ r−pΓ−1. These two powers become the same,
only if p = 2/(2 − Γ).

2. In the case of cylindrical cloud with Γ ≤ 1, the mass per unit length λ ∝ r2−p. The gravity at
r, Gλρ/r ∝ r1−2p. Note that the power is the same as the spherical case. Since the power of
the pressure force should be the same as the spherical case, the resultant p should be the same
p = 2/(2 − Γ).

The case of Γ = 0.9, an envelope extending to a large radius indicates the power-law distribution
much shallower than that of the isothermal Γ = 1 one.

4.2 Virial Analysis

Hydrodynamic equation of motion using the Lagrangean time derivative [eq.(B.3)] is

ρ

(
dv

dt

)
= −∇p− ρ∇Φ. (4.17)

Multiplying the position vector r and integrate over a volume of a cloud, we obtain the Virial relation
as

1

2

d2I

dt2
= 2(T − T0) +W, (4.18)

where

I =

∫
ρr2dV, (4.19)
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is an inertia of the cloud,

T =

∫ (
3

2
pth +

1

2
ρv2
)
dV =

3

2
p̄Vcl, (4.20)

is a term corresponding to the thermal pressure plus turbulent pressure,

T0 =

∫
S
Pthr · ndS =

3

2
P0Vcl (4.21)

comes from a surface pressure, and

W = −
∫
ρr · ∇ΦdV = −3

5

GM2

R
(4.22)

is a gravitational energy. To derive the last expression in each equation, we have assumed the cloud
is spherical and uniform. Here we use a standard notation as the radius R, the volume Vcl = 4πR3/3,
the average pressure P̄ , and the mass M .

To obtain a condition of mechanical equilibrium, we assume d2I/dt2 = 0. Equation (4.18) becomes

4πp̄R3 − 4πp0R
3 − 3

5

GM2

R
= 0. (4.23)

Assuming the gas is isothermal p = c2isρ, the average pressure is written as

p̄ = c2isρ̄ = c2is
3M

4πR3
. (4.24)

Using equation (4.24) to eliminate p̄ from equation (4.18), the external pressure is related to the mass
and the radius as

p0 =
3c2isM

4πR3
− 3GM2

20πR4
. (4.25)

Keeping M constant and increasing R from zero, p0 increases first, but it takes a maximum, p0,max =
3.15c8is/(G

3M2), and finally declines. This indicates that the surface pressure must be smaller than
p0,max for a cloud to be in the equilibrium. In other words, keeping p0 and changing R, it is shown
that M has a maximum value to have a solution. The maximum mass is equal to

Mmax = 1.77
c4is

G3/2p
1/2
0

. (4.26)

The cloud massive than Mmax cannot be supported against the self-gravity. This corresponds to the
Bonnor-Ebert mass [eq.(4.9)], although the numerical factors are slightly different.

4.2.1 Magnatohydrostatic Clouds

Consider here the effect of the magnetic field. In the magnetized medium, the Lorentz force

F =
1

4π
(∇×B)×B = − 1

8π
∇B2 +

1

4π
(B · ∇)B (4.27)

works in the ionized medium. The first term of equation (4.27), which is called the magnetic
pressure, has an effect to support the cloud against the self-gravity.
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The virial analysis is also applicable to the magnetohydrostatic clouds. The terms related to the
magnetic fields are

M =

∫
B2

8π
dV +

∫
S
(r · B)B · ndS −

∫
S

B2

8π
r · ndS

�
∫
B2 −B2

0

8π
dV � 1

6π2

(
Φ2
B

R
− Φ2

B

R0

)
, (4.28)

where ΦB represents a magnetic flux and it is assumed to be conserved if we change the radius, R,
that is ΦB = πB0R

2
0 = πBR2. Equation (4.23) becomes

4πp̄R3 − 4πp0R
3 − 3

5

GM2

R
+

1

6π2
Φ2
B

R
= 0, (4.29)

where we ignored the term 1
6π2

Φ2
B

R0
. The last two terms are rewritten as

3

5

G

R

(
M2 −M2

Φ

)
, (4.30)

where MΦ is defined as 3GM2
Φ/5 = Φ2

B/6π
2.

This shows the effects of the magnetic fields:

1. B-fields effectively reduce the gravitational mass asM2−M2
Φ =M2−5Φ2

B/(18π
2G). This plays

a part to support a cloud.

2. However, even a cloud contracts (decreasing its radius from R0 to R), the ratio of the gravita-
tional to the magnetic terms keeps constant since these two terms are proportional to ∝ R−1.
Thus, if the magnetic term does not work initially, the gravitational term continues to predom-
inate over the magnetic term.

If M < MΦ, a sum of last two terms in equation (4.29) is positive. Since the second term of rhs of
equation (4.25) is positive, there is one R which satisfies equation (4.29) irrespective of the external
pressure p0. While, if M > MΦ, there is a maximum allowable external pressure p0. Therefore,
M = MΦ gives a criterion whether the magnetic fields work to support the cloud or not. More
realistic calculation [Mouschovias (1976a,1976b), Tomisaka et al (1988)] gives us a criterion

G1/2 dm

dΦB
=
G1/2σ

B
= 0.17 � 1

2π
, (4.31)

where σ and B means the column density and the magnetic flux density. A cloud with a mass

M >
ΦB

2πG1/2
(4.32)

is sometimes called magnetically supercritical, while that with

M <
ΦB

2πG1/2
(4.33)

is magnetically subcritical.
More precisely speaking, the criterion showed in equations (4.32) and (4.33) should be applied for

a cloud which has a much larger mass than the Bonnor-Ebert mass. That is, even without magnetic
fields, the cloud less-massive than the Bonnor-Ebert mass has a hydrostatic configuration shown in
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Figure 4.3: Cloud mass is plotted against the central density. Respective curves correspond to clouds
with different magnetic flux. Plasma beta of the external medium (β0) specifies the magnetic flux.

Figure 4.2 (left). The cloud with central density of ρc = 10 has a stable density distribution. Mag-
netohydrostatic clouds with different magnetic fluxes are calculated by Mouschovias (1976a,1976b)
and Tomisaka et al (1988)]. Mass of the cloud is obtained against the central density, which is an in-
creasing function of magnetic flux (Fig. 4.3). The maximum allowable mass (critial mass) supported
by some magnetic flux increases with the magnetic flux. To fit the numerical results, Tomisaka et al
(1988) obtained an expression for the critical mass when the cloud has a mass-to-flux ratio dm/dΦB ,
the isothermal sound speed cis, and the external pressure p0 as

Mcr = 1.3

{
1−

[
1/2π

G1/2dm/dΦB |r=0

]2}−3/2
c4s

p
1/2
0 G3/2

. (4.34)

This shows that the critical mass is a decreasing function of the mass-to-flux ratio or increasing
function of the magnetic flux. And the critical mass becomes much larger than the Bonnor-Ebert

mass � c4s/(p
1/2
0 G3/2) only when the mass-to-flux ratio at the center of the cloud is reaching 1/2π

at which the term in the curry bracket goes to zero. Hereafter, we call here the cloud/cloud core
with mass larger than the critical mass Mcr a supercritical cloud/cloud core. The cloud/cloud core
less-massive than the critical mass is subcritical.
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4.3 Subcritical Cloud vs Supercritical Cloud

We have seen there is a critical mass above which the cloud has no (magneto)hydrostatic configuration
but below which the cloud has at least an equilibrium state. This gives us an idea that there are
two kind of clouds/cloud cores: that with a mass larger than the critical mass which has to collapse
dynamically and that with a mass smaller than the critical mass which is in an equilibrium state.
In the density range of 104cm−3<∼n<∼1010cm−3, the interstellar gas is essentially isothermal. In this
region a major cooling agent is dusts; that is, the dust is heated by the collision of molecules. The
excess energy liberated at the collision increases the dust temperature. Finally the thermal emission
from the dust cools down the dust again. By this process, the thermal energy of the gas is reduced.
Therefore, we consider the cloud/cloud core is isothermal and study the collapse of the isothermal
cloud.

Since the supercritical cloud has no hydrostatic configuration, it must evolve in a dynamical way.
On the other hand, since the subcritical cloud is in a static state, it evolves in much longer time-scale
of the free-fall time. Such cloud evolves by the effect called the ambipolar diffusion.

4.3.1 Observation of Magnetic Field Strength

To determine whether a cloud is magnetically subcritical or supercritical, we have to measure the
strength of the magnetic field.

Zeeman Splitting Method

If the atoms and molecules are permeated by magnetic field B, in the normal Zeeman splitting, the
transition splits into three lines

ν1 = ν0 − β|B|, (4.35)

ν2 = ν0, (4.36)

ν3 = ν0 + β|B|, (4.37)

where β = eh̄/2me = 1.3996HzμG−1 is the Bohr magneton constant. This comes from the fact
that the upper and lower levels are splited into Um = mlβB using the magnetic quantum number
ml. HI λ = 21cm, OH (maser emissions and thermally excited emissions), H2O maser emissions
are used to measure the magnetic field strength. Figure 4.4 represents the correlation between the
magnetic field strength and gas density compiled by Fiebig & Guesten (1989), which indicates that
B is approximately proportional to ρ1/2

Chandrasekhar-Fermi Method

Chandrasekhar & Fermi (1953) obtained the strength of interstellar magnetic field. Applying the same
method to the molecular cloud, Crutcher et al. (2004) obtained the magnetic field strength in the
plane of the sky in three prestellar clouds as � 80μG (L183), � 140μG (L1544), and � 160μG (L43).
The method is as follows: Using the phase velocity of transverse Alfvén wave, VA = B/(4πρ)1/2, the
wave is described as

y = A cos [k(x− VAt)] , (4.38)

where y is a displacement in the plane of the sky and perpendicular to the mean magnetic field. This
gives

V 2
A

(
∂y

∂x

)2

=

(
∂y

∂t

)2

, (4.39)
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Figure 4.4:

where X represents the time average. The rhs of the equation, which is the one-dimensional velocity
dispersion in y direction, seems to be equal to the velocity dispersion in the line-of-sight ΔV as(

∂y

∂t

)2

= ΔV 2. (4.40)

The lhs of the equation is given with a dispersion of polarization direction Δφ (rad)(
∂y

∂x

)2

= Δφ2, (4.41)

in which the lhs is measured by the wave-pattern of the Alfvén wave. Therefore, the magnetic field
strength is given as

B⊥ = (4πρ)1/2
ΔV

Δφ
(4.42)

4.3.2 Observation of Mass-to-Flux Ratio

Figure 4.5 shows the mass-to-flux ratio normalized with the critical value

λC ≡
(
M
Φ

)
obs(

M
Φ

)
crit

(4.43)

where (
M

Φ

)
crit

=
1

2πG1/2
(4.44)

is the critical mass-to-flux ratio which is obtained numerically from equation (4.31). λC > 1 represents
a supercritical cloud while λC < 1 represents a subcritical cloud.

Figure 4.5 indicates cloud cores are more or less found near the critical mass-to-flux ratio. They
are not distributed either in the regions λC � 1 (very supercritical) or λC � 1 (very subcritical).

4.4 Ambipolar Diffusion

4.4.1 Ionization Rate

In the dense clouds, the ionization fraction is low. Since the uv/optical radiations from stars can not
reach the cloud center, potential ionization comes from the cosmic ray particles. In this case the rate



90 CHAPTER 4. LOCAL STAR FORMATION PROCESS

Figure 4.5: Mass-to-flux ratio is plotted against the column density. Dots are obtained from Zeeman
splitting and stars are Chandrasekhar-Fermi method.

Figure 4.6: Ionization fractions X/nH are plotted against the number density nH. The ionization rate
of an H2 molecule by cosmic rays outside the cloud is taken ζ0 = 1× 10−17s−1. 20% of C and O and
2% of metallic elements are assumed to remain in the gas phase and the rest in grains.
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of ionization per volume is given as ζnn, where ζ ∼ 10−17s−1. In Figure 4.6, the ionization fraction for
various density is shown (Nakano, Nishi, & Umebayashi 2002). This clearly shows that the fraction of

ions decrease approximately in proportion to n
−1/2
H for nH<∼108cm−3. This is understood as follows:

Equilibrium balance between one kind of ion m+ and its neutral m0

m0 ↔ m+ + e−, (4.45)

is considered. The recombination (reaction from the right to left) rate per unit volume is expressed
αnenm+ , while the ionization rate (left to right) per unit volume is ζnm0 , where α means the recom-
bination rate coefficient. Nakano (1984) obtained in the range of 102cm−3<∼n<∼108cm−3

ρi = Cρ1/2n , (4.46)

where the numerical factor C = 4.46 × 10−16g1/2 cm−3/2.

4.4.2 Ambipolar Diffusion

The ionization fraction of the gas in the cloud is low. Neutral gas and the ions are coupled via
mutual collisions and ions are coupled with the magnetic field. Thus, the neutral molecules, a major
component of the gas, are coupled with the magnetic field indirectly via ionized ions. Equation of
motion for the molecular gas is

ρ
dun

dt
= −c2s∇ρ− ρ∇ψ + ρrω2er + F , (4.47)

where the forces appeared in the rhs represent, respectively, the pressure force, the self-gravity, the
centrifugal force, and the force exerted on the neutral component per unit volume through two-body
collision with ions. The friction force has a form

F = ρiρnγ(vi − vn). (4.48)

We have assumed ρ � ρn since the mass density of the charged component is much smaller than that
of the neutral one. On the other hand, that for ions is

ρi
du

dt
=

1

4π
(∇ × B)×B − F , (4.49)

where we ignored the pressure and self-gravity forces compared with the Lorentz force. If the inertia
of the ions are ignored [lhs of eq.(4.49)=0], equations (4.47) and (4.49) give the equation of motion
similar to that of the one-fluid as follows:

ρ
du

dt
= −c2s∇ρ− ρ∇ψ + ρrω2er +

1

4π
(∇ × B)×B. (4.50)

Ignoring the inertia of the ions, equation (4.49) indicates that the friction force should be balanced
with the Lorentz force as

F =
1

4π
(∇ × B)×B. (4.51)

Using equations (4.46) and (4.48), this gives the drift velocity of ions against the neutrals as

vD ≡ vi − vn,

=
F

ρiρnγ
,

=
1

4πρiρnγ
(∇ × B)×B,

=
1

4πCγρ
3/2
n

(∇ × B)×B. (4.52)
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Figure 4.7: Relation central density ρc against mass-to-flux ratio M/Φ. Plane-parallel and axisym-
metric models are illustrated in the left and right panels, respectively.

Since the Lorentz force works outwardly, the drift velocity vD also points outwardly. Viewing from
the ions and magnetic field lines, vn − vi points inwardly. Thus, the mass in a flux tube varies with
time; that of the cloud center increases while that of the cloud surface decreases. The ambipolar
diffusion is a process to change the mass distribution against the magnetic flux tube.

It is useful to derive the timescale of ambipolar diffusion. The characteristic timescale of magnetic
flux loss is given as τA = L/|vD|, where L represents the size of the cloud. This gives

τA � 4πCγρ3/2L

|(∇×B)×B| (4.53)

� 3× 106yr

(
n

104H2 cm−3

)3/2 ( B

30μG

)−2 ( L

0.1pc

)2

. (4.54)

This ambipolar diffusion timescale is several times longer than the dynamical contraction timescale
(eq.[2.26]) or free-fall timescale as

tff =

(
3π

32Gρ̄

)1/2

(4.55)

� 0.5× 106yr

(
n

104H2 cm−3

)−1/2

. (4.56)

Thus, the magnetic flux of the cloud is not be lost during the dynamical contraction (� free-fall).
How is the structure affected by the increase of mass/flux ratio at the cloud center? Here, we will

derive the relation between the mass-to-flux ratio and central density and answer the question. Nu-
merical calculation is necessary for the axisymmetric (realistic) cloud. However, this can be obtained
for the case of a plane-parallel disk in which the magnetic field is running parallel to the disk, For
the plane-parallel disk the hydrostatic balance is achieved as

∂

∂z

(
p+

B2

8π

)
= −ρ∂ψ

∂z
= −2πGρσ, (4.57)
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where σ =
∫ z
−z ρdz. Equation (4.57) is integrated to obtain the relation between the variables at the

center z = 0 as

pc +
B2

c

8π
−
(
ps +

B2
s

8π

)
=
πG

2
σ2s , (4.58)

where we used dσ/dz = 2ρ. This is rewritten as

ρc
ρs

+
1

8π

(
Bc

ρc

)2 ρs
c2s

(
ρc
ρs

)2

− 1

8π

(
Bs

ρs

)2 ρs
c2s

=
πGσ2s
2ρsc2s

+ 1. (4.59)

In the second term of lhs, yc ≡ (ρc/Bc)(cs/ρ
1/2
s ) is a nondimensional mass flux ratio at the center and

this is related to the center-to-surface density ratio ρ′c ≡ ρc/ρs. Using these nondimensional variables,
equation (4.59) is expressed as

ρ′c +
(ρ′c)2

8πy2c
− 1

8πy2s
= ρ̄′c, (4.60)

where ρ̄′c ≡ πGσ2s/(2ρsc
2
s) + 1 represents the central density necessary for the disk to be supported

without a magnetic field (y → ∞). Figure 4.7 (left) illustrates this relation. This shows that if the
central mass-to-flux ratio increases (moving upward), the central density increases. In low density,
ρ′c � ρ̄′c, equation (4.60) indicates that ρ′c ∝ yc ∝ ρc/Bc. This means that on the low density regime,
the density increases but the strength of magnetic field does not increase. Equation (4.60) also
indicates that yc increase much as yc → ρ̄′cys when ρ′c → ρ̄′c. This relation between mass-to-flux ratio
and the central density is well fitted to the numerical calculation of plane-parallel disk cloud driven
by the ambipolar diffusion by Mouschovias, Paleologou, & Fiedler (1985). Does this indicate that the
mass-to-flux ratio increases much when the central density increases, for example, from 104cm−3 to
106cm−3?

From this point, quasistatic evolution of the magnetized cloud was first studied by Nakano (1979)
adopting a method seeking for magnetohydrostatic configuration (Mouschovias 1976a, 1976b). He
obtained that the magnetic flux to mass ratio near the center of the cloud does not decrease much
below a critical density above which magnetohydrostatic configurations no more exist. Paleologou &
Mouschovias (1983), Shu (1983), and Mouschovias, Paleologou, & Fiedler (1985) gave a completely
different result. That is, the magnetic flux to mass ratio near the center decreases much when the
density becomes larger than n>∼106cm−3. Critical discussion has been done between them1. However,
we have now realized that the difference comes from the geometry assumed.

Relation of the mass-to-flux ratio to the central density for the axisymmetric realistic (not plane-
parallel disk) cloud is plotted in Figure 4.7 (right) (Tomisaka, Ikeuchi, & Nakamura 1990). The
central mass-to-flux ratio increases by the ambipolar diffusion. This increases the central density.
Lines with arrows indicate the evolutionary paths driven by the ambipolar diffusion. It is to be
noticed that the relation is completely different from that of the plane-parallel disk. Increase of
the mass-flux ratio is small although the central density increases much. This indicates that in the
quasistatic evolution driven by the ambipolar diffusion the mass-flux ratio does not increase much in
contrast to the plane-parallel case.

In fully ionized plasma, the magnetic field is coupled to the matter. However, in the low ionized
gas the magnetic field is coupled only to the ions. Thus the induction equation of magnatic field

1One of the reasons why large increase in the mass/flux ratio is favored is understood as follows: There have
been a long-standing “magnetic flux problem of stars” in which the magnetic flux of, say, 1M� main-sequence star
Φ ∼ XXGcm2 is much smaller than that of the parent cloud Φ ∼ XXGcm2. The magnetic flux must be reduced in
the star formation process. If the mass-flux ratio increases much in these density range, this might resolve the magnetic
flux problem of stars.
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should be written
∂B

∂t
+∇ × (vi ×B) = 0. (4.61)

This leads to the final expression as

∂B

∂t
+∇ × (vn × B)+∇ ×

{
1

4πCγρ
3/2
n

[(∇ × B)×B] × B

}
= 0, (4.62)

where we used the expression of the drift velocity [equation (4.52)]. In the isothermal cloud, there
is a maximum mass supported by the magnetic field. Since in the subcritical cloud M < Mcr the
magnetic flux escapes from the center, the critical mass decreases with time. After the critical mass
becomes smaller than the actual mass (Mcl > Mcr), there is no hydrostatic configuration. The cloud
evolves into the supercritical cloud region and experiences dynamical collapse.

4.5 Dynamical Collapse

Figure 4.8: Evolution of isothermal clouds massive than the Bonnor-Ebert mass. Density (left) and
velocity (right) distributions are illustrated. Solid lines show the cores of the preprotostellar phase
(prestellar core) and dashed lines show those of protostellar phase (protostellar core). The evolution
of the protostellar phase is studied by the sink-cell method, where we assume the gas that entered in
the sink-cells is removed from finite-difference grids and add to the point mass sitting at the center
of the sink-cells which corresponds to a protostar.

In 1969, Larson (1969) and Penston (1969) found a self-similar solution which is suited for the
dynamical contraction. Figure 4.8 is a radial density distribution for a spherical collapse of an
isothermal cloud, where the cloud has a four-times larger mass than that of the Bonnor-Ebert mass.
Although the figure is taken from a recent numerical study by Ogino et al (1999), a similar solution
was obtained in Larson (1969). We can see that the solution has several characteristic points as
follows:
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1. The cloud evolves in a self-similar way. That is, the spatial distribution of the density (left) at
t = 0.326 is well fitted by that at t = 0.293 after shifting in the −x and the +y directions. As
for the infall velocity spatial distribution, only a shift in the −x direction is needed.

2. The density distribution in the envelope, which is fitted by ∝ r−2, is almost unchanged. Only
the central part of the cloud (high-density region) contracts.

3. The time before the core formation epoch (the core formation time t0 is defined as the time at
which the central density increases greatly) is a good indicator to know how high the central
density is. That is, reading from the figure, at t − t0 = 0.003 (t = 0.326) the central density
reaches ρc � 104 and at t− t0 = 0.036 (t = 0.293) the density is equal to ρc � 102. This shows
the maximum (central) density is approximately proportional to (t− t0)

2, which is reasonable
from the description of the free-fall time ∝ ρ−1/2.

The basic equations of spherical symmetric isothermal flow are

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρv) = 0, (4.63)

∂v

∂t
+ v

∂v

∂r
+
c2is
ρ

∂ρ

∂r
+
GM

r2
= 0, (4.64)

M(r, t) = M(0, t) +

∫ r

0
4πr′2ρ(r′, t)dr′, (4.65)

where M(r, t) represents the mass included in the radius r and M(0, t) denotes the mass of the
protostar. A self-similar solution which has a form

ρ(r, t) =
Ω(ξ)

4πG(t − t0)2
, (4.66)

v(r, t) = cisV (ξ), (4.67)

M(r, t) =
c3is|t− t0|

G
m(ξ) (4.68)

ξ =
r

cis|t− t0| , (4.69)

should be found, where Ω and V are functions only on ξ. For example, equation (4.66) asks the
shape of the density distribution is the same after resizing of equation (4.69) r → r/cs|t − t0| and
re-normalizing ρ→ ρ · 4πG(t− t0)

2 as Ω(ξ). Since

∂

∂t
=

d

dξ

(
∂ξ

∂t

)
r
=

r

cis|t− t0|2
d

dξ
, (4.70)

and
∂

∂r
=

d

dξ

(
∂ξ

∂r

)
t
=

1

cis|t− t0|
d

dξ
, (4.71)

the basic equations for the spherical symmetric model yield

m = (ξ − V )ξ2Ω, (4.72)

[
(ξ − V )2 − 1

] dV
dξ

=

[
Ω(ξ − V )− 2

ξ

]
(ξ − V ), (4.73)

(ξ − V )2 − 1

Ω

dΩ

dξ
=

[
Ω− 2

ξ
(ξ − V )

]
(ξ − V ), (4.74)
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Equations (4.73) and (4.74) have a singular point at which (ξ−V )2−1 = 0 or V = ξ±1. Since the point
of ξ =const moves with cis, the flow velocity relative to this ξ =const is equal to v− cisξ = (V − ξ)cis.
Thus the singular point ξ∗ at which V = ξ± 1 corresponds to a sonic point. Therefore, since the flow
has to pass the sonic point smoothly, the rhs of equations (4.73) and (4.74) have to be equal to zero
at the singular point ξ∗. This gives at the sonic pont ±ξ∗ > 0,

Ω− 2(ξ − V )

ξ
= Ω(ξ − V )− 2

ξ
= 0, (4.75)

which leads to

V∗ = ξ∗ ∓ 1, (4.76)

Ω∗ = ± 2

ξ∗
. (4.77)

These equations (4.72), (4.73) and (4.74) have an analytic solution

V (ξ) = 0, Ω =
2

ξ2
, m = 2ξ, −∞ < ξ <∞ (4.78)

This is a solution which agrees with the Chandrasekhar’s SIS. Generally, solutions are obtained only
by numerical integration. |ξ → ∞| the solution have to converge to an asymptotic form of

V (ξ) = V∞ − A− 2

ξ
+
V∞
ξ2

+
4V∞ + (A− 2)(A − 6)

6ξ3
+O(ξ−4), (4.79)

Ω(ξ) =
A

ξ2
− Ω∞(A− 2)

2ξ4
+O(ξ−6), (4.80)

This shows that for sufficiently large radius the gas flows with a constant inflow velocity V∞cis.
This has a solution in which the density and the infall velocity should be regular with reaching

the center (ξ � 1). Such kind of solution is plotted in Figure 4.9 (left) and Figure 4.9 (right) with
t < 0. This time evolution is expected from the self-similar solution. This shows that

ρ

{
� ρc
∝ r−2

(in the central region)
(in the outer envelope)

(4.81)

v

{
∝ r
� 3.28cis

(in the central region)
(in the outer envelope)

(4.82)

Reaching the outer boundary the numerical solution (Fig.4.8) differs from the self-similar solution
(Fig.4.9). For example, v is reduced to zero in the numerical simulations, while it reaches a finite value
3.28 in the self-similar solution. And as for the density distribution, ρ drops near the outer boundary
in the numerical simulations while it decreases proportional to ∝ r−2. However, in the region except
for the vicinity of the outer boundary the self-similar solution expresses well the dynamical collapse
of the spherical isothermal cloud. This solution gives the evolution of a pre-protostellar core formed
in a supercritical cloud/cloud core.

4.5.1 Inside-out Collapse Solution

In 1977 Shu found another self-similar solution which is realized after a central protostar with in-
finitesimal mass is formed in the singular isothermal sphere solution. The gas begins to accrete to the
protostar. Outside the region where the accretion occurs, the initial SIS is kept unchanged, since the
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Figure 4.9: A self-similar solution indicating a dynamical collapse of isothermal spherical cloud
(Larson-Penston solution). Spatial distribution of the density and inflow velocity which are expected
from the self-similar solution are plotted. Dashed lines show the evolution prestellar core and solid
lines show that of protostellar core. Taken from Hanawa (1999).
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SIS is a hydrostatic solution. And the front of accretion expands radially outward in time. Since the
inflow region expand outwardly, he called it the inside-out collapse solution. In Figure 4.10, the
evolution is shown for density and inflow velocity. This solution gives the evolution of a protostellar
core formed in a subcritical cloud/cloud core.

Using equations (4.79) and (4.80) and assuming the inflow velocity should reduce at large radius,
we obtain

V (ξ) = −A− 2

ξ
− (A− 2)(A− 6)

6ξ3
+ · · · , (4.83)

Ω(ξ) =
A

ξ2
− A(A− 2)

2ξ4
+ · · · . (4.84)

Since ξ → ∞ means t→ t0 (if r is finite), Ω(ξ) → A/ξ2 means that

ρ(r, t0) =
Ac2is

4πGr2
. (4.85)

Comparing with the SIS, when A = 2 this gives the SIS and when A > 2 this gives a density
distribution in which the pressure is inefficient and the cloud is contracting. The solution with A > 2
is obtained by a procedure as (1) at a sufficiently large radius ξ1, calculate V (ξ1) and Ω(ξ1). (2) from
these values, integrate equations (4.73) and (4.74) inwardly. Figure 4.10 show the solution of this
type. The solution with A > 2 inflow speed is accelerated towards the center. Decreasing A (A→ 2),
it is shown that an outer part ξ>∼1 reaches V → 0. For A = 2+, the solution reaches the singular line
V = −ξ+1 at ξ = 1 (V = 0) 2. Since V = 0 and Ω = 2 at ξ = 1, this solution with A = 2+ converges
to the SIS at ξ = 1. This means that if there is an infinitesimally small amount of excess mass at the
center of SIS, the accretion begins from the center while outside a radius the cloud is left static. The
inner part of the solution ξ<∼1, V and Ω are well expressed as V ∝ ξ1/2 and Ω ∝ ξ3/2.

The power-law distributions of V ∝ ξ1/2 and Ω ∝ ξ3/2 are explained as follows: Conservation of
the total energy of an inflowing gas shell is expressed as

v2

2
− GMr

r
= −GMr0

r0
, (4.86)

where r0 denotes the initial radius of a gas shell and Mr0 = Mr represents the mass inside the gas
shell. Neglecting GMr0/r0 compared with the term GMr/r, this gives

v �
(
2GMr

r

)1/2

∝ r−1/2, (4.87)

where we assumed a major part of Mr comes from the mass of a protostar M∗, that is, Mr =
M∗+

∫ r
0 ρ4πr

2dr �M∗ Since the average density inside the radius r ρ̄(< r) =
∫ r
0 ρ4πr

2dr/
∫ r
0 4πr2dr =

3ρ(r) for SIS distribution, the time necessary for a gas shell to reach the center is proportional to
∝ ρ̄(< r)−1/2 ∝ ρ(r)−1/2 ∝ r1 ∝ (t − t0)

1, where we used a fact that the front of accretion expands
with a constant speed csis. This means that the time necessary for the gas shell to travel from the
radius of the accretion wave front to the center is proportional to t− t0. Since the mass of the shell
which begins accretion in a unit time is equal to ρ(r)4πr2cis and is constant irrespective of t − t0.
These two facts indicate that the mass accretion rate is constant in time. That is,

Ṁ = 4πr2ρv = const. (4.88)

2This means A = 2 + ε and ε > 0 and → 0
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Figure 4.10: Self-similar solution which shows the inside-out collapse. (Left:) Infall velocity (−V =
−v/cis) is plotted against the similarity variable ξ ≡ r/cis(t− t0). Three curves correspond to models
A = 2.4, 2.1, and 2.01. (Right:) Density (Ω = 4πGρ(t− t0)2) is plotted against the similarity variable
ξ ≡ r/cis(t− t0).

Since the mass swept by the sound wave per unit time is equal to Ṁsw = 4πr2ρSIScs = 2c3s/G, the
accretion rate is proportional to c3s/G. Shu (1977) obtained the accretion rate

Ṁ = 0.975
c3s
G
, (4.89)

for SIS A = 2+. Using this equation, equations (4.87) and (4.88) indicate that the spatial density
distribution is expressed by a power-law as

ρ(r) ∝ r−3/2, (4.90)

which is valid for the region except for the vicinity of the front of the accretion.

4.5.2 Protostellar Evolution of Supercritical Clouds

What is a protostellar core formed in a supercritical cloud/cloud core? Is this different from the
inside-out solution of Shu (1977)? A solution which corresponds to the protostellar core is obtained
by Hunter (1977) and Whitworth and Summers (1985). This is a solution with t > t0 in equation
(4.69). The asymptotic behaviors of the density and infall velocity reaching the center are different
from that of the Larson-Penston self-similar solution for a prestellar collapse. That is,

Ω

{
→ finite
→ infinite

(LP)
(Inside− out)

(4.91)

V

{
→ finite
→ infinite

(LP)
(Inside− out)

(4.92)

Using the boundary conditions suitable for the inside-out type solution, another self-similar solution
is obtained. In Figure 4.9, such kind of solution is also plotted for t > 0.
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Table 4.1: Ages of stellar population observed for respective star forming regions.
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Take notice that the solutions of t < t0 (prestellar) and t > t0 (protostellar) agree with each
other at t = t0. Even if the boundary conditions at the center for the similarity variables, V and
Ω, are completely different, the difference between the two is small in the physical variable v and
ρ. Therefore, the evolution of a supercritical core is thought to be expressed by the Larson-Penston
self-similar solution extended to the protostellar core phase by Hunter (1977) and Whitworth and
Summers (1985).

Assume that we observe a protostellar core and obtain their density and infall velocity spatial
distributions. Can we distinguish which solution is appropriate for the Shu’s inside-out solution or the
extended Larson-Penston solution? This seems hard, because the structure of density and velocity
distributions are similar after the protostar is formed: the density and velocity show almost similar
power-law as ρ ∝ r−3/2 and v ∝ r−1/2 irrespective of the inside-out solution or the extended Larson-
Penston solution. The region where the infall velocity is accelerated toward the center (accretion-
dominated region) is expanding after the protostar is formed. Therefore, to distinguish between the
two solutions becomes harder and harder after the protostar is formed. The difference would be large
and we would have a definite answer which solution is appropriate to describe the cloud collapse, if we
can observe a very young protostellar core or a preprotostellar core which shows dynamical collapse.
However, since the time-scale of such a phase is much shorter than the evolved protostellar phase
or a younger preprotostellar core, the number of such kind of objects would be small (τff ∝ ρ−1/2).
Therefore, we are looking for such objects just before or after the protostar formation.

4.6 Star Formation Time Scale

There are long-standing controversy on how fast stars are form in the molecular clouds. One idea is
that the interstellar cloud is in a hydrostatic balance in which magnetic field plays an important role.
That is, the cloud is magnetically subcritical. In such a cloud, the magnetic field escapes from the
center in a timescale of τD ∼ 10× tff (see §4.4). After the mass-to-flux ratio exceeds a critical value,
dynamical contraction begins. The timescale of cloud lifetime is equal to the time scale of ambipolar
diffusion, τD ∼ 3×107yr(ρ/102H2cm

−3)−1/2. Long lifetime of molecular clouds is necessary to explain
giant molecular clouds are formed by agglomeration process of small clouds. The necessary lifetime
is estimated 107yr – 108yr.

Another idea is that the star formation timescale is much shorter than this timescale. Table 4.1
(Hartmann 2009) shows the ages of stellar population observed for respective star forming regions.
Stellar clusters and associations accompanied with molecular clouds have ages younger than 5 Myr.
And clusters and associations without accompanied molecular clouds are older than 5 Myr. This
means that a molecular cloud will disappear after 5 Myr since star formation begins in the cloud.
Since this timescale is shorter than τD, the clouds seem to continue to be formed and the turbulance
supports the cloud, the cloud core begins dynamical contraction after the turbulance decays away
within the sound crossing timescale ∼ Myr.

4.7 Accretion Rate

Using equation (2.26), the necessary time for a mass-shell at R to reach the center (free-fall time) is
expressed as

T (R) ≡
(

R3

2GM(R)

)1/2
π

2
(4.93)

(for detail of this section see Ogino, Tomisaka, & Nakamura 1999).
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Figure 4.11: Mass accretion rate against the typical density of the cloud.

Consider two shells whose initial radii are R and R+ΔR. The time difference for these two shells
to reach the center ΔT (R) can be written down using equation (4.93) as

ΔT (R) =
πR1/2

23/2(GM(R))1/2

[
3

2
− R

2M(R)

dM(R)

dR

]
ΔR. (4.94)

Mass in the shell between R and R + ΔR, ΔM ≡ M(R + ΔR) −M(R) = (dM/dR)ΔR, accretes
on the central object in ΔT (R). Thus, mass accretion rate for a pressure-free cloud is expressed as
ΔM/ΔT . This leads to the expression as

dM

dT
(R) =

23/2

π

G1/2M(R)3/2

R3/2

R
M(R)

dM(R)
dR

3
2 − R

2M(R)
dM(R)
dR

. (4.95)

This gives time variation of the accretion rate. Consider two clouds with the same density distribu-
tion ∂ log ρ/∂r but different absolute value. Since these two clouds have the same ∂ logM(R)/∂ logR,
the mass accretion rate depends only on M(R)/R, and is expressed as

dM

dT
(R) ∝M(R)3/2. (4.96)

This indicates that the accretion rate is proportional to ρ3/2, while the time scale is to ρ−1/2. This is
confirmed by hydrodynamical simulations of spherical symmetric isothermal clouds (Ogino et al.1999).
When the initial density distribution is the SIS as ρ ∝ r−2, the mass included inside R is proportional
to radius M(R) ∝ R. In this case, equation (4.95) gives a constant accretion rate in time. In Figure
4.11 we plot the mass accretion rate against the cloud density. α represents the cloud density relative
to that of a hydrostatic Bonnor-Ebert sphere. This shows clearly that the mass accretion rate is
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Figure 4.12: A model proposed to explain time variation in accretion rate by Henriksen, André, &
Bontemps (1997). The density distribution ρ(r) at t = 0 (left) and expected accretion rate (right).

proportional to α3/2 for massive clouds α > 4. This is natural since the assumption of pressure-less
is valid only for a massive cloud in which the gravity force is predominant against the pressure force.

Similar discussion has been done by Henriksen, André, & Bontemps (1997) to explain a decline
in the accretion rate from Class 0 to Class I IR objects. They assumed initial density distribution of

ρ

⎧⎨
⎩

= ρ0 (r ≤ rN ),

= ρ0
(

r
rN

)−2/D1
(r > rN ),

(4.97)

as shown in Figure 4.12. Since the free-fall-time of the gas contained in the inner core r ≤ rN is the
same, such gas reaches the center once. It makes a very large accretion rate at t = (3π/32GρN )1/2

as Ṁ = (4π/3)ρ0r
3
Nδ(t − (3π/32GρN )1/2). If D1 = 1, ρ ∝ r−2 for r>∼rN . Since M ∝ R1 and tff ∝ R,

equation (4.95) predicts Ṁ ∝ R0 ∝ t0. A constant accretion rate is expected for this power-law and
the accretion rate is converged to a constant value after the stellar mass is much larger than than
that was containd in rN , M∗ �M(rN ). If D1 = 2, ρ ∝ r−1 for r>∼rN . Since for this power M ∝ R2

and tff ∝ R1/2, equation(4.95) predicts Ṁ ∝ R3/2 ∝ t3. They gave Ṁ ∝ t3D1−3 for D1 > 2/3.

Problem

Show that Ṁ ∝ t3D1−4/3D1 if ρ ∝ r−2/D1 and D1 < 2/3 [Henriksen, André, & Bontemps (1997)].

4.8 Outflow

In chapter 1, we mentioned ‘outflows’ ejected from the protostars and pre-main-sequence stars. L1551
IRS5 is a typical example which shows a number of outflows are ejected in the course of star formation.
One is molecular outflow, whose lobes extends L ∼ 0.5(D/160pc)pc in two opposite directions from
the IRS-5 (Snell et al 1980). This is traced by CO J = 1 → 0 emission line. They estimated an
expansion velocity of the CO gas of VCO ∼ 15km s−1, a mass of 0.3M�. The dynamical age is equal to
τdyn = L/VCO ∼ 3× 104yr. Inside the CO outflow lobe, several Herbig-Haro objects are found, which
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Figure 4.13: Magneto-centrifugal wind model. Figure shows the effective potential for a gas parcel
with conserving the angular rotation speed ω0 of the disk (eq.4.99). The gas parcel is assumed to
located originally at (r0, 0). The x- and y-axes mean normalized distance from the central star as
r/r0 and z/r0. The darker color represents the deeper potential.

are emission-line nebulosities. Proper motion studies have revealed the motion of such H-H objects.
Cudworth & Herbig (1979) reported HH28 and 29 have 0.15 − 0.20arcsec yr−1, which corresponds
to 150 − 200km s−1. In a neighbor of the IR source a stellar jet is found (Mundt & Fried 1983) by
optical emission lines. Its size is equal to 17arcsec = 4 × 1016cm(D/160pc) and the jet indicates
rather well-collimated shape (the opening angle � 10◦). The relationship between these two outflows
(massive molecular outflow and less massive optical jet) are not clear yet.

4.8.1 Magneto-driven Model

To accelerate gas till supersonic speed, the magnetic force is considered to be an important player.
Blandford & Payne (1982) have proposed the “magneto-centrifugal wind model” for the acceleration
in two-dimensional axisymmetric configuration.

Figure 4.13 explains the magneto-centrifugal wind mechanism (Fig. 1 of Blandford & Payne 1982).
Consider a disk under the gravity of a central star with mass M∗. Assume that gas in the disk at the
radius r0 rotates with a Kepler speed of

vφ(r0) =

(
GM∗
r0

)1/2

. (4.98)

Consider a gas parcel whose original position was (r0, z = 0). The effective potential for the particle
rotating with an angular rotation speed of ω0 = vφ(r0)/r0 is written as

φ(r, z) = − GM∗
(r2 + z2)1/2

− 1

2
r2ω2

0 = −GM∗
r0

[
r0

(r2 + z2)1/2
+

1

2

(
r

r0

)2
]
, (4.99)

where ω0 = (GM)1/2/r
3/2
0 . (Be careful that ordinary effective potential is calculated for constant

angular momentum. However, this is for constant angular rotation speed.) The gas will co-rotate



4.8. OUTFLOW 105

with the same angular rotation speed as the disk, if the magnetic field is sufficiently strong. Equation
(4.99) corresponds the effective potential for the gas co-rotating with the disk at r0. Figure 4.13
plots the isopotential contour lines for the effective potential [eq.(4.99)]. The contour line passing the
point (r0, 0) represents Φ = −3GM/2r0. The angle between the isopotential line of Φ = −3GM/2r0
and the r-axis is equal to ±60◦ (see problem below). Further, it can be obtained that the effective
potential increases upwardly while it decreases with reaching the central star or radially outwardly.

This leads to an important conclusion that

1. If the angle between the magnetic field line and the r-axis θmag is larger than 60◦ (θmag > 60◦),
gas parcel moving along the field line must climb the effective potential. It needs extra energy
to depart from the disk.

2. If θmag < 60◦, gas parcel moving along the field line slides down the effective potential. It can
depart from the disk without extra energy.

Be careful that this is valid if the magnetic field is sufficiently strong. If the Kepler disk is threaded
with the magnetic field lines with a shallow angle, and if the angular momentum is sufficiently
transferred along the magnetic field line, in this case, the gas is accelerated by the extra centrifugal
force and finally escapes from the potential well of the central star. This mechanism is called the
“magneto-centrifugal wind” mechanism.

Problem

Show that the angle between the isopotential line which passes the point (r0, 0) and the r-axis is
equal to ±60◦. Calculate the Taylor expansion of the effective potential near the point (r0, 0) and
show that to satisfy φ(r0 +Δr,Δz) = φ(r0, 0), (Δz/Δr)

2 must be equal to 3.

Angular Momentum Transfer

In the axisymmetric case, the poloidal (z, r) and toroidal (φ) components of the magnetic field B and
current j are decoupled with each other. That is, the poloidal (Bp) and toroidal (Bφ) magnetic fields
are made by the toroidal (jφ) and poloidal (jp) electric currents, respectively. As for the Lorentz force
j ×B, the poloidal component comes from jφBp or jpBφ, while the toroidal component does from
jp×Bp. Even if there is no toroidal magnetic field (thus no poloidal electric current), there exists the
poloidal component of the Lorentz force, which acts as a pressure to counter-balance the self-gravity
(§4.2). On the other hand, the toroidal component of the Lorentz force appears only the case with
the poloidal electric current and thus toroidal component of magnetic field Bφ. This means that
the angular momentum is transferred by the magnetic field only when Bφ exists. Equation (C.14)
explains how the angular momentum density ρvφr is transferred. The left-hand side of equation
(C.14) represents the advection of the angular momentum density, while the right-hand side

r

4π

[
1

r

∂

∂r
(rBφ)Br +

∂Bφ

∂z
Bz

]
=

(
Bp

4π

)
· ∇(rBφ), (4.100)

represents the torque exerted on the gas parcel.
The induction equation of the magnetic field [eq.(C.17)] shows that Bφ is generated from poloidal

magnetic field by the effect of rotational motion vφ. This indicates that the angular momentum is
transferred as follows:

1. The toroidal component of magnetic field Bφ is amplified by the dynamo process [equation
(C.17)]. The magnetic field lines run like spiral viewing from the top like Figure 4.14.
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Pole-on View

Side View

Figure 4.14: Pole-on (left) and side (right) views of the magnetic field lines, which drive the outflow.

2. Negative torque works near region attached to the fast-rotating disk, while positive one appears
in the region connected to the radial magnetic field. The angular momentum is transferred
from inside to outside along the same field line.

3. Angular momentum received by the gas near disk surface leads the excess centrifugal force which
accelerate the gas. The disk inside which is affected by the negative torque loses its angular
momentum and insufficient centrifugal force drives further accretion.

This angular momentum transfer on the same magnetic field has a character of angular momentum
redistribution.

Centrifugal Radius

In a diffuse cloud, the centrifugal force does not play an important role. Consider a gas parcel whose
specific angular momentum is equal to j. When the gas element contracts till the distance r from
the center, the centrifugal force per mass of

v2φ
r

=
j2

r3
, (4.101)

works. Contraction stops when the gravitational acceleration GM/r2 is balanced by the centrifugal
force. Its radius (centrifugal radius) is expressed as

rc =
j2

GM
. (4.102)

Assuming that the disk is near the hydrostatic balance in z-direction, total column density is related
to the volume density on the z = 0 plane as

σ =

(
2c2sρc
πG

)1/2

. (4.103)

We can show that a nondimensional ratio of specific angular momentum to the mass is equal to the
ratio of the free-fall time to the rotation period as follow:

csj

GM
=
csωcr

2

Gσπr2
=

ωc

(2πGρc)1/2
. (4.104)
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Figure 4.15: (Left) Relation between density and temperature at the center of the cloud. (Right)
Cooling and heating rates, which are calculated for the cloud center are plotted against the density.

Many numerical simulations confirm that the contracting disk in the runaway isothermal contraction
phase has some ‘universality.’ The ratio of the free-fall time to the rotation period is approximately
equal to

ωc

(2πGρc)1/2
� 0.3, (4.105)

regardless of the initial conditions (Matsumoto, Nakamura, & Hanawa 1997). Thus, csj/GM � 0.3.
Finally, we can see the centrifugal radius as

rc =
GM

c2s

(
csj

GM

)2

� 0.3
GM

c2s
, (4.106)

increases with time in proportional to the mass M , because gas element with large j contracts later.
As the centrifugal radius increases with time, the launching point of the outflow also expands with
time.

4.8.2 Entrainment Model

Models that a protostar is driving a jet and the jet transfers its momentum to the ambient material
and forms a molecular outflow are called as entrainment models. From hydrodynamical calculations,
De Young (1986) pointed out there are two mechanisms of entrainment. The ejected jet forms a bow
shock and matter hit by the bow shock is accelerated promptly (prompt entrainment). His numerical
simulations predicted that gas within the radius from the jet axis of (1− 3)× jet radius is entrained
in this mechanism. After the bow shock has passed away, slower mechanism of entrainment works,
in which a turbulent layer is developed around the jet and the Reynolds stress in the layer transfers
the momentum (Stahler 1994). In this mechanism, the ratio of entrained ambient gas to the injected
mass by the jet is estimated as (1/3− 3) (De Young 1986).

4.9 Evolution to Star

In the proceeding sections we have seen the evolution from gas cloud to stars. However we were
restricted to the isothermal gasses. To understand the change in the temperature, we have to con-
sider the radiation which keeps the gas isothermal. Spherical symmetric radiative hydrodynamical
simulations have been studied to understand the evolutionary path from interstellar cloud to star.
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Figure 4.16: Dynamical evolution of a spherical cloud studied with RHD simulation. Density (left)
and temperature (right) distributions are plotted against the radius.
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Figure 4.15 (left) illustrates the relation between ρ and T obtained by Masunaga & Inutsuka (2000).
Several characteristic power-laws are seen in the figure. Figure 4.16 plots the density and temperature
distribution.

Isothermal Phase

Below ρ<∼10−13g cm−3, gas is essentially isothermal T ∝ ρ0. This corresponds to points number 1-3
of Figure 4.16. Since internal energy of gas is transferred to the thermal energy of dusts by collisions,
the main coolant in this regime is the dust thermal radiation. The cooling rate per mass is

Λ = 4κpσT
4, (4.107)

where κp(10K) ∼ 0.01cm2 g−1 and σ represent Planck mean absorption coefficient and the Stephan-
Boltzman constant. Main heating process for ρ<∼10−14g cm−3 is cosmic-ray heating: εCR ∼ 2 ×
10−4erg s−1 g−1 (Goldsmith & Langer 1978). Balance between these two majors asks that temperature
is constant as

T ∼ 3K

(
εCR

2× 10−4
)

)1/4 ( κp
0.01cm2 g−1

)

)1/2

. (4.108)

Heating rate due to dynamical compression,

Γ = −pd(1/ρ)
dt

� c2s(4πGρ), (4.109)

increases according to the contraction and it balances with the above cooling at the density ρA ∼
10−14g cm−3 (Masunaga, Miyama, & Inutsuka 1998).

The cloud in this phase experiences the dynamical contraction as described in section 4.5. Struc-
ture of ρ(r) and vr(r) is well represented by the Larson-Penston self-similar solution.

First Core

After ρ>∼ρA, gas is no more isothermal and becomes adiabatic. Between 10−13g cm−3<∼ρ<∼10−9g cm−3,
gas obeys the γ = 5/3 polytropes. Above the density ρ>∼ρA, the optical depth for the thermal radiation
exceeds unity τ>∼1 and radiative cooling can not compensate the compressional heating. As long as
the temperature is low as T<∼100K, neither rotation nor vibration is excited for H2 molecule. Even
H2 gas behaves like single-atom molecule. Thus γ � 5/3.

Between 10−9g cm−3<∼ρ<∼10−7.5g cm−3, the exponent becomes γ = 7/5, which characterizes that
the gas consists of two-atom molecule H2.

In this phase, relatively large gas pressure supports against the gravity and the cloud becomes
hydrostatic (points number 4-6 of Figure 4.16). This is called as “first core” made by the molecular
hydrogen. The density structure of the first core is well represented by a polytrope sphere with the
specific heat ratio of γ = 7/5 or the polytropic index n = 21

2 . From equation (D.11) in Appendix
D.1, such a polytrope has a mass-density relation as

Mc1 ∝ ρ1/10c , (4.110)

where Mc1 and ρc represent, respectively, the mass of the first core and the central density. At the
beginning, the core mass is equal to Mc1 � 0.01M�. As long as the mass increases a factor 3, the
central density increases 5 orders of magnitude.
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Figure 4.17: Explanation of nested grid method.

Second Collapse

For 10−7.5g cm−3<∼ρ<∼10−2.5g cm−3, the exponent becomes γ = 1.1. In this density range of ρ>∼10−7.5g cm−3

the temperature exceeds 103K. Due to this temperature, the hydrogen molecules begin to dissociate
and the dissociation process absorbs the energy. By this, gas becomes much softer (γ → 1) than the
first core. This introduces another dynamical contraction, the second collapse (points number 6-7 of
Figure 4.16).

Second Core

After the dissociation is completed, the exponent becomes γ = 5/3. This gas forms a second core
composed of atomic hydrogen, which is called the second core (points number 7-8 of Figure 4.16).
Since the accretion rate [eq.(4.89)] is proportional to c3s or T 3/2, the accretion rates onto the second
core Ṁ2nd is larger than that of the first core Ṁ1st as

Ṁ2nd

Ṁ1st

� 5× 103
(
T/103.5K

)3/2
(T/10K)3/2

. (4.111)

Thus, the first core disappears quickly and after that the gas begins to accrete onto the second
core, which will be a protostar. However, this is the case of non-rotating, spherical symmetric cloud
collapse. As previously seen, the angular momentum plays a crucial role and forms a disk. The
evolution must be different completely for such a case.

4.10 Example of Numerical Simulation

We have described the cloud run-away collapse and succeeding accretion process In the latter phase,
there is a possibility that the outflow is driven by the effect of magnetic Lorentz force. A restricted
number of numerical simulation can simulate such evolution throughout. The size of the molecular
cores ∼ 0.1pc is more than 3 × 104 times as large as the typical size of the first core ∼ 1AU.
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(a) (b)

(c)

Figure 4.18: Ωc = 10−13rad s−1, Bc = 10μG, ρc = 104H2 cm−3, and cs = 190m s−1(T/10K). Snap-
shots at the time of 0.6066τff = 1.061Myr represented in different levels are shown: L1 (upper-left), L5
(upper-right), and L10 (bottom). The actual size of the frames of L5 (upper-right) and L10 (bottom)
are, respectively, 1/16 and 1/512 smaller than that of L1 (upper-left). Magnetic field lines (dotted
lines) and isodensity contours (solid lines) are presented as well as the velocity vectors by arrows.

Therefore numerical scheme to calculate such process must have a large dynamic-range. In the finite-
difference scheme, the spatial dynamic range is restricted by the number of the cells. Although at
least 3× 105 × 3× 105 grid points (in 2D) seems necessary to resolve a factor of 3× 104, to solve the
MHD equation with the Poisson equation of the self-gravity have not been done. This is done by
the Eularean nested-grid simulation. This method uses a finite number of grid systems with different
spatial resolutions are prepared. Coarse grid covers whole the cloud and is to see a global structure.
Fine grid covers only the central part of the cloud and is to see the fine-scale structure appeared near
the center. Figure 4.17 explains grid cells of the nested grid method. The size of the cells of the n-th
level grid (Ln) is taken equal to a half of those of the Ln− 1.

A cylindrical cloud with coaxial magnetic field in hydrostatic balance is studied. Rotation vector
ω and the magnetic field B are parallel to the symmetric axis of the cylinder (z-axis). For the
energy equation, a double-polytropic equation of state is adopted, since the radiation hydrodynamical
calculation (for example Masunaga & Inutsuka 2000) predicts ρ − T relations like shown in Figure
4.15, which consists of a number of power-laws for some density ranges.

p =

⎧⎨
⎩
c2sρ (for ρ < ρA),

c2sρA
(

ρ
ρA

)7/5
(for ρ > ρA),

(4.112)

where we take ρA = 1010H2 cm
−3. Figure 4.18 is the model of Ωc = 10−13rad s−1, Bc = 10μG, ρc =
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104H2 cm−3, cs = 190m s−1(T/10K), and scale-length H = 0.341pc(cs/190m s−1)(ρc/10
4H2 cm−3)−1/2.

This is a snapshot of 0.6066τff = 1.061Myr. The cylindrical cloud breaks into pieces with a length
in z-direction equal to the most unstable wavelength of the gravitational instability (Matsumoto,
Nakamura, & Hanawa 1994) as

λmax � 2π(1 + α/2 + β)1/2

0.72
[
(1 + α/2 + β)1/3 − 0.6

]1/2 cs
(4πGρc)1/2

. (4.113)

The magnetic fields prevent gas motions perpendicular to the field lines B. Further, the centrifugal
force works in the perpendicular direction to ω. A disk forms which running in the perpendicular
direction to B and ω and thus to the z-axis. Figure 4.18 illustrates a snapshot at the time of
0.6066τff = 1.061Myr. Level 1 grid (upper-left) captures the global structure of the contracting disk
perpendicular to the z-axis. Close up view is shown in L5, which has 16 times finer spatial resolution
(upper right). Since speed, vz, of infalling gas is larger than the sound speed, a number of shock fronts
are formed near z � 0.02H and z<∼0.01H. Further inner structure is represented in L10 grid (bottom)
which has 32 times finer resolution than L5. Another discontinuity in density is now forming near
z ∼ 0.0002H. Since gas inside of this discontinuity has the density larger than the critical density
ρ > ρA, in this phase the first core (p.109) begins to be formed. In the isothermal collapse phase, a
characteristic power-law for the Larson-Penston self-similar solution is seen in the radial distributions
of density as ρ(r, z = 0) ∝ r−2, and Bz(r, z = 0) ∝ r−1.

After t > 0.6067τff the first core is formed. Radial infall motion is accelerated toward the surface
of the first core and the rotational motion vφ also increases. This amplification promotes the toroidal
magnetic field, Bφ. Since the torque is proportional to (∇×Bφeφ)×Bp, the amplitude of the torque
increases after the first core formation.

Structure just after ∼500 yr has passed from Figure 4.18 is shown in Figure 4.18 In τ ∼ 500
yr from the epoch of Figure 4.18, flow is completely changed and outflow is launched. Panel (b),
which corresponds to a four-times close-up of panel (a), shows clearly that outflow is ejected from a
region near r � 1.5 × 10−4H and z � 0.5 × 10−4H. And the outflow vectors and the disk has an
gngle of approximately 45 deg. The magneto-centrifugal wind model favors a small angle between
the magnetic field and the disk, θmag < 60deg. This model predicts that the angle between the flow
and the disk is also smaller than 60 deg. Numerical results is not inconsistent with this prediction of
magneto-centrifugal wind model.

To see which force is driving such outflow, amplitudes of three forces are compared: the Lorentz
force Fm = (∇ × B)×B/4π, the centrifugal force F c = (ρv2φ/r)er, and the thermal pressure gradient
F t = −∇p. The parallel components to the poloidal magnetic field of the three forces are as

Fm · Bp

|Bp| =
∇ × B)×B

4π
· Bp

|Bp| ,

= − 1

8πr2
Bp

Bp| · ∇(rBφ)
2 (4.114)

(Ustyugova et al. 1999)

F c · Bp

|Bp| = ρv2φr ·
Br

|Bp| , (4.115)

and

F p · Bp

|Bp| = −∇p · Bp

|Bp| . (4.116)
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Figure 4.19 illustrates the largest force at each grid point. Centrifugal force dominated region (region
C), which is shown by asterisk (*), overlaps the outflow region around point P1 (z = 10−4H, 2.5 ×
10−4H). Just radially exterior to this region C, there is another region near point P2 (z = 2×10−4H,
3.5 × 10−4H) filled with plus signs where the magnetic force is dominated (region M). Comparing
with the flow vectors in the left, the strong outflow coincides with this region M and the above region
C. Therefore, the outflow is driven by the centrifugal force and the Lorentz force (pressure gradient
by toroidal magnetic fields).

Difference between models with different magnetic field strength but the same rotation speed is
illustrated in Figure 4.20. Magnetic to thermal pressure ratio α is taken 1 [panels (a), and (d)],
0.1 [panels (b), and (e)], and 0.01 [panels (c), and (f)]. Panels (a), (b), (c) in the left column are
snapshots when the central density reaches ρA while panels (d), (e), (f) in the right column show
the structure after τ = 4.5 × 10−3τff = 8000yr passed. In the model with α = 1, the outflow gas
flows through a region whose shape resembles a capital letter U. This is similar to that observed in
model (α = 1 and Ω = 5) shown in Figure 4.19. Decreasing the magnetic field strength α = 1 → 0.1
and → 0.1, the shape of disk changes from a flat disk to a round ellipsoid. The model with neither
magnetic field nor rotation shows a spherical contracting core. Outflow is also affected by decrease in
magnetic field strength. Globally folded magnetic field lines are seen in the outflow region in panel
(e). Smaller-scale structure folding the magnetic field lines develops in the outflow region in panel
(f). The strucure seen in the polidal magnetic field is well correlated to the distribution of toroidal
magnetic field strength. That is, a packet of strong Bφ pinch the gas and poloidal magnetic field lines
radially inwardly. This means that the toroidal magnetic field is amplified by the rotation motion and
becomes predominant over the poloidal one in the case with meak initial magnetic field. Thus, the
whoop stress, which is expressed by the first term of the Lorentz force of equation(C.13) and comes
from the tension of toroidal magnetic field, pinches the plasma contained inside of the loop of Bφ. For
this case, the magnetic force dominant region is widely spread compared with the centrifugal force
dominant region, which is far from the model with strong magnetic field. In this case, the magnetic
pressure gradient plays an important role. Gas of outflow is ejected perpendicularly from the disk
and forms flow similar to the capital letter I. In conclusion, U-type and I-type outflows are generated
for strong magnetic model and weak magnetic model, respectively.

4.11 Evolution in the H-R diagram

4.11.1 Main Accretion Phase

Before Deuterium Ignition

Gas accreting onto the protostar generates energy as follows

Lacc =
GM∗Ṁ∗
R∗

(4.117)

where M∗, R∗ and Ṁ∗ represent the mass and radius of protostar and the mass accretion rate.
The central temperature increases with time. Finally thermonuclear fusion reaction of Deuterium

2H(p, γ)3He begins. Before Deuterium burning begins, the protostar is radiative, that is, the energy
is transported radiatively.

When a fresh gas of Δm accrets, thermal energy of ΔU = GM∗Δm/R∗ increases. Virial theorem
(eq.[2.120]) requires the potential energy must decrease (increase in the absolute volume) at

ΔW = −2ΔU � −GM∗Δm
R∗/2

, (4.118)
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(a) (b)

(c)

P1

P2P3

Figure 4.19: Continuation of the evolution shown in Fig.4.18. Snapshots at the time of 0.6069τff =
1.066Myr just ∼ 500 yr after from Fig.4.18. Panel (a) plots the structure of L10 which is similar to
Fig.4.18 (c). Spherical region inside ∼ 1.2 × 10−3H has been swept by the outflow. Panel (b) is a
snapshot of L12 grid which has 4-times finer spatial resolution than L10 (a). In panel (c), we plotted
magnetic force dominated region with ‘+’, centrifugal force dominated with ‘*’, and thermal pressure
force dominated with blank ’ ’.
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(a) (d)

(b) (e)

(c) (f)

Figure 4.20: Difference in models with the same rotation speed Ω = 2 × 10−14rad s−1 but different
magnetic field strength ((a) and (d): Bc = 10μG, (b) and (e): 3μG, and (c) and (f): 1μG).
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Figure 4.21: Specific entropy distribution is plotted against the accumulated mass (Stahler, Shu, &
Taam 1982). The bottom curve shows the distribution at t = 2.3 × 104yr (M∗ = 0.23M�). The top
curve is for t = 3.4 × 104yr. The dashed curve indicates the entropy distribution if no convection is
generated. While, the solid curves represent that of new distribution achieved with convection.

to achive a mechanical equilibrium. As a result, the fresh gas must contract to about half the radius
at which the gas first joined the core (Stahler, Shu, & Taam 1980).

When the free-falling fresh gas accrets on the static star, an accretion shock forms. Since the gas
temperature is increased with passing the shock front, temperature of the postshock gas, Tg , is much
higher than that of the radiation, Tr. Thus, the postshock gas cools very effectively. The postshock
region with Tg > Tr is called radiative relaxation region. The outgoing luminosity at the accretion
shock is much larger than that inside of the radiative relaxation region.

In the case of low mass stars since the Kelvin-Helmholtz contraction time tK−H � GM2∗ /R∗L
(L represent the luminosity at the base of the radiative relaxation region) is much longer than the
acctretion time scale tacc � M∗/Ṁ∗. This gives Lacc � GM∗Ṁ∗/R∗ is much larger than L, which is
consistent with the above statement that in the radiative relaxation region a large amount of accretion
luminosity is radiated away. Since tK−H � tacc, the specific entropy inside the relaxation region is
essentially frozen to that when the gas obtained passing through the relaxtaion region. Figure 4.21
taken from Stahler, Shu & Taam (1982) shows the distribution of the specific entropy against the
accumulated mass Mr. The bottom curve corresponds to the state before the nuclear burning begins
when no entropy generation occurs. The temperature increases with mass, bacause the star must be
compressed to support an extra mass. After the temperature becomes high enough for Deuterium
burning reaction 2H(p, γ)3He as T ∼ 106K, an extra energy is liberated by the nuclear fusion reaction.
This increases the specific entropy mainly in the offcenter region. Figure 4.21 clearly shows that shell
Deuterium burning occurs at M ∼ 0.025M�.

After Deuterium Ignition

One gram of interstellar matter generates energy by the reaction of 2H(p, γ)3He as

δ ≡
(

1

mpμH

)(
nD
nH

)
εD→He � (4.119)
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Figure 4.22: Luminosities in protostars accreting at Ṁ∗ = 10−5M�yr−1 (left) and Ṁ∗ = 10−4M�yr−1

(right) (Palla & Staler 1993). Accretion luminosity Lacc, Deuterium burning luminosity LD, maximum
radiatively transferable luminosity Lrad and luminosity at the surface Lsurf are plotted.

where we used an energy per reaction of 2H(p, γ)3He as εD→He = 5.5MeV and a composition of
Deuterium of nD/nH = 2.5× 10−5. This gives an estimate of the Deuterium-produced luminosity as

LD = Ṁδ = 15L�

(
Ṁ

10−5M�yr−1

)
, (4.120)

for a star with the accretion rate of Ṁ � 10−5M�yr−1.

Entropy inversion ∂s/∂r < 0 is unstable for the convection (see §2.7 in p.47). Convection is
generated in the region of ∂s/∂M < 0. Convective motion transfers the energy and the entropy. The
specific entropy peak generated by the Deuterium burning is smoothed out by the convection. The
convection induced with the Deuterium burning brings a fresh gas containing Deuterium into the hot
Deuterium burning region. Thus, although the consent of Deuterium is small and Deuterium burning
could not continue long, Deuterium burning continues actually as long as the convection can mix the
outer Deuterium rich fresh gas into the burning region due to the convection.

In Figure 4.22, luminosities in protostars accreting at Ṁ∗ = 10−5M�yr−1 (left) and Ṁ∗ =
10−4M�yr−1 (right) are plotted (Palla & Stahler 1993). Lrad represents the maximum luminosity
transferable radiatively for a star with mass M∗ and radius R∗ as

Lrad ∼ 1L�
(
M∗
1M�

)11/2 (R∗
R�

)−1/2

, (4.121)

where the Krammers opacity κ ∝ ρT−3.5 is applied for stars with M<∼5M�. Actual luminosity at the
surface of the star

Lsurf = 4πR2
∗T

4
eff , (4.122)
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is larger than Lrad for low mass stars (M∗ < M1 = 2.4M� for Ṁ∗ = 10−5M�yr−1 and M1 = 3.4M�
for Ṁ∗ = 10−4M�yr−1). Excess energy is transferred by the convection, Lsurf = Lrad + Lcon. This
figure also shows that except for extremely low-mass object the accretion luminosity is the major
energy source over Deuterium burning Lacc > LD. Since massive objects with M∗ > M3 satisfies
Lrad � Lsurf > Lacc, interior of such stars are fully radiative (energy is transferred by the radiation).
M3 = 3.9M� for Ṁ∗ = 10−5M�yr−1 and M3 = 5.9M� for Ṁ∗ = 10−5M�yr−1.

Figure 4.23 (left) illustrates how the Deuterium burning in protostars evolves. Accumulating
infalling gas and increasing M∗, the structure of protostars is changed. (a) in low-mass stars, con-
vection feeds the Deuterium of the accreting matter to the burning center. (b) as increasing the
mass and thus the temperature, the opacity of the stellar interior decreases. Finally a radiative zone
appears and it prevents from mixing Deuterium. (c) as a consequence, central Deuterium is depleted
and energy generation rate is reduced. Thus the central region becomes radiative. (d) For higher
mass stars, Deuterium ignites as a shell source just outside the radiative central region. Due to this
Deuterium shell burning, which is similar to the Hydrogen shell burning in the red giants, radius of
the protostar expands. Figure 4.23 (right) plots the mass-radius relation of a protostar with accretion
rate of Ṁ∗ = 10−5M�yr−1. The left open circle represents the beginning of central Deuterium burn-
ing (state a). On the second circle, radiative barrier appears (state b) and Deuterium shell burning
begins. Beyond the mass, the radius swells dramatically. Further increase in the mass increases the
gravity and the radius shrinks. At the third open circle, Hydrogen begins to burn at the center of
the protostar.

In the HR diagram, the mass-radius relation for the protostars shown in Figure 4.23(right) cor-
responds to the dotted line (Fig.4.24). Observed premain-sequence stars: T Tauri stars (M∗<∼2M�)
and Herbig Ae/Be stars (2M�<∼M∗<∼5M�) distribute below the dotted line. Thus, this line is often
called the birth line for stars. In Figure 4.24, evolutionary tracks without mass accretion Ṁ = 0 are
plotted from the birth line. Modulation of the birth line is related to the swell and shrink of radius
shown in Figure 4.23. That is, increase of luminosity around M � 1M� corresponds to the first swell
after Deuterium burning begins (between the first and second open circles). Another increase around
M � 2.5M� is related to the Deuterium shell burning (after the second open circle).

4.11.2 Premain-sequence Evolution

Premain-sequence evolutionary path is understood as follows: Consider a situation that a star with
M∗ is left when accretion stops. Figure 4.22 indicates that a less-massive star with M∗ < M1 is
fully convective. Thus, this evolves along the convective Hayashi track (Hayashi 1961) down to the
main-sequence. In contrast, a massive star with M∗ > M3 (Fig.4.22) is fully radiative and evolves
along the radiative Henyey track (Henyey, LeLevier, & Levee 1955) to the main-sequence. These
differences are clearly indicated in Figure 4.24. We can see veritical Hayashi track is seen essentially
for stars with M<∼1.5M�. Massive stars with M>∼2.5M� evolve to the upper-left direction along the
Henyey track.
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Figure 4.23: Schematic view of Deuterium burning in protostars (left). Evolution of the radius of a
protostar is plotted against its mass (right). Both figures are taken from Palla & Stahler (1990).
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Figure 4.24: Premain-sequence evolutionary path in the H-R diagram. (Palla & Staler 1993). Evo-
lution of stars with different masses from 0.6M� to 6M� are calculated from the birth line (dotted
line).
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Appendix A

Basic Astrophysical Quantities

M� the Solar mass 1.989 × 1033 g
L� the Solar luminosity 3.83 × 1033 erg s−1

R� the Solar radius 6.96 × 1010 cm
mp proton mass 1.67262 × 10−24 g
me electron mass 9.10938 × 10−28 g
AU the astronomical unit 1.49598 × 1013 cm
pc parsec 3.0857 × 1018 cm
amu atomic mass unit 1.66054 × 10−24 g
G gravitational constant 6.67 × 10−8 dyn cm2 g−2

k Boltzmann constant 1.38065 × 10−16ergK−1

h Plank constant 6.62607 × 10−27 erg s
c light speed 2.99792458 × 1010 cm s−1

σ Stefan-Bolzmann constant 5.67040 × 10−5erg s−1 cm−3 K−4

Table A.1: Astrophysical quantities, units, and constants.
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Appendix B

Basic Equation of Fluid Dynamics

B.1 What is fluid?

Gas and liquid change their shape according to the shape of the container. This is a definition of
fluid.

B.2 Equation of Motion

Consider a fluid element with mass m as in B.1. From the Newton’s second law of mechanics, the
acceleration of an element is written as

dv

dt
= fm ≡ F

m
, (B.1)

where m, v, F , and fm represent the mass, the velocity of the element, and force working on the
element and the force per mass working on the element, respectively.

In fluid dynamics, using the mass density ρ and the force working on the unit volume fv equation
(B.1) is rewritten as

ρ
dv

dt
= fv. (B.2)

Which kind of force works in a fluid? Gas pressure force does work in any fluids. Beside this, if
there is the gravity, ρg should be included in fv. If the electric currents is running in the fluid and
the magnetic fields exist, the Lorentz force j × B should be added.

To write down the expression of the gas pressure force, consider a fluid element between x and
x + Δx as shown in Figure B.2. Pressure force exerting on the surface S at x is p(x)S, while that

t t+Δt

m m
V V’
ρ

ρ’

Figure B.1: Movement of fluid element
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x x+Δx

p(x) p(x+Δx)

S

Figure B.2: Pressure force exerted on an element with volume SΔx

on the opposite side is −p(x+Δx)S. The net pressure force working on the volume of SΔx is equal
to (p(x)− p(x+Δx))S, which is approximated as −∂p/∂xΔxS + O(Δx2). Thus, the pressure force
working on the unit volume is written −∂p/∂x. Equation (B.2) can be rewritten as

ρ
dv

dt
= −∇p+ ρg, (B.3)

when gravity g is working.

B.3 Lagrangian and Euler Equations

The time derivative appearing in equation (B.1) expresses how the velocity of a specific particle
changes. Therefore, what appears in equation (B.3) means the same, that is, the position of the gas
element concerning in equation (B.3) moves and the positions at t and t+Δt are generally different.
However, considering the velocity field in the space, the time derivative of the velocity should be
calculated staying at a fixed point x.

These two time derivative are different each other and should be distinguished. The former time
derivative is called Lagrangian time derivative and is expressed using d/dt. On the other hand,
the latter is called Eulerian time derivative and is expressed using ∂/∂t. These two are related
with each other. Consider a function F whose independent variables are time t and position x, that is
F (x, t). The difference dF

dt Δt, using the Lagrangian time derivative of F , represents the the difference
of F (t+Δt) from F (t) focusing on a specific fluid element, whose positions are different owing to its
motion. The element at the position of x0 at the epoch t0 moves to x0 + v0Δt in time span of Δt.
Thus the difference is expressed as

dF

dt
Δt = F (x0 + v0Δt, t0 +Δt)− F (x0, t0),

�
(
∂F

∂x

)
t

∣∣∣∣
x0,t0

· v0Δt+

(
∂F

∂t

)
x

∣∣∣∣
x0,t0

Δt, (B.4)

where we used the Taylor expansion of F . The difference corresponding to the Eulerian derivative is
written down as

∂F

∂t
Δt = F (x0, t0 +Δt)− F (x0, t0), (B.5)

and this is equal to the second term of the rhs of equation (B.4). Comparing equations (B.4) and
(B.5), the Lagrangian derivative contains an extra term besides the Eulerian derivative. That is, the
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Lagrangian derivative is expressed by the Eulerian derivative as

d

dt
=

∂

∂t
+ v · ∂

∂x
=

∂

∂t
+ v · grad. (B.6)

Applying the above expression on equation of motion based on the Lagrangian derivative (B.3),
we obtain the Eulerian equation motion:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ ρg. (B.7)

B.4 Continuity Equation

Another basic equation comes from the mass conservation. This is often called the continuity equation,
which relates the change of the volume to its density. Consider a fluid element whose volume is equal
to ΔV . The mass contained in the volume is constant. Thus

dρΔV

dt
=
dρ

dt
ΔV +

dΔV

dt
ρ = 0. (B.8)

The variation of the volume dΔV
dt is rewritten as

dΔV

dt
=

∫
∂ΔV

v · dS =

∫
ΔV

divvdV, (B.9)

where ∂ΔV represents the surface of the fluid element ΔV . From equations (B.8) and (B.9), we
obtain the mass continuity equation for Lagrangian time derivative as

dρ

dt
+ ρdivv = 0. (B.10)

Using equation (B.6) this is rewritten to Eulerian form as

∂ρ

∂t
+ div(ρv) = 0. (B.11)

Basic equations using the Lagrangian derivative are equations (B.3) and (B.10), while those of
the Euler derivative are equations (B.7) and (B.11).

B.4.1 Expression for Momentum Density

It is useful to describe the equation for momentum ρv. Eulerian derivative of momentum density ρv
is rewritten as

∂ρv

∂t
=

∂ρ

∂t
v + ρ

∂v

∂t
,

= −∇(ρv)v − ρv · ∇v −∇p+ ρg, (B.12)

where we used equations (B.7) and (B.11). In the Cartesian cordinate (x, y, z) = (xi, x2, x3), this
becomes

∂

∂t

⎛
⎜⎝ ρvx
ρvy
ρvz

⎞
⎟⎠+

⎛
⎜⎝ ∂/∂x
∂/∂y
∂/∂z

⎞
⎟⎠
⎛
⎜⎝ ρvxvx ρvxvy ρvxvz
ρvyvx ρvyvy ρvyvz
ρvzvx ρvzvy ρvzvz

⎞
⎟⎠+

⎛
⎜⎝ ∂/∂x
∂/∂y
∂/∂z

⎞
⎟⎠
⎛
⎜⎝ p 0 0

0 p 0
0 0 p

⎞
⎟⎠ = ρ

⎛
⎜⎝ gx
gy
gz

⎞
⎟⎠ .
(B.13)
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Using the momentum stress tensor

πi j = ρvivj + δi jp, (B.14)

the above equation is written as
∂ρvi
∂t

+
∂πi j
∂xj

= ρgi, (B.15)

where δi j represents the Kronecker’s delta as δi j = 0 for i �= j and δi j = 1 for i = j.

If there is no external force, rhs of equation (B.15) is equal to zero. If the momentum density ρv
were to obey the continuity equation, equation (B.15) would be

∂ρvi
∂t

+
∂ρvivj
∂xj

= 0. (B.16)

However, this is incorrect, because there exists the pressure force in the fluid and thus the momentum
of the fluid element is not conserved.

B.5 Energy Equation

The above basic equations (B.3) and (B.10) or equations (B.7) and (B.11) contain three dependent
variables ρ, p, and v. The number of the variables, 3, is larger than the number of equations, 2.
Therefore, an extra equation is needed to close the basic equations.

B.5.1 Polytropic Relation

If the pressure of the fluid, p, is expressed only by the density, ρ,

p = P (ρ), (B.17)

the number of dependent variables is reduced to two and the above equations are sufficient to describe
the dynamics of the fluid. Occasionally, the presure is assumed proportional to the power of ρ as

p = KρΓ, (B.18)

where Γ is a constant. This assumption is called polytropic relation.

The fact should be reminded that the validity of the assumption comes from the physical condition
of the system. In the case that the temperature of the gas is kept constant owing to the cooling and
heating process, the gas pressure is proportional to the density

p = c2isρ, (B.19)

where cis = (kT/μmp)
1/2 (k: Boltzmann constant, μ average molecular weight, and mp is the proton

mass) represents the isothermal sound speed and is constant.

Another example is the isentropic fluid, in which the entropy is kept constant. In this case the
pressure is proportional to ργ , as

p = c2sρ
γ , (B.20)

where γ is the specific heat ratio = cp/cv and cs = (γkT/μmp)
1/2 represents the adiabatic sound

speed. In these cases the polytropic replations of equations (B.19) and (B.20) plays a role as the
third equation of basic equations of hydrodynamics.
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B.5.2 Energy Equation from the First Law of Theromodynamics

In more general cases, the last equation comes from the first law of the thermal physics,

ΔQ = dU + pdV. (B.21)

where U and V represent the internal energy and the volume and ΔQ is the heat added or subtracted
from the system. Using the total energy per unit volume

ε =
1

2
ρv2 +

U

V
(B.22)

the above equation gives the equation for total energy:

∂ε

∂t
+ div(ε+ p)v = ρv · g. (B.23)

Since the total energy per unit volume is expressed using the basic physical quantities as

ε =
1

2
ρv2 +

1

γ − 1
p, (B.24)

equation (B.23) is the final basic equation for hydrodynamics. Equations (B.7), (B.11), and (B.23)
are basic equations hydrodynamics using the Eulerian time derivative.

Problem: From the continuity equation (B.11) and the equation of motion (B.7) or the equation
for momentum density (B.15), show that the equation for the kinetic enerygy density is expressed as
follows

∂ 1
2ρv

2

∂t
+∇

(
1

2
ρv2v

)
= ρg · v. (B.25)

Then, obtain equation for the total energy (B.23).

B.6 Shock Wave

B.6.1 Rankine-Hugoniot Relation

Passing through a shock front moving with a speed Vs, the physical variables ρ, p, and u change
abruptly. Since the basic equations of hydrodynamics is unchanged after chosing a system moving
Vs, the continuity equation

∂ρ

∂t
+
∂ρu

∂x
= 0 (B.26)

gives an equation for a steady state as
∂ρu

∂x
= 0. (B.27)

Considering a region containing the shock front at xs which extends from x = xs−Δx to x = xs+Δx
and integrating the above equation, we get∫ xs+Δx

xs−Δx

dρu

dx
dx = [ρu]xs+Δx

xs−Δx . (B.28)

Thus, we obtain the jump condition conserning the mass coservation as

ρ1u1 = ρ2u2, (B.29)
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where the quatities with suffix 1 are for preshock and those with suffix 2 are for postshock.
Equation of motion for steady state

ρu
∂u

∂x
= −∂p

∂x
, (B.30)

gives
p1 + ρ1u

2
1 = p2 + ρ2u

2
2, (B.31)

where we used equation(B.29).

Isotharmal shock

In the case of the gas is isothermal p = c2isρ, equation (B.31) becomes

ρ1
(
c2is + u21

)
= ρ2

(
c2is + u22

)
. (B.32)

Eliminating ρ from equations (B.29) and (B.32), we obtain(
u1u2 − c2s

)
(u1 − u2) = 0, (B.33)

which means
u1u2 = c2s. (B.34)

From equation (B.29),
ρ2
ρ1

=
u1
u2

=
u21
c2s
. (B.35)

This indicates the postshock velocity u1 � cs the ratio of the postshock density to the preshock
density becomes large.



Appendix C

Basic Equations of
Magnetohydrodynamics

C.1 Magnetohydrodynamics

Here, we derive the basic equations of magnetohydrodynamics. Differences from hydrodynamics are
the Lorentz force in the equation of motion and the induction equation of magnetic field. The Lorentz
force is written as

j ×B =
1

4π
(∇ × B) ×B, (C.1)

where we used the Ampere’s law ∇ × B = (4π/c)j and the displacement current is ignored. Thus,
the equatin of motion becomes as

ρ

(
∂v

∂t
+ (∇ · v)v

)
= −∇p− ρ∇ψ +

1

4π
(∇ × B) × B, (C.2)

in the Eulerian form.
The Faraday’s law ∇ × E = −(1/c)(∂B/∂t) and the Ohm’s law j = σ(E + v ×B/c) (σ is the

electric conductivity) lead the induction equation of the magnetic field as

∂B

∂t
= ∇ × (v × B)− c2

4π
∇× ∇×B

σ
. (C.3)

The factor c2/4πσ is the coefficient of magnetic diffusibility. When we assume the electric conductivity
σ → ∞, diffusive MHD equation, equation(C.3), reduces to the ideal MHD equation as

∂B

∂t
= ∇ × (v × B). (C.4)

C.1.1 Flux Freezing

An important nature of the ideal MHD is derived from equatio (C.4), that is, the matter and the
magnetic field is coupled with each other. Consider a gas parcel threaded with the magnetic field B.
The magnetic flux anchored to the gas parcel ΦB ≡ ∫ B · dS is changes

dΦB

dt
=

d

dt

∫
B · dS =

∫
∂B

∂t
· dS +

∫
B · v×ds, (C.5)

where s = ∂S. The first term of the lhs of the equation comes from a time derivative of the magnetic
flux density, while the last term represents the change of the integral region due to gas motion (see
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Figure C.1: The change of flux anchored to a surface dS. One part of the shange comes from the
temporal change in magnetic flux density. The other comes from the change of the boundary of the
surface due to gas motion. Time variation of the area is given by vdt× ds.

Fig.C.1). (dS = v× ds) Using the Stokes’ theorem
∫ ∇ × A · dS =

∫
A · ds, the last term is reduced

to
∫
B × v · ds =

∫ ∇(B × v) · dS. Finally, we obtain

dΦB

dt
=

∫ [
∂B

∂t
−∇(v × B)

]
· dS = 0, (C.6)

where we used equation (C.4). This means that the magnetic flux anchored to a gas parcel does not
change in the ideal MHD regime.

C.1.2 Basic Equations of Ideal MHD

Basic equations are as follows: The mass continuity as

∂ρ

∂t
+∇ · (ρv) = 0, (C.7)

the equation of motion as

ρ

(
∂v

∂t
+ (∇ · v)v

)
= −∇p− ρ∇ψ +

1

4π
(∇ × B) × B, (C.8)

the equation of thermal energy as

∂ε

∂t
+ div(ε+ p)v = ρv · g, (C.9)

or some barotropic relation p = P (ρ) and the induction equation as

∂B

∂t
= ∇ × (v × B). (C.10)

C.1.3 Axisymmetric Case

The basic equations to be solved are the magnetohydrodynamical equations and the Poisson equation
for the gravitational potential. In cylindrical coordinates (z, r, φ) with ∂/∂φ = 0, the equations are
expressed as follows:

∂ρ

∂t
+

∂

∂z
(ρvz) +

1

r

∂

∂r
(rρvr) = 0, (C.11)

∂ρvz
∂t

+
∂

∂z
(ρvzvz) +

1

r

∂

∂r
(rρvzvr) =

− c2s
∂ρ

∂z
− ρ

∂ψ

∂z
+

1

4π

[
−∂Bφ

∂z
Bφ −

(
∂Br

∂z
− ∂Bz

∂r

)
Br

]
, (C.12)
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∂ρvr
∂t

+
∂

∂z
(ρvrvz) +

1

r

∂

∂r
(rρvrvr) =

− c2s
∂ρ

∂r
− ρ

∂ψ

∂r
+

1

4π

[
−1

r

∂

∂r
(rBφ)Bφ +

(
∂Br

∂z
− ∂Bz

∂r

)
Bz

]
, (C.13)

∂ρrvφ
∂t

+
∂

∂z
(ρrvφvz) +

1

r

∂

∂r
(rρrvφvr) =

r

4π

[
1

r

∂

∂r
(rBφ)Br +

∂Bφ

∂z
Bz

]
(C.14)

∂Bz

∂t
=

1

r

∂

∂r
[r(vzBr − vrBz)], (C.15)

∂Br

∂t
= − ∂

∂z
(vzBr − vrBz), (C.16)

∂Bφ

∂t
=

∂

∂z
(vφBz − vzBφ)− ∂

∂r
(vrBφ − vφBr), (C.17)

∂2ψ

∂z2
+

1

r

∂

∂r

(
r
∂ψ

∂r

)
= 4πGρ, (C.18)

where the variables have their ordinary meanings. Equation (C.11) is the continuity equation; equa-
tions (C.12), (C.13) and (C.14) are the equations of motion. The induction equations for the poloidal
magnetic fields are equations (C.15) and (C.16) and for the toroidal magnetic field is equation (C.17).
The last equation (C.18) is the Poisson equation.
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Appendix D

Hydrostatic Equilibrium

D.1 Polytrope

If we choose the polytropic equation of state1,

p = Kρ1+1/n, (D.1)

the hydrostatic balance is expressed by

1

r2
∂

∂r

(
r2

ρ

dp

dr

)
= −4πGρ, (D.2)

where we used equations (4.1) and (4.2). A hydrostatic gaeous star composed with a polytropic gas
is called polytrope. Normalizing the density, pressure and radius as

ρ ≡ ρcθ, (D.3)

p ≡ Kρ1+1/n
c θn+1, (D.4)

r ≡ Hξ =

(
(n+ 1)Kρ

(1−n)/n
c

4πG

)1/2

ξ (D.5)

we obtain a normalized equation as

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn, (D.6)

which is called Lane-Emden equation of index n. The boundary condition at the center of polytrope
should be

θ = 1, (D.7)
dθ

dξ
= 0, (D.8)

at ξ = 0. Solution of this equation is plotted for several n in Figure D.1.

1Reference book for this appendix is chapter 4 of Chandrasekhar (1939).
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1 2 3 4 5 6 7
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1

Figure D.1: Solutions of eq.(D.6) are plotted for indices of n = 3 or Γ = 4/3 (the most extended
one), n = 5/2 or Γ = 7/5 (the middle), and n = 3/2 or Γ = 5/3(the most compact one). For n ≥ 5
gas extends infinitely and the solution has no zero-point.

Mass of the polytrope is written down as

M =

∫ r

0
4πρr2dr,

= 4πH3
∫ ξ

0
θnξ2dξ,

= 4πH3
∫ ξ

0

d

dξ
ξ2
dθ

dξ
dξ,

= −4πH3ξ2
dθ

dξ

∣∣∣∣
ξ1

= −4π

[
(n+ 1)K

4πG

]3/2
ρ(3−n)/2n
c ξ2

dθ

dξ

∣∣∣∣
ξ1

, (D.9)

where ξ1 represents the zero point of θ or the surface radius normalized by H. For n = 3 or
Γ ≡ 1 + 1/n = 4/3, equation (D.9) reduces to

M = −4π

(
K

πG

)3/2

ξ2
dθ

dξ

∣∣∣∣
ξ1

. (D.10)

Thus, the mass does not depend on the central density for Γ = 4/3 polytrope. For n = 5/2 or
Γ = 1 + 1/n = 7/5, M is written down as

M = −4π

(
7K

8πG

)3/2

ρ1/10c ξ2
dθ

dξ

∣∣∣∣
ξ1

, (D.11)

where ξ1 = 5.35528 and −ξ21 dθ/dξ|ξ1 = 2.18720. Polytrope with Γ = 7/5 gas, the mass-density

relation becomes ρc ∝M10. While, for n = 3/2 of Γ = 1 + 1/n = 5/3, M is written down as

M = −4π

(
5K

8πG

)3/2

ρ1/2c ξ2
dθ

dξ

∣∣∣∣
ξ1

, (D.12)

where ξ1 = 3.65375 and −ξ21 dθ/dξ|ξ1 = 2.71406.
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D.2 Magnetohydrostatic Configuration

In section 4.2, we obtained the maximum mass which is supported against the self-gravity using the
virial analysis. In this section, we will survey result of more realistic calculation.

Formalism was obtained by Mouschovias (1976a,6), which was extended by Tomisaka, Ikeuchi, &
Nakamura (1988) to include the effect of rotation. Magnetohydrostatic equlibrium is achived on a
balance between the Lorentz force, gravity, thermal pressure force, and the centrifugal force as

1

4π
(∇ × B) × B − ρ∇ψ −∇p− ρω × (ω × r) = 0. (D.13)

In the axisymmetric case, the poloidal magnetic fields is obtained by the magnetic flux function, Φ,
or the φ-component of the vector potential as

Bz =
1

r

∂Φ

∂r
,

Br = −1

r

∂Φ

∂z
,

Bφ =
bφ
r
. (D.14)

Equation (D.13) leads to

− 1

4πr2
Δ1Φ

∂Φ

∂z
− bφ

4πr2
∂bφ
∂z

= ρ
∂ψ

∂z
+
∂p

∂z
, (D.15)

− 1

4πr2
Δ1Φ

∂Φ

∂r
− bφ

4πr2
∂bφ
∂r

= ρ
∂ψ

∂r
+
∂p

∂r
− ρω2r, (D.16)

−∂bφ
∂r

∂Φ

∂z
+
∂bφ
∂z

∂Φ

∂r
= 0, (D.17)

with

Δ1Φ ≡ ∂2Φ

∂z2
+ r

∂

∂r

(
1

r

∂Φ

∂r

)
. (D.18)

Equation (D.17) indicates bφ is a function of Φ as bφ(Φ), which is constant along one magnetic field
line. Ferraro’s isorotation law demands, that is, to satisfy the stead-state induction equation ω is
constant along a magnetic field. This means ω is also constant along one magnetic field line, ω(Φ).
From this, the density distribution in one flux tube is written

ρ =
q

c2s
exp

[
−
(
ψ − 1

2
r2ω2

)
/c2s

]
. (D.19)

This means q is also constant along one magnetic field line, q(Φ) . Since the forces are expressed by
the defrivative of function q

(∇q) exp
[
−
(
ψ − 1

2
r2ω2

)
/c2s

]
= ∇p+ ρ∇ψ − ρrω2 − ρr2ω∇ω, (D.20)

where equation (D.19) is used, equation (D.15) and (D.16) are rewritten as

Δ1Φ
∂Φ

∂z
+
∂(b2φ/2)

∂z
= −4πr2

{
∂q

∂z
exp

[
−
(
ψ − 1

2
r2ω2

)
/c2s

]
+ ρr2ω

∂ω

∂z

}
, (D.21)

Δ1Φ
∂Φ

∂r
+
∂(b2φ/2)

∂r
= −4πr2

{
∂q

∂r
exp

[
−
(
ψ − 1

2
r2ω2

)
/c2s

]
+ ρr2ω

∂ω

∂r

}
. (D.22)
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Finally, using the fact that b, q, and ω are functions of Φ, these two equations are reduced to

Δ1Φ = −d(b
2
φ/2)

dΦ
− 4πr2

{
dq

dΦ
exp

[
−
(
ψ − 1

2
r2ω2

)
/c2s

]
+ ρr2ω

dω

dΦ

}
. (D.23)

Another equation to be coupled is the Poisson equation as

Δψ = 4πG
q

c2s
exp

[
−
(
ψ − 1

2
r2ω2

)
/c2s

]
. (D.24)

The source terms of equations (D.23) and (D.24) are given by determining the mass δm(Φ) and
the angular momentum δL(Φ) contained in a flux tube Φ–Φ + δΦ. Mass and angular momentum
distribution of

δm(Φ) = 2

∫ zs(Φ)

0
dz

∫ r(z,Φ+δΦ)

r(z,Φ)
dr2πrρ(r, z), (D.25)

δL(Φ) = 2

∫ zs(Φ)

0
dz

∫ r(z,Φ+δΦ)

r(z,Φ)
dr2πrρ(r, z)r2ω(Φ) (D.26)

is chosen artitrary in nature, where zs(Φ) is the the height of the cloud surface where the magnetic
potential is equal to Φ. For example, m(Φ) and L(Φ) are chosen as a uniformly rorating uniform-

density spherical cloud threaded by uniform magnetic field. Since
∫ r(Φ+δΦ)
r(Φ) 2πrdr = δΦπ∂r2/∂Φ

q(Φ) = (dm/dΦ)/

∫ zs(Φ)

0
dz2π

(
∂r2/∂Φ

) 1

c2s
exp

[
−
(
ψ − 1

2
r2ω2

)
/c2s

]
, (D.27)

ω(Φ) = (dL/dΦ)/

∫ zs(Φ)

0
dz2π

(
∂r2/∂Φ

) 1

c2s
q(Φ)r2 exp

[
−
(
ψ − 1

2
r2ω2

)
/c2s

]
, (D.28)

The source terms of PDEs [eqs (D.23) and (D.24)] are given from equations (D.27) and (D.28). While
the functons q(Φ) and ω(Φ) are determined from the solution of these PDEs after m(Φ) and L(Φ)
are chosen. This can be solved by a self-consistent field method.



Appendix E

Basic Equations for Radiative
Hydrodynamics

E.1 Radiative Hydrodynamics

The basic equation for gas which is affected by the radiation is as follows:

dρ

dt
+ ρ∇ · v = 0, (E.1)

ρ
dv

dt
= ρ∇φ−∇ψ +

χF0

c
F 0, (E.2)

ρ
dε

dt
+ p∇ · v = hCRρ+ cχE0E0 − 4πχP0B, (E.3)

∇2ψ = 4πGρ, (E.4)

ε =
p

(γ − 1)ρ
, (E.5)

where χ, hCR, and B are the absorption coefficient, the cosmic-ray heating rate perunit mass, and
teh Planck function B = σT 4/π. In equation (E.2), the term χF0

c F 0 represents the acceleration of
gas due to the photon pressure. In equation (E.3), hCRρ, cχE0E0 and 4πχP0B represent, respectively
the heating due to the CR particles, heating due to the absorption of radiation and cooling die to the
emission. The frequence-integrated radiation energy density and radiation flux are defined as

E0 =

∫ ∞

0
dν0

∫
dΩI(ν,n), (E.6)

F 0 =

∫ ∞

0
dν0

∫
dΩI(ν,n)n, (E.7)

where I(ν,n) denotes the specific intensity of radiation at frequency ν along the direction vector
n. These equation could be solved if the the radiation transfer is solved. The frequency-averaged
absorption coefficients are defined as follows:

χF0 =

(∫
dνχ(ν)F 0(ν)

)
/F 0, (E.8)

χE0 =

(∫
dνχ(ν)E0(ν)

)
/E0, (E.9)

χP0 =

(∫
dνχ(ν)B(ν)

)
/B, (E.10)
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While the equation for the radiation transfer is basically as follows:

1

c

∂I(ν, r,n)

∂t
+n · ∇I(ν, r,n) = −χ(ν, r) [I(ν, r,n)− S(ν, r)] , (E.11)

where S(ν, r) represent the source term.



Appendix F

Random Velocity

Considering gas in Maxwellian velocity distribution, the distribution function for the velocity is as
follows:

f(vx) = A exp

(
−v

2
x

σ

)
. (F.1)

This gives the one-dimensional random velocity as

< v2x > =

∫∞
0 v2x exp

(
− v2x

σ2

)
dvx∫∞

0 exp
(
− v2x

σ2

)
dvx

,

=
σ2

2
. (F.2)

If we observe emissions from such a gas, the emission line is broaden due to the Doppler shift. Using
equation (F.2), the HWHM (half width of half maximum: the line width measured from the the
center of the emission line to the point of the half intensity; see Fig.F.1) of the emission line is

exp

[
−
(
vx,HWHM

2 < v2x >

)2
]
=

1

2
, (F.3)

which leads to
vx,HWHM = (2 ln 2 < v2x >)

1/2, (F.4)

and
vx,FWHM = (23 ln 2 < v2x >)

1/2. (F.5)

Thus, if we assume isotropic distribution, three-dimensional random velocity of gas

< v23D >=< v2x > + < v2y > + < v2z >= 3 < v2x > (F.6)

is obtained with the line width as

< v23D >1/2 =

(
3

23 ln 2

)1/2

vx,FWHM,

=

(
3

2 ln 2

)1/2

vx,HWHM. (F.7)
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Figure F.1: HWHM (half width of half maximum: the line width measured from the the center of
the emission line to the point of the half intensity) and FWHM (full width of half maximum: the line
width measured between the points of the half intensity).



Appendix G

X-factor

Since the H2 molecule is the homonuclear diatomic molecule, the H2 molecule has no electric dipole.
Thus, the electric dipole radiation is not expected for this molecule. While the second abundant
molecule CO is the heteronuclear diatomic molecules and has electric dipole. Lower levels of rotational
transition of CO are relatively easily excited even in the cold interstellar medium of T ∼ 10K.
Therefore, the rotational transition of CO molecule is the first possibility to observe cold molecular
gas. The X-factor represents the ratio of the column density of H2 molecules N(H2) to the integrated
intensity of 12CO line ICO as

X ≡ NH2(cm
−2)

ICO(K km s−1)
. (G.1)

There are several empirical but physical estimations of the X-factor: Using γ-rays, X-factor is es-
timated as X � 2.3 × 1020(Strong et al. 1988). This is based on the idea that the emissivity of
γ-ray emission is proportional to the cosmic-ray intensity times the number of target nuclei. The
γ-ray intensity is proportional to the column density if the cosmic-ray intensity is uniform. From the
distribution of γ-ray intensity, Strong et al. (1988) estimated the total column density NH2(cm

−2)
using some model. This gives the value of X-factor.

Estimations using the Virial mass of the interstellar cloud and the visual extinction AV .
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Appendix H

Abundance

H.1 Solar system abundance

Table H.1: Solar system abundance taken from meteorites and the Solar photosphere. Taken from
Table 3.2 of Allen’s Tables (Cox 2000).
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H.2 Isotope ratio (Isotopic abundance)

Table H.2: Isotopic abundances for H, C, N, and O for various places. Taken from Table 21.10 of
Allen’s Tables (Cox 2000).

H.3 Molecular Weight

Table H.3: Group abundance ratios. Taken from Table 3.1 of Allen’s Tables (Cox 2000).


