Neutron Matter, the Maximum Mass, and Neutron Star Radii

J. M. Lattimer

Department of Physics & Astronomy Stony Brook University

Office of Science

 Ω

Collaborators: C. Drischler, K. Hebeler & A. Schwenk (Darmstadt), M. Prakash (Ohio U), A. Steiner (UT-Knoxville), Y. Lim (IBS, Daejeon, Korea)

22–23 June 2015, Tokyo International Symposium on "Physics and Astronomy of Neutron Stars and Supernovae"

The Importance of Neutron Stars

- \triangleright Masses and Radii and the Dense Matter Equation of State
	- \triangleright The neutron star maximum mass constrains the high-density EOS and also neutron star radii.
	- \triangleright The radius of typical stars constrains the nuclear symmetry energy, the EOS between 1-3 ρ_s , and the maximum mass.
	- \triangleright Universal relations relate binding energy, moment of inertia and tidal deformability to M/R.
- \triangleright Symmetry Energy Constraints
	- \triangleright Nuclear experiments (masses, skin thicknesses, resonances, HIC)
	- \blacktriangleright Neutron matter rheory
- \triangleright Astrophysical M and R Measurements
	- \triangleright pulsar timing, X-ray bursts, quiescent low-mass X-ray binaries, pulse profiles from ms pulsars, and gravitational radiation from mergers.
- \triangleright NS-NS and NS-BH Mergers
	- \triangleright perhaps the dominant sources of gravitational wave signals, short gamma-ray bursts, and kilonovae or macronovae;
	- \triangleright perhaps the primary nucleosynthesis site of r-process heavy elements.
- \triangleright Protoneutron Stars and Neutrino Signals from Supernovae
- \blacktriangleright The QCD Phase Transition
- \triangleright \triangleright \triangleright Composition and Pairing P[ro](#page-0-0)perties fro[m](#page-2-0) [C](#page-0-0)[o](#page-1-0)[ol](#page-2-0)[in](#page-0-0)[g](#page-29-0) [His](#page-0-0)[to](#page-29-0)ri[es](#page-29-0) \triangleright

Neutron Star Structure 101

Tolman-Oppenheimer-Volkov equations

J. M. Lattimer **[Neutron Matter, the Maximum Mass, and Neutron Star Radii](#page-0-0)**

Extremes of Mass and Compactness of Neutron Stars

 \triangleright The most compact and massive configurations occur when the low-density equation of state is "soft" and the high-density equation of state is "stiff" (Koranda, Stergioulas & Friedman 1997).

J. M. Lattimer **[Neutron Matter, the Maximum Mass, and Neutron Star Radii](#page-0-0)**

Extremal Properties of Neutron Stars

The maximum mass configuration is achieved when $x_R = 0.2404$, $w_c = 3.034$, $y_c = 2.034$, $z_R = 0.08513$.

A useful reference density is the nuclear saturation density (interior density of normal nuclei): $\rho_{\bm{s}}=2.7\times10^{14}$ g cm $^{-3}$, $n_{\bm{s}}=0.16$ baryons fm $^{-3}$, $\varepsilon_{\bm{s}}=150$ MeV fm $^{-3}$ $M_{\rm max} = 4.1~(\varepsilon_{\rm s}/\varepsilon_0)^{1/2}M_\odot~$ (Rhoades & Ruffini 1974) $M_{B,\rm max}=5.41~(m_Bc^2/\mu_o)(\varepsilon_s/\varepsilon_0)^{1/2}M_\odot$ $R_{\min} = 2.82 \text{ G}M/c^2 = 4.3 \text{ (}M/M_{\odot}\text{)} \text{ km}$ \blacktriangleright $\mu_{b \text{ max}} = 2.09 \text{ GeV}$ \blacktriangleright $\varepsilon_{c,\rm max} =$ 3.034 $\varepsilon_0 \simeq$ 51 $(M_{\odot}/M_{\rm largest})^2$ ε_{s} \blacktriangleright $\rho_{c,\rm max} = 2.034$ $\varepsilon_0 \simeq$ 34 $(M_{\odot}/M_{\rm largest})^2$ ε_s \blacktriangleright $n_{B,{\rm max}} \simeq 38~(M_{\odot}/M_{\rm largest})^2$ $n_{\rm s}$ \triangleright BE_{max} = 0.34 M $P_{\min} = 0.74 \ (M_{\odot}/M_{\rm sph})^{1/2} (R_{\rm sph}/10 \text{ km})^{3/2} \text{ ms} =$ $0.20~ (M_{\rm sph,max}/M_{\odot})$ ms

 $2Q$

What is the Maximum Mass?

- \triangleright PSR J1614+2230 (Demorest et al. 2010) $M = 1.97 \pm 0.04$ M_{\odot} ; a nearly edge-on system with well-measured Shapiro time delay.
- \triangleright PSRJ0548+0432 (Antoniadis et al. 2013) $M = 2.01 \pm 0.04$ M_{\odot} ; measured using optical data and theoretical properties of companion white dwarf.
- ► B1957+20 (van Kerkwijk 2010) $M = 2.4 \pm 0.3$ M_{\odot} ; black widow pulsar (BWP).
- ▶ PSR J1311-3430 (Romani et al. 2012) $M = 2.55 \pm 0.50$ M_{\odot} ; BWP.
- \triangleright PSR J1544+4937 (Tang et al. 2014) $M = 2.06 \pm 0.56 M_{\odot}$; BWP.
- ▶ PSR 2FGL J1653.6-0159 (Romani et al. 2014) $M > f(M_2)/\sin^3 i \gtrsim 1.96 M_{\odot}$ [largest $f(M_2)$]; BWP.
- ▶ PSR J1227-4859 (de Martino et al. 2014) $M = 2.2 \pm 0.8 M_{\odot}$; redback pulsar.

 Ω

Causality $+$ GR Limits and the Maximum Mass

A lower limit to the maximum mass sets a lower limit to the radius for a given mass.

Similarly, a precise (M, R) measurement sets an upper limit to the maximum mass.

1.4 M_{\odot} stars must have $R > 8.15 M_{\odot}$.

1.4 M_{\odot} strange quark matter stars (and likely hybrid quark/hadron stars) must have $R > 11$ km.

つひへ

Maximum Mass and Neutron Star Radii

What About Realistic EOSs?

It has been proposed that the physically plausible sound speed √ limit is $c/\sqrt{3}$ (Bedaque & Steiner 2015), in which case 1.4 M_\odot stars must have $R_{1.4} > 11$ km.

Quark matter generically has a sound speed \lesssim c/ $\sqrt{\color{black} \sqrt{\color{black} }}$ 3. Hybrid √ quark/hadron stars are 0.5–2 km larger than the $c/\sqrt{3}$ limit (Alford et al. 2015).

Additional constraints are imposed by our knowledge of the low-density equation of state.

- A nuclear crust exists below about $\rho_s/3 \rho_s/2$, with an EOS largely independent of nuclear properties.
- \triangleright Chiral-Lagrangian neutron matter calculations (Hebeler & Schwenk (2010), Hebeler et al. (2010, 2013), Drischler, Somá & Schwenk (2014), $\rho \lesssim 1.25 \rho_s$ (?).
- \triangleright Quantum Monte Carlo neutron matter calculations (Gandolfi, Carlson & Reddy ([2](#page-10-0)012), $\rho \lesssim 2\rho_s$ $\rho \lesssim 2\rho_s$ $\rho \lesssim 2\rho_s$ [\(](#page-10-0)[?\).](#page-0-0)

 Ω

 $M_{max} - R_{1.4}$

J. M. Lattimer [Neutron Matter, the Maximum Mass, and Neutron Star Radii](#page-0-0)

The Radius – Pressure Correlation

Nuclear Symmetry Energy and Pressure

Defined as the difference between energies of pure neutron matter $(x = 0)$ and symmetric $(x = 1/2)$ nuclear matter.

Nuclear Structure 101

Liquid Droplet Model (Myers and Swiatecki)

$$
\frac{E_{A,Z}}{A} = -B + E_{s0}A^{-1/3} + E_c \left(\frac{Z}{A}\right)^2 A^{2/3} + \frac{S_v I^2}{1 + \frac{S_s}{S_v}A^{-1/3}}
$$

Ignoring Coulomb effects:

$$
E_{sym} = S_{v}Al^{2} \left[1 + \frac{S_{s}}{S_{v}} A^{-1/3} \right]^{-1} \Rightarrow \frac{S_{s}}{S_{v}} \propto S_{v},
$$

$$
\alpha_{D} = \frac{r_{o}^{2} A^{5/3}}{20 S_{v}} \left[1 + \frac{5}{3} \frac{S_{s}}{S_{v}} A^{-1/3} \right] \Rightarrow \frac{S_{s}}{S_{v}} \propto S_{v},
$$

$$
r_{np} = \sqrt{\frac{3}{5}} \frac{2r_{o}}{3} \frac{S_{s}}{S_{v}} I \left[1 + \frac{S_{s}}{S_{v}} A^{-1/3} \right]^{-1} \Rightarrow \frac{S_{s}}{S_{v}} \propto \text{ const.}
$$

$$
\frac{S_s}{S_v} \propto \int_{-\infty}^{\infty} \rho \left[\frac{S_v}{S_2(\rho)} - 1 \right] dx \approx f(S_v, L) \propto L
$$

 $2Q$

Experimental and Neutron Matter Constraints

Nuclear Experiment Masses: Kortelainen et al. 2010 Neutron skin Chen et al. 2010 Pb dipole polarizability Tamii et al. 2008 Piekarewicz et al. 2012 Giant dipole resonance (MeV) Trippa['] et al. 2008 Heavy ion collisions Tsang et al. 2009 Isobaric analog states Danielewicz & Lee 2009

Neutron Matter Calculations

- H: Chiral Lagrangian Hebeler & Schwenk 2010
- G: Quantum Monte Carlo Gandolfi, Carlson & Reddy 2012
- $S_v L$ constraints: Hebeler et al. 2012

Other Universal Relations

 $\beta = \frac{GM}{R_{\odot}^2}$ Rc^2

- \triangleright Binding Energy $\frac{\text{BE}}{M} = \frac{(M_b - M)c^2}{M}$ $\frac{m_1 c}{M} = b(\beta)$
- \blacktriangleright Moment of Inertia $\frac{1}{M^3} = i(\beta)$
- \blacktriangleright Tidal Love Number $\frac{\lambda}{M^5} = k(\beta)$

Simultaneous Mass/Radius Measurements

► Measurements of flux $F_{\infty} = \left(R_{\infty}/D\right)^2 \sigma T_{\text{eff}}^4$ and color temperature $T_c \propto \lambda_{\rm max}^{-1}$ yield an apparent angular size (pseudo-BB):

つくい

$$
\frac{R_{\infty}}{D} = \frac{R}{D} \frac{1}{\sqrt{1 - 2GM/Rc^2}}
$$

 \triangleright Observational uncertainties include distance D, interstellar absorption N_H , atmospheric composition

Best chances for accurate radius measurement:

- \triangleright Nearby isolated neutron stars with parallax (uncertain atmosphere)
- \triangleright Quiescent low-mass X-ray binaries (QLMXBs) in globular clusters (reliable distances, low B H-atmosperes)
- \triangleright Bursting sources (XRBs) with peak fluxes close to Eddington limit (where gravity balances radiation pressure)

$$
F_{\rm Edd} = \frac{cGM}{\kappa D^2} \sqrt{1 - 2GM/Rc^2}
$$

 $M - R$ PRE Burst Estimates

 $M - R$ QLMXB Estimates

J. M. Lattimer **[Neutron Matter, the Maximum Mass, and Neutron Star Radii](#page-0-0)**

Bayesian TOV Inversion

- \triangleright ε < 0.5 ε ₀: Known crustal EOS
- \blacktriangleright 0.5 $\varepsilon_0 < \varepsilon < \varepsilon_1$: EOS parametrized by $K,K',\mathcal{S}_{\nu},\gamma$
- **Polytropic EOS:** $\varepsilon_1 < \varepsilon < \varepsilon_2$: n_1 ; $ε > ε₂: n₂$
- ► EOS parameters $K, K', S_v, \gamma, \varepsilon_1$, n_1, ε_2, n_2 uniformly distributed
- $M_{\rm max} \geq 1.97$ M_o, causality enforced
- \blacktriangleright All 10 stars equally weighted

Astronomy vs. Astronomy vs. Physics

Ozel et al., XRB $z_{ph} = z$: $R = 9.7 \pm 0.5$ km (2009-14) XRB+QLMXB: $R = 10.8^{+0.5}_{-0.4}$ km (2015).

Suleimanov et al., long XRB: R_1 ₄ \gtrsim 13.9 km

Guillot & Rutledge (2014), QLMXB, equal radii stars, self N_H : $R = 9.4 \pm 1.2$ km.

Lattimer & Steiner (2013), XRB+QLMXB, TOV, crust, causality, $M_{max} > 2M_{\odot}$, $z_{\text{ph}} \neq z$, alt N_H .

Lattimer & Lim (2013), nuclear experiments: 29 MeV $< S_{\nu} < 33$ MeV. 40 MeV $< L < 65$ MeV: $R_{1.4} = 12.0 \pm 1.4$ km.

Future Astrophysical Prospects

Spin-Orbit Coupling in Relativistic Binaries

$$
\dot{\textbf{S}}_{\textbf{A}}=\frac{7G}{2a^3c^2}\textbf{L}\times\textbf{S}_{\textbf{A}}
$$

$$
\dot{\mathbf{L}} = \frac{7G}{2a^3c^2} \left(\mathbf{S_A} - 3\mathbf{L} \frac{\mathbf{L} \cdot \mathbf{S}}{|\mathbf{L}|^2} \right)
$$

 \triangleright Change in inclination angle *i*:

$$
\delta t_i = \frac{I_A}{aM_Ac} \frac{P}{P_A} \sin \theta_A \cos i \sim 0.1 \ \mu s
$$

 \triangleright Change in periastron advance (observability proportional to sin *i*):

$$
\frac{\delta t_{p,SO}}{\delta t_{p,2PN}} = \frac{2c^2 I_A}{GM_A^2 a} \frac{P}{P_A} \cos \theta_A \sim 3
$$

PSR J0737-3039: $i \approx 88^{\circ} \pm 0.5^{\circ}$, $\theta_A \approx 13^{\circ} \pm 10^{\circ}$

 $2Q$

Science Measurements

Reveal stellar structure through lightcurve modeling, long-term timing, and pulsation searches

Lightcurve modeling constrains the compactness (M/R) and viewing geometry of a non-accreting millisecond pulsar through the depth of modulation and harmonic content of emission from rotating hot-spots, thanks to gravitational light-bending...

Science Overview - 5

 \sim

Science Measurements (cont.)

Science Overview - 6 \sim

Compact Binary Mergers

Neutron star–neutron star or black hole–neutron star mergers

- \triangleright Strongest sources of gravitational waves observable with aLIGO
- \blacktriangleright Leading candidates for short-hard gamma-ray bursts (10% of all gamma-ray bursts)
- \blacktriangleright Eject 0.001–0.01 M_{\odot} of neutron-rich matter
	- \triangleright R-process nucleosynthesis
	- \blacktriangleright Infrared afterglows observed 10-15 days after short gamma-ray bursts, due to thermalization of r-process γ -rays in high-opacity actinides (GRBs 130603B and 060614)

Constraints from Observations of Gravitational Radiation

- Masses and tidal deformability measurable during inspiral.
- \blacktriangleright Frequency peaks are tightly correlated with compactness.
- Mass determinations from prompt and delayed black hole formation.
- In neutron star-black hole mergers, disc mass depends on a/M_{BH} and on $M_{NS}M_{BH}/R^2$.
- R -mode instabilities in rotating neutron sta[rs.](#page-24-0) \Box Ω

Conclusions

- \triangleright Measured neutron star masses imply lower limits to radii of typical neutron stars.
- \triangleright Symmetry energy determines typical neutron star radii.
- \triangleright Nuclear experiments set reasonably tight constraints on symmetry energy parameters.
- \triangleright Theoretical calculations of pure neutron matter predict very similar symmetry constraints.
- \blacktriangleright These constraints predict neutron star radii $R_{1.4} = 12.0 \pm 1.4$ km.
- \triangleright Combined astronomical observations of photospheric radius expansion X-ray bursts and quiescent sources in globular clusters suggest $R_{1.4} \sim 12.1 \pm 0.6$ km.
- \blacktriangleright The properties of a high-density phase, such as quark matter, are tightly constrained by current mass measurements.
- A mass measurement above 2.4 M_{\odot} may be incompatible with other constraints, assuming GR is correct.

 $2Q$

First Order Phase Transition in Neutron Stars

- \blacktriangleright Generic first order phase transition with 3 parameters: ε_t , P_t , and $\Delta\varepsilon$.
- \blacktriangleright Make 2 dimensionless parameter combinations: $\Delta\varepsilon/\varepsilon_t$ and P_t/ε_t .
- \triangleright Critical condition for an appearance of a stable hybrid core connected to the normal branch (B, C) :

$$
\frac{\Delta \varepsilon}{\varepsilon_t} \leq \frac{1}{2} + \frac{3}{2} \frac{P_t}{\varepsilon_t}.
$$

- \blacktriangleright It is also possible to have a stable hybrid core disconnected from the normal branch (B, D).
- \blacktriangleright Approximate high-density phase with a constant sound speed $c^2_{\rm QM} = d\rho/d\varepsilon \sim 1/3.$

Sound Speed in Quark Matter

 $2Q$

Mass Constraint

