=0.5cm=1[1] Cappellaro, E., Turatto, M., Tsvetkov, D. Yu., Bartunov, O. S., Pollas, C., Evans, R., Hamuy, M. 1997, The rate of supernovae from the combined sample of five searches, AAp, 322, 431
=0.5cm=1[2] Chevalier 1973 ApJ, 188, 501
=0.5cm=1[3] Cowie, Songaila, & York 1979 ApJ 230, 469
=0.5cm=1[4] Dickey, J. M., Lockman, F. J. 1990, H I in the Galaxy, ARAAp, 28, 215
=0.5cm=1[5] Field, G. 1965, Thermal Instability, ApJ, 142, 531
=0.5cm=1[6] Gull, T. 1973, MNRAS, 161 47
=0.5cm=1[7] Heiles, C. 1998, Whence the Local Bubble, Gum, Orion? GSH 238+00+09, A Nearby Major Superbubble toward Galactic Longitude 238 degrees , ApJ, 498, 689
=0.5cm=1[8] Kafatos, M. 1973, Time-Dependent Radiative Cooling of a Hot Low-Density Cosmic Gas, ApJ, 182, 433
=0.5cm=1[9] Kompaneets, 1960, Sov. Phys. Dokl. 5, 46
=0.5cm=1[10] Koo, B.C. & McKee, C. F. 1990, ApJ 354, 513
=0.5cm=1[11] Kuijken, K., Gilmore, G. 1989, The Mass Distribution in the Galactic Disc - Part Three - the Local Volume Mass Density, MNRAS, 239, 651 Leahy, D. A., Nousek, J., Garmire, G. 1992, Discovery of X-ray emission associated with the GUM Nebula, ApJ, 385, 561
=0.5cm=1[12] Mansfield & Salpeter 1974: ApJ, 190, 305;
=0.5cm=1[13] Nousek 1978: PhD Thesis for Wisconsin Univ. at Madison
=0.5cm=1[14] Ostriker, J. P. & McKee, C. F. 1988, Rev. Mod. Phys. 60, 1
=0.5cm=1[15] Raymond, Cox & Smith (1976: ApJ, 204, 290)
=0.5cm=1[16] Richitmyer & Morton (1967: Difference Methods for Initial-Value Problems, John Wiley & Sons: New York, 1234Ï)
=0.5cm=1[17] Shapiro, P. R., Moore, R. T. 1976, Time-dependent radiative cooling of a hot, diffuse cosmic gas, and the emergent X-ray spectrum, ApJ, 207, 460
=0.5cm=1[18] Silich, Fomin, 1983, Sov. Phys. Dokl. 28, 157
=0.5cm=1[19] Slavin & Cox, 1992, ApJ 392, 131
=0.5cm=1[20] Tammann, G. A., Löffler, W., Schroeder, A. 1994, The Galactic supernova rate, ApJS, 92, 487
=0.5cm=1[21] Tomisaka 1994: in Numerical Simulations in Astrophysics, ed. by J.Franco et al. p.336