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The Supernova 
Dilemma 

•  Even after decades of numerical simulations 
the mechanism is not yet understood. 

•  E(neutron star) - E(iron core) ~ 1053 erg 
•  1053 erg in neutrinos emitted over ~ 10 sec. 
•  Neutrino m.f.p ~ 0.2 km 
•  Neutrinos diffuse from the core 
•  How do neutrinos explode the star? 



Current Status 
•  Neutrinos alone can not induce an explosion 

in spherical symmetry 
•  Need 3D effects 

– Neutrino Heated Convection? 
– Standing Accretion Shock Instability? 

http://www.rzg.mpg.de/services/visualization 



Premise of this talk 

•  Maybe neutrinos are telling us a message 
about the physics of how stars explode 

•  What are the messages? 



Supernova neutinos as messengers of: 

2. Nucleosynthesis  of the r-
process elements 
S. Shibagaki et al., PRD (2014)   Submitted 
K. Nakamura et al .A&A (2015); IJMPE (2014) 
 

4. Relic neutino background and 
supernova neutrino temperatures 

GJM,  Warren,  Hidaka,. Kajino, et al. ApJ (2014) 

The Astrophysical Journal, 790:1 (22pp), 2014 ??? Mathews et al.
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Figure 10. Relative contributions to the total to the total predicted SRN flux
spectrum (solid line) from CC-SNe (short dashed line), ONeMg SNe (dotted
line), fSNe (long dashed line) and GRBs (dot–dashed line) for our fiducial model
and three oscillation cases. The background due to atmospheric neutrinos is also
indicated as a short dashed line.

In the collapsar hot accretion disk, the temperature and density
near the neutrino-sphere are more extreme than in the proto-
neutron star of a CC-SN. The temperature is ∼30 MeV and
the density is ∼1014g cm−3. For these conditions, the cooling
rate from capture by free nucleons (Equation (26)) exceeds the
pair annihilation rate (Equation (27)) since the annihilation rate
depends upon rather strongly on the temperature and density,
while e+e− capture is independent of the number density.
Hence, the pair annihilation rate is suppressed. This means that
the production of the νx by pair annihilation is suppressed.

Table 10
SRN Detection Rate Contributions from Core Collapse SNe, ONeMg SNe,

Failed SNe, and GRBs in a 106 ton Water Čerenkov
Detector with 10 yr Run Time

Total z = 0–1 1–2 2–3 3–4 4–5

Case I

Total 814 586 201 21.8 3.01 0.275
SNe 593 425 149 16.2 2.21 0.200
ONeMg SNe 62.7 51.1 10.9 0.612 0.0406 0.0019
Failed SNe 158 110 42 5.00 0.749 0.073
GRB 0.327 0.235 0.0815 0.0087 0.0012 0.00010

Case II

Total 851 592 226 28.0 4.40 0.45
SNe 713 494 191 23.6 3.69 0.37
ONeMg SNe 31.2 25.5 5.40 0.30 0.02 0.00035
Failed SNe 107 72 30.2 4.07 0.69 0.08
GRB 0.0190 0.0152 0.0035 0.00028 0.000027 0.000002

Case III (no osc.)

Total 637 487 134 13.1 1.61 0.182
SNe 412 315 87.3 8.41 0.992 0.107
ONeMg SNe 62.7 52.9 9.26 0.505 0.0324 0.0019
failed SNe 161 119 37.80 4.21 0.584 0.0738
GRB 0.020 0.016 0.004 0.0004 0.0003 0.000002

Therefore, the neutrino luminosity hierarchy can be altered in
the case of neutrino emission from the optically thin accretion
disk.

The ratio of the cooling rate q̇2/q̇4 ∼ 10 according to
Equations (26) and (27). This ratio also directly affects the
difference in the contribution from GRBs to the whole energy
spectrum between the non-adiabatic case and the adiabatic case
of neutrino oscillations (see Figures 4, 11, and Table 10).

The Tνx
in the GRB model of Harikae et al. (2009) is 4.4 MeV,

which is lower than Tν̄e
in the same model, in contrast to the

usual neutrino temperature hierarchy. One possible reason for
this is that neutrinos are mainly produced in an optically thin
region of the accretion disk.

5.4. Detection Rates

Figures 11 and 12, along with Table 10 show SRN detection
rates for the different contributions shown in Figure 10 and
for the three oscillation scenarios considered in this work. The
solid line in Figure 11 shows the total detection rate of SRN. The
dashed line shows the dominant contribution from normal CC-
SNe. The dotted line shows the contribution from fSNe, while
the dot–dashed line shows the contribution from ONeMg SNe
which is only significant at low energies. The lowest thin dotted
line is from collapsars/GRBs. The contribution from GRB
events is negligibly small (<1%) because the ratio of the GRB
rate to the number of stellar explosion is <0.1% even though
the gravitational binding energy released in SRN during GRBs
is a few times larger than that for normal CC-SNe.

Figure 12 illustrates the uncertainty in the total number of
detected events in our fiducial model after 10 yr running.
The shaded regions indicate the combined uncertainties from
detector statistics and the uncertainty in the SFR. The sensitivity
to the contribution from fSNe is illustrated by the difference
between the events detected for the stiff EoS of Shen et al.
(1998; red region) and the soft (K = 180) EoS of Lattimer &
Swesty (1991; green region).

Figure 11 and Table 10 show that the contribution from fSNe
to the SRN detection rate is less than 10% after integration
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1.  Physics beyond the Standard Model: 
sterile neutrinos /dark matter? 
M. Warren, GJM et al. PRD (2014) 



Neutrino transport is a 
crucial part of the  

supernova explosion 
mechanism 

Delicate balance between 
neutrino heating and cooling 

PNS 

Shock 

Neutrino 
Heating 

Neutrino 
Cooling 

Neutrinosphere 
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Neutinos affect the flow of mass-
energy 
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Neutrinos and the flow of spacetime 
in core-collapse supernovae 

General relativistic hydrodynamics 
 
 

    Tµν
;
 
ν = 0 

 

5.2 The Physical Model 7

neutrino energy and angle Fi(E, ✓) = fi(E, ✓)E3. The average energy E⌫ ,
pressure P⌫ and neutrino flux �⌫ are then defined by energy and angular
integrations over this distribution function.

E⌫ =
6X

i=1

Z
FidEd⌦⌫ , (5.12)
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6X

i=1

Z
Ficos(✓)dEd⌦⌫ , (5.13)
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6X
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Z
Ficos

2(✓)dEd⌦⌫ , (5.14)

where ⌦⌫ = 2⇡ sin ✓d✓ is the neutrino solid angle.
With these definitions, the energy-momentum tensor becomes

Tµ⌫ =
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5.2.3 Evolution Equations

As in previous chapters, having specified the metric and the energy mo-
mentum tensor it becomes possible to use the Einstein equation to find
the metric coe�cients.

We first introduce a new variable,

� =
✓

1 + U2
�

2M

R

◆1/2

, (5.16)

where M is the gravitational mass interior to R defined below, and U ⌘

UR is the radial component of the four velocity.

U =
1
a

@R

@t
. (5.17)

Obviously we have U✓ = U� = 0.
The quantity � (not to be confused with the equation of state index

used in previous chapters) is related to W = ↵U t = (1 + U2)1/2 of the
(3+1) hydrodynamics formulation.

With this choice of variables, the metric can be rewritten as

ds2 = �a2

1�

✓
U

�

◆2�
dt2�

2aU

�2
dRdt+

dR2

�2
+R2(d✓2+sin2 ✓d�2) , (5.18)
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where the quantity a ⌘ 1/U t is related to the gravitational red shift, and
R has units of physical length. Proper distance is given by

Proper Distance =
Z

dR

�
. (5.19)

For the metric coe�cient a the condition Tmj
;j = 0 implies
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where mmax is the mass coordinate at the boundary of the numerical grid.
The quantity h ⌘ 1 + ✏ + P/⇢ as defined in Chapter 3, and

b ⌘
1

4⇡R2⇢
. (5.21)

For the one-dimensional calculations, the metric coe�cient a(t, m) can
be set to unity outside the grid and then the appropriate transformation
used to find global time.

5.2.4 Matter Equations

For the matter four velocity acceleration we have, This leads to
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The condition of baryon number conservation (⇢Uµ);µ = 0, leads to
auxiliary equations for the matter evolution:
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. (5.23)
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M = 4⇡
Z m

0
dm

@R

@m
R2


⇢(1 + ✏) +

U

�
�⌫

�
(5.25)

1
a

@M

@t
= 4⇡R2(UP + ��⌫) . (5.26)

1
b

@M

@m
= 4⇡R2


�⇢(1 + ✏) + U�⌫

�
. (5.27)

5.2 The Physical Model 7

neutrino energy and angle Fi(E, ✓) = fi(E, ✓)E3. The average energy E⌫ ,
pressure P⌫ and neutrino flux �⌫ are then defined by energy and angular
integrations over this distribution function.

E⌫ =
6X

i=1

Z
FidEd⌦⌫ , (5.12)

�⌫ =
6X

i=1

Z
Ficos(✓)dEd⌦⌫ , (5.13)

P⌫ =
6X

i=1

Z
Ficos

2(✓)dEd⌦⌫ , (5.14)

where ⌦⌫ = 2⇡ sin ✓d✓ is the neutrino solid angle.
With these definitions, the energy-momentum tensor becomes

Tµ⌫ =

0

BBBB@

(⇢(1+✏))
a2

�
⌫

4⇡R2⇢
a 0 0

�
⌫

4⇡R2⇢
a P (4⇡R2⇢)2 0 0
0 0 (P+W

⌫

)
R2 0

0 0 0 (P+W
⌫

)
R2 sin2 ✓

1

CCCCA
. (5.15)

5.2.3 Evolution Equations

As in previous chapters, having specified the metric and the energy mo-
mentum tensor it becomes possible to use the Einstein equation to find
the metric coe�cients.

We first introduce a new variable,

� =
✓

1 + U2
�

2M

R

◆1/2

, (5.16)

where M is the gravitational mass interior to R defined below, and U ⌘

UR is the radial component of the four velocity.

U =
1
a

@R

@t
. (5.17)

Obviously we have U✓ = U� = 0.
The quantity � (not to be confused with the equation of state index

used in previous chapters) is related to W = ↵U t = (1 + U2)1/2 of the
(3+1) hydrodynamics formulation.

With this choice of variables, the metric can be rewritten as

ds2 = �a2

1�

✓
U

�

◆2�
dt2�

2aU

�2
dRdt+

dR2

�2
+R2(d✓2+sin2 ✓d�2) , (5.18)



9 

Neutrino Spectrum Fi 

General Relativistic Boltzmann Equation 
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5.4 Neutrino Evolution Equation

As seen in the previous section, a proper description of the matter evo-
lution requires the determination of the neutrino distributions functions.
This is a critical component of the supernova model.

In principle the distribution functions for the neutrinos are given from
the relativistic Boltzmann Equation (Lindquist 1966; Wilson 1971) for
each neutrino type.

If we let µ ⌘ cos ✓, then using the time-time and space-time components
of the Einstein equation (1.1) the relativistic Boltzmann equation for the
neutrino distribution as a function of µ, q, R, and t can be written

1
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=

µ�
aR2
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✓ 1
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, (5.37)

where

B ⌘ gi

✓
q

a

◆3 1
eq/aT + 1

, (5.38)

with gi the usual statistical factor. The quantity i is the neutrino opacity.

5.4.1 Flux-Limited Di↵usion

The evaluation of this equation has been achieved in the past (Wilson
1971) by analyzing finite di↵erence equations in the µ coordinate. How-
ever, for model computations with high grid resolution it is desirable to
have a faster scheme without sacrificing accuracy. The most common
solution is to introduce relativistic flux-limited di↵usion.

In this case the Boltzmann evolution is simplified to a di↵usion equation
of the form of Fick’s law,

1
a

@Gi

@t
⇡ r · (DirGi) . (5.39)

To achieve this simplification we begin by introducing angular moments
of the distribution functions:

Gi =
Z

Fid⌦⌫ , (5.40)

Hi =
Z

Ficos(✓)d⌦⌫ , (5.41)
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Linquist (1966) 
 Wilson & Mathews (2003) 

Neutrino collision terms 
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Neutrino Interactions 

Internal Energy 

Lepton Number conservation 



Neutrino-nucleon scattering 

Corrections 
- Horowitz 

(2002) 



Is there more? 

•  EOS effects 
•  Coherent neutrino scattering? 
•  Neutrinos from QCD phase transition? 
•  Neutrino oscillations? 
•  Oscillations with sterile neutrinos? 
•  ….. 



EoS Canundrum in Core Collapse 
•  Want soft EoS in SNe => higher central core 

densities, neutrino fluxes, temperature 
•  Heavy-Ion data favor a soft EoS 
•  Want stiff EoS in cold NS => max mass > 2 M"

13 



Regions of the Hadronic EoS 

Below Nuclear 
Matter density 
Reaction Network 
=> NSE  
=> Nuclear pasta 

14 

Above Nuclear 
Matter density 
=> pions 
=> Lambdas? 
=>Strange matter? 

Transition to 
Quark Gluon 
Plasma? 
⇒ Coexistence 
⇒ QGP 
⇒ CSC  } }

Soft Stiff 

3-body repulsion 
Soft again? 

Pions 
Soft at 
high T 



NDL Nuclear Matter EoS 
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1. Bulk Nuclear Matter and Asymmetry Energy

We take the free energy per nuclear particle to be separable into functions of ⇤, Yp and

T , of the form

F = F1(⇤) + F2(⇤, Yp) + FTh(⇤, T ) + F3B(⇤, Yp) , (2.48)

where the zero temperature, Yp = 0.5 component is

F1 = 8.79 MeV + E0 +
1

9
K0

⇤
�� � 1� �(� � 1)

��(�� 1)

⌅
, (2.49)

and the zero temperature asymmetry contribution is

F2(⇤, Yp) = �[16 MeV + 72 MeV (1 + 4�)�1](1� 2Yp)
2 . (2.50)

Here, � ⇤ ⇤/⇤N where ⇤N = 2.667 ⇥ 1014 g cm�3 is the density of nuclear matter. The

compressibility parameter in the original formulation of [? ] was taken as K0 = 200 MeV.

In the present work this is increased to 265 MeV, based upon studies of the giant monopole

resonance [? ]. The adiabatic index near nuclear matter density is take to be � = 2.75, and

the binding energy per nucleon at nuclear density is E0 = �16 MeV. These expressions for

the zero temperature limit of the free energy F1 and F2 are taken from Muther, Prakash,

and Ainsworth [52]. The extra 8.79 MeV added to F1 corrects for the fact that our zero is

with respect to iron nuclei, while theirs is with respect to free baryons.

2. Thermal Energy

The thermal contribution FTh(⇤, T ) is constructed as follows. One begins with a degener-

ate gas of quasi-nucleons (neutrons and protons) and delta particles. Their relative numbers

are fixed by the equality of the chemical potentials. Only the thermal parts of the pressure

and energy per baryon need be considered. Thus, we write

FTh(⇤, T ) = ⇥(⇤, t)�⇥(⇤, 0) , (2.51)

where ⇥(⇤, t) = E � TS is the thermal free energy,

⇥(⇤, t) =
⇧

i=N,⇥

⌃ 4⇥gidpip2
i

h3

�
µi

Di
� kT ln (Di)

⇥
, (2.52)
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Volume 

Asymmetry 

Thermal 

Free Energy 

fasym= 

ftherm= 

Includes 2-body and 3-body terms K0 = 240 ±10 MeV 
n0 = 0.16 ±0.01 fm-3 

7

ical potential constraints combined with charge
and baryon number conservation are solved self
consistently to determine the matter composi-
tion. This leads to a 20% increase in the mass
fraction of heavy nuclei when compared to the
original approximation scheme [? ? ].

C. Baryonic Matter Above Saturation
Density

Above nuclear matter density, the baryons
are treated as a continuous fluid. In this regime,
the free energy per nucleon is given in the form

f = f1 (n, Yp) + f2 (n, T ) + 8.79 MeV , (31)

where the addition of 8.79 MeV sets the zero for
the free energy to be the ground state of 56Fe.
For an arbitrary proton fraction Yp and number
density n the zero-temperature contribution to
the free energy per nucleon is written as the sum
of an isospin symmetric term and the symmetry
energy:

f1 (n, Yp) =
E

A
(n, Yp = 0.5) + S (n, Yp) . (32)

Expanding S(n, Yp) in terms of (1� 2Yp), and
keeping only the leading contribution, the sym-
metry energy can be written as

S (n, Yp) = (1� 2Yp)
2
S0 (n) , (33)

where S0 can be identified as the symmetry en-
ergy.

Above saturation density we include both 2-

body (v(2)ij ) and 3-body (v(3)ijk) interactions in the
many-nucleon system. The Hamiltonian of this
system is thus given by

Ĥ =
X

i

t̂i +
X

i<j

v
(2)
ij +

X

i<j<k

v
(3)
ijk , (34)

where t̂i is the one body contribution while vij
and vijk are the 2 and 3-body interactions, re-
spectively. In the density functional approach
one can parameterize these interactions to de-
scribe the ground-state properties of finite nu-
clei and nuclear matter [? ? ? ]. The mi-
croscopic interactions, such as meson exchange,
are embedded in the parameters of the density
dependent forces.

Among the most widely used interactions are
those of the Skyrme type forces. In this for-
mulation the two-body potential is given in the
form [? ]:

v
(2)
12 = t0

⇣
1 + x0P̂s

⌘
� (r1 � r2) +

1

2
t1(1 + x1P̂s)

⇣
� (r1 � r2) k̂

2 + k̂
02� (r1 � r2)

⌘

+ t2(1 + x2P̂s)k̂
2 · � (r1 � r2) k̂+ iW0 (�̂1 + �̂2) · k̂0 ⇥ � (r1 � r2) k̂ ,

(35)

where P̂s = (1+ �1 · �2)/2 is the spin exchange
operator, r1 and r2 are the position vectors
in the two-body potential, x0 is the coe�cient
for the isospin exchange operator, k̂ and k̂0 are
the momentum and conjugate momentum oper-
ators, and W0 is the coe�cient of the two-body
spin orbit interaction.

We will discuss the Skyrme coe�cients
t0, t1, t2, t3, and � in the following sections. For
this Skyrme potential the high density behavior

can be dominated by a 3-body repulsive interac-
tion. This term is taken to be a zero range force
of the form v123 = t3� (r1 � r2) � (r2 � r3). If
the assumption is made that the medium is
spin-saturated, which is valid for neutron star
matter and nuclei [? ], the three-body term is
equivalent to a density dependent two-body in-

9

D. Asymmetric Nuclear Matter

In earlier work [? ? ] the form adopted for
the density dependent symmetry energy coe�-
cient S0(n) in asymmetric nuclear matter was

S0(n) = ⌘


16 +

72

1 + 4⌘

�
, (43)

where ⌘ ⌘ n/n0 is the saturation density pa-
rameter with n0 the saturation number density
(0.16 fm�3) [? ]. This behavior arose from the
use of a vector coupled ⇢-meson in relativistic
field theory calculations.

However, these are not the most successful
models because their symmetry energy is too
sti↵. There are presently di↵erent experimen-
tal constraints on the density dependence of
the symmetry energy as well as theoretical con-
straints on the pure neutron matter EOS (New-
ton et al., ApJ Supp. Series 204, 9 for a review).

In the current Skyrme parameterization,
however, one can determine the density depen-
dence of the symmetry energy from a Taylor
series expansion.

We begin with a more general form for the
binding energy per nucleon E/A for asymmetric
nuclear matter[? ]. Defining � ⌘ (1�2Yp), then
we write

E(n, �)/A =
3~2
10m

✓
3⇡2

2

◆2/3

n2/3F5/3

+
1

8
t0n[2(x0 + 2)� (2x0 + 1)F2]

+
1

48
t3n

�+1[2(x3 + 2)� (2x3 + 1)F2]

+
3

40

✓
3⇡2

2

◆2/3

n5/3

⇥
�
[t1(x1 + 2) + t2(x2 + 2)]F5/3

+
1

2
[t2(2x2 + 1)� t1(2x1 + 1)]F8/3

�
,

(44)

where

Fm(�) ⌘ 1

2
[(1 + �)m + (1� �)m],

The density-dependent symmetry energy coe�-
cient can then calculated from the second term
of a Macluran series expansion of E(n, �)/A in
terms of � near symmetric nuclear matter, i.e.,

S0(n) =
1

2

✓
@2(E/A)

@�2

◆

�=0

. (45)

In our parameterization we let x2 = 0. We then
have [? ]

S0(n) =
~2
6m

✓
3⇡2

2

◆2/3

n2/3 � 1

8
t0(2x0 + 1)n

� 1

48
t3(2x3 + 1)n�+1

� 1

24
(3t1x1 � t2(4 + 5x2))

✓
3⇡2

2

◆2/3

n5/3 .(46)

It is common in the literature to then charac-
terize the symmetry energy in terms of a slope
and curvature near symmetric nuclear matter
i.e.

S0(n) ⇡ S0 +
L

3
(⌘� 1)+

Ksym

18
(⌘� 1)2 , (47)

where in the standard parameterization [? ]

L ⌘ 3n0
@(S0(n))

@n
|n=n0

=
~2
3m

✓
3⇡2

2

◆2/3

n
2/3
0 � 3t0

8
n0(2x0 + 1)

� 1

16
t3n

�+1
0 (2x3 + 1)

+
5

24

✓
3⇡2

2

◆2/3

n
5/3
0 (3t1 + 5t2) , (48)

and

Ksym = 9n2
0
@2(S0(n))

@n2
|n=n0

=
3~2
3m

✓
3⇡2

2

◆2/3

n
2/3
0

� 3

16
t3n

�+1
0 (2x3 + 1)(� + 1)

+
5

12

✓
3⇡2

2

◆2/3

n
5/3
0 (3t1 + 5t2) .(49)

; 
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What are sterile neutrinos? 

•  Proposed fourth neutrino 
flavor 

•  Minimal extension of the 
Standard Model 
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Importantly, each of these results was confirmed by two different types of experiments: accel-
erator (9) for Equation 3 and reactor (10) for Equation 2.

The observed pattern of neutrino oscillations cannot be explained by the action (Equation 1)
with the Planck-scale cutoff. Indeed, the lowest-order five-dimensional operator

O5 = Aαβ

(
L̄αφ̃

) (
φ†Lc

β

)
4.

leads to the Majorana neutrino masses of the order mν ∼ v2/MPl " 10−6 eV, where Lα are left-
handed leptonic doublets, the index α = e, µ, τ labels generations, φ is a Higgs doublet with
φ̃ j = i (τ2)k

j φ
∗
k , c is the sign of charge conjugation, and v = 174 GeV is the vacuum expectation

value (vev) of the Higgs field.
The fact that the mν following from this Lagrangian is so small compared with the lower

bound on neutrino mass arising from the observations of neutrino oscillations (mν >
√

|&m2
atm| "

0.05 eV) rules out the conjecture that the theory shown in Equation 1 is a viable effective field
theory up to the Planck scale. Therefore, the existence of neutrino oscillations requires adding
new particles to the Lagrangian of the SM.

Let us add N right-handed neutrinos NI (I = 1, N ). The most general renormalizable La-
grangian has the form

L = LSM + i N̄I ∂µγ µ NI −
(

Fα I L̄α NI φ̃ − MI

2
N̄ c

I NI + h.c .
)

, 5.

where FαI are new Yukawa couplings. The right-handed neutrinos have zero electric, weak, and
strong charges; therefore, they are often termed singlet or sterile fermions. The Majorana masses
MI are consistent with the gauge symmetries of the SM. Without loss of generality, the Majorana
mass matrix in diagonal form can be chosen.

If the Dirac masses MD = Fα I 〈φ〉 are much smaller than the Majorana masses MI , the type I
seesaw formula (11–14) holds that

(mν )αβ = −
N∑

I=1
(MD)α I

1
MI

(
MT

D
)

Iβ , 6.

where mν is a 3 × 3 matrix of active neutrino masses, mixings, and (possible) CP-violating phases.
An elementary analysis of Equation 6 shows that the number of right-handed singlet fermions
N must be at least two to fit the data of neutrino oscillations. If there were only one sterile
neutrino, then the two active neutrinos would be massless. If there were two singlet fermions,
only one of the active neutrinos would be massless, which does not contradict the results from
experiment. Moreover, in this case there are 11 new parameters in the Lagrangian (Equation 5)—
two Majorana masses, two Dirac masses, four mixing angles, and three CP-violating phases—which
is more than the number of parameters (7) describing the mass matrix of active neutrinos with
one zero eigenvalue. In other words, for N = 2 the Lagrangian (Equation 5) can describe the
pattern of neutrino masses and mixings observed experimentally. Of course, the situation is even
more relaxed for N = 3. The Lagrangian with N = 3 restores the symmetry between quarks and
leptons: Every left quark and lepton has a right counterpart.

The seesaw formula (Equation 6) allows the mass of singlet neutrinos to be a free parameter:
Multiplying MD by any number x and MI by x2 does not change the right-hand side of the
formula. Therefore, the choice of MI is a matter of theoretical prejudice that cannot be fixed by
active-neutrino experiments alone.

In this review, our choice of MI is roughly of the order of the other mass term in the Lagrangian
of the SM, the mass of the Higgs boson. This choice does not lead to any intermediate scale between
the electroweak and Planck scales, but it does require small Yukawa couplings FαI . It allows us
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Can explain active neutrino masses and mixings 
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Importantly, each of these results was confirmed by two different types of experiments: accel-
erator (9) for Equation 3 and reactor (10) for Equation 2.

The observed pattern of neutrino oscillations cannot be explained by the action (Equation 1)
with the Planck-scale cutoff. Indeed, the lowest-order five-dimensional operator

O5 = Aαβ

(
L̄αφ̃

) (
φ†Lc

β

)
4.

leads to the Majorana neutrino masses of the order mν ∼ v2/MPl " 10−6 eV, where Lα are left-
handed leptonic doublets, the index α = e, µ, τ labels generations, φ is a Higgs doublet with
φ̃ j = i (τ2)k

j φ
∗
k , c is the sign of charge conjugation, and v = 174 GeV is the vacuum expectation

value (vev) of the Higgs field.
The fact that the mν following from this Lagrangian is so small compared with the lower

bound on neutrino mass arising from the observations of neutrino oscillations (mν >
√

|&m2
atm| "

0.05 eV) rules out the conjecture that the theory shown in Equation 1 is a viable effective field
theory up to the Planck scale. Therefore, the existence of neutrino oscillations requires adding
new particles to the Lagrangian of the SM.

Let us add N right-handed neutrinos NI (I = 1, N ). The most general renormalizable La-
grangian has the form

L = LSM + i N̄I ∂µγ µ NI −
(

Fα I L̄α NI φ̃ − MI

2
N̄ c

I NI + h.c .
)

, 5.

where FαI are new Yukawa couplings. The right-handed neutrinos have zero electric, weak, and
strong charges; therefore, they are often termed singlet or sterile fermions. The Majorana masses
MI are consistent with the gauge symmetries of the SM. Without loss of generality, the Majorana
mass matrix in diagonal form can be chosen.

If the Dirac masses MD = Fα I 〈φ〉 are much smaller than the Majorana masses MI , the type I
seesaw formula (11–14) holds that

(mν )αβ = −
N∑

I=1
(MD)α I

1
MI

(
MT

D
)

Iβ , 6.

where mν is a 3 × 3 matrix of active neutrino masses, mixings, and (possible) CP-violating phases.
An elementary analysis of Equation 6 shows that the number of right-handed singlet fermions
N must be at least two to fit the data of neutrino oscillations. If there were only one sterile
neutrino, then the two active neutrinos would be massless. If there were two singlet fermions,
only one of the active neutrinos would be massless, which does not contradict the results from
experiment. Moreover, in this case there are 11 new parameters in the Lagrangian (Equation 5)—
two Majorana masses, two Dirac masses, four mixing angles, and three CP-violating phases—which
is more than the number of parameters (7) describing the mass matrix of active neutrinos with
one zero eigenvalue. In other words, for N = 2 the Lagrangian (Equation 5) can describe the
pattern of neutrino masses and mixings observed experimentally. Of course, the situation is even
more relaxed for N = 3. The Lagrangian with N = 3 restores the symmetry between quarks and
leptons: Every left quark and lepton has a right counterpart.

The seesaw formula (Equation 6) allows the mass of singlet neutrinos to be a free parameter:
Multiplying MD by any number x and MI by x2 does not change the right-hand side of the
formula. Therefore, the choice of MI is a matter of theoretical prejudice that cannot be fixed by
active-neutrino experiments alone.

In this review, our choice of MI is roughly of the order of the other mass term in the Lagrangian
of the SM, the mass of the Higgs boson. This choice does not lead to any intermediate scale between
the electroweak and Planck scales, but it does require small Yukawa couplings FαI . It allows us
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where |F |2 is a typical value of Yukawa couplings FαI . The condition MI ! 102 GeV implies that
|F |2 ! 10−13. Clearly, the theory given in Equation 5 can satisfy Equation 6 with one of the three
sterile neutrinos that have arbitrarily small Yukawa couplings.

Another possible choice of parameters of the Lagrangian (Equation 5), suffering from the
hierarchy problem described in Reference 23, relates the smallness of the neutrino masses to
the largeness of the Majorana mass terms MI . Indeed, if we take the Yukawa couplings FαI ∼ 1
and the Majorana masses in the range MI ∼ 1010–1015 GeV, we obtain the neutrino masses, as
required by experimental observations. An attractive feature of this scenario is that this new scale
may be associated with the Grand Unification Theory (GUT) scale. A model (Equation 5) with
this choice of parameters can also give rise to BAU through leptogenesis (24) and anomalous
electroweak number nonconservation at high temperatures (25). However, we do not discuss this
possibility here; for a review of the GUT-scale seesaw and the thermal leptogenesis scenario
associated with it, see, for instance, Reference 26.2

3.2. Dark Matter Candidate
It has been noticed that a sterile neutrino may make an interesting dark matter candidate (28–32).
In the νMSM, a dark matter sterile neutrino is simply one of the singlet fermions (for definiteness,
we consider it to be N1). The interaction strength between the sterile neutrino and the matter is
superweak with the characteristic strength θGF , where GF is the Fermi constant and where the
mixing angle θ # 1 is defined as

θ2
1 =

∑

α=e,µ,τ

v2|Fα1|2

M2
1

. 10.

Based on the universal Tremaine–Gunn bound (33), the masses of sterile neutrinos are restricted
to the kiloelectronvolt range and above. Specifically, for fermionic dark matter particles an
average phase-space density in any dark matter–dominated system cannot exceed the density
given by the Pauli exclusion principle. Applied to the smallest dark matter–dominated objects
[dwarf spheroidal galaxies of the Milky Way (dSphs)], this bound translates into MDM ≥ 400 eV
(34).

A sterile neutrino is an example of decaying dark matter. Through its mixing with the ordinary
neutrinos, N1 can decay (via Z boson exchange) into three (anti)neutrinos. To be dark matter, the
lifetime of N1 should be greater than the age of the Universe, which restricts the mixing angle. A
significantly stronger constraint comes from a subdominant one-loop decay channel into a photon
and an active neutrino (35). The energy of the produced photon is Eγ = M1/2, and the decay
width is given by (35, 36)

&N1→γ ν = 9αG2
F

1024π4 sin2(2θ1)M5
1 & 5.5 × 10−22θ2

1

[
M1

keV

]5

s−1, 11.

where α is the fine-structure constant. The expression for the width of the dominant decay channel
has the same parametric form, with the numeric coefficient being ∼128 times larger. This radiative
decay would produce a narrow line, for instance, in the diffuse X-ray/γ -ray background (30, 32).
This gives a restriction on the mixing angle,

θ2
1 ! 1.8 × 10−5

(
keV
M1

)5

, 12.

2There is still another choice of seesaw parameter with a sterile neutrino mass of ∼1 eV (27), which we do not discuss here.
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Sterile Neutrino Dark Matter? 

•  Decaying dark matter 
candidate 

•  Interaction strength with 
normal matter 
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where |F |2 is a typical value of Yukawa couplings FαI . The condition MI ! 102 GeV implies that
|F |2 ! 10−13. Clearly, the theory given in Equation 5 can satisfy Equation 6 with one of the three
sterile neutrinos that have arbitrarily small Yukawa couplings.

Another possible choice of parameters of the Lagrangian (Equation 5), suffering from the
hierarchy problem described in Reference 23, relates the smallness of the neutrino masses to
the largeness of the Majorana mass terms MI . Indeed, if we take the Yukawa couplings FαI ∼ 1
and the Majorana masses in the range MI ∼ 1010–1015 GeV, we obtain the neutrino masses, as
required by experimental observations. An attractive feature of this scenario is that this new scale
may be associated with the Grand Unification Theory (GUT) scale. A model (Equation 5) with
this choice of parameters can also give rise to BAU through leptogenesis (24) and anomalous
electroweak number nonconservation at high temperatures (25). However, we do not discuss this
possibility here; for a review of the GUT-scale seesaw and the thermal leptogenesis scenario
associated with it, see, for instance, Reference 26.2

3.2. Dark Matter Candidate
It has been noticed that a sterile neutrino may make an interesting dark matter candidate (28–32).
In the νMSM, a dark matter sterile neutrino is simply one of the singlet fermions (for definiteness,
we consider it to be N1). The interaction strength between the sterile neutrino and the matter is
superweak with the characteristic strength θGF , where GF is the Fermi constant and where the
mixing angle θ # 1 is defined as

θ2
1 =

∑

α=e,µ,τ

v2|Fα1|2

M2
1

. 10.

Based on the universal Tremaine–Gunn bound (33), the masses of sterile neutrinos are restricted
to the kiloelectronvolt range and above. Specifically, for fermionic dark matter particles an
average phase-space density in any dark matter–dominated system cannot exceed the density
given by the Pauli exclusion principle. Applied to the smallest dark matter–dominated objects
[dwarf spheroidal galaxies of the Milky Way (dSphs)], this bound translates into MDM ≥ 400 eV
(34).

A sterile neutrino is an example of decaying dark matter. Through its mixing with the ordinary
neutrinos, N1 can decay (via Z boson exchange) into three (anti)neutrinos. To be dark matter, the
lifetime of N1 should be greater than the age of the Universe, which restricts the mixing angle. A
significantly stronger constraint comes from a subdominant one-loop decay channel into a photon
and an active neutrino (35). The energy of the produced photon is Eγ = M1/2, and the decay
width is given by (35, 36)

&N1→γ ν = 9αG2
F

1024π4 sin2(2θ1)M5
1 & 5.5 × 10−22θ2

1

[
M1

keV

]5

s−1, 11.

where α is the fine-structure constant. The expression for the width of the dominant decay channel
has the same parametric form, with the numeric coefficient being ∼128 times larger. This radiative
decay would produce a narrow line, for instance, in the diffuse X-ray/γ -ray background (30, 32).
This gives a restriction on the mixing angle,

θ2
1 ! 1.8 × 10−5

(
keV
M1

)5

, 12.

2There is still another choice of seesaw parameter with a sterile neutrino mass of ∼1 eV (27), which we do not discuss here.
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Decay Width 
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where |F |2 is a typical value of Yukawa couplings FαI . The condition MI ! 102 GeV implies that
|F |2 ! 10−13. Clearly, the theory given in Equation 5 can satisfy Equation 6 with one of the three
sterile neutrinos that have arbitrarily small Yukawa couplings.

Another possible choice of parameters of the Lagrangian (Equation 5), suffering from the
hierarchy problem described in Reference 23, relates the smallness of the neutrino masses to
the largeness of the Majorana mass terms MI . Indeed, if we take the Yukawa couplings FαI ∼ 1
and the Majorana masses in the range MI ∼ 1010–1015 GeV, we obtain the neutrino masses, as
required by experimental observations. An attractive feature of this scenario is that this new scale
may be associated with the Grand Unification Theory (GUT) scale. A model (Equation 5) with
this choice of parameters can also give rise to BAU through leptogenesis (24) and anomalous
electroweak number nonconservation at high temperatures (25). However, we do not discuss this
possibility here; for a review of the GUT-scale seesaw and the thermal leptogenesis scenario
associated with it, see, for instance, Reference 26.2

3.2. Dark Matter Candidate
It has been noticed that a sterile neutrino may make an interesting dark matter candidate (28–32).
In the νMSM, a dark matter sterile neutrino is simply one of the singlet fermions (for definiteness,
we consider it to be N1). The interaction strength between the sterile neutrino and the matter is
superweak with the characteristic strength θGF , where GF is the Fermi constant and where the
mixing angle θ # 1 is defined as

θ2
1 =

∑

α=e,µ,τ

v2|Fα1|2

M2
1

. 10.

Based on the universal Tremaine–Gunn bound (33), the masses of sterile neutrinos are restricted
to the kiloelectronvolt range and above. Specifically, for fermionic dark matter particles an
average phase-space density in any dark matter–dominated system cannot exceed the density
given by the Pauli exclusion principle. Applied to the smallest dark matter–dominated objects
[dwarf spheroidal galaxies of the Milky Way (dSphs)], this bound translates into MDM ≥ 400 eV
(34).

A sterile neutrino is an example of decaying dark matter. Through its mixing with the ordinary
neutrinos, N1 can decay (via Z boson exchange) into three (anti)neutrinos. To be dark matter, the
lifetime of N1 should be greater than the age of the Universe, which restricts the mixing angle. A
significantly stronger constraint comes from a subdominant one-loop decay channel into a photon
and an active neutrino (35). The energy of the produced photon is Eγ = M1/2, and the decay
width is given by (35, 36)

&N1→γ ν = 9αG2
F

1024π4 sin2(2θ1)M5
1 & 5.5 × 10−22θ2

1

[
M1

keV

]5

s−1, 11.

where α is the fine-structure constant. The expression for the width of the dominant decay channel
has the same parametric form, with the numeric coefficient being ∼128 times larger. This radiative
decay would produce a narrow line, for instance, in the diffuse X-ray/γ -ray background (30, 32).
This gives a restriction on the mixing angle,

θ2
1 ! 1.8 × 10−5

(
keV
M1

)5

, 12.

2There is still another choice of seesaw parameter with a sterile neutrino mass of ∼1 eV (27), which we do not discuss here.
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How are sterile neutrinos observable? 

•  Oscillations 

– Decay/Annihilation 

– Atmospheric 
Neutrinos 

– Anomalous LSND 
results?   

– Affect on supernova 
explosion 



Evidence of 3.5 keV line 
from Andromeda 

and the Perseus Cluster 
Boyarsky et al.  (2014) arXiv:1402.4119 

3

Dataset Exposure χ2/d.o.f. Line position Flux ∆χ2

[ksec] [keV] 10−6 cts/sec/cm2

M31 ON-CENTER 978.9 97.8/74 3.53± 0.025 4.9+1.6
−1.3 13.0

M31 OFF-CENTER 1472.8 107.8/75 3.53± 0.03 < 1.8 (2σ) . . .
PERSEUS CLUSTER (MOS) 528.5 72.7/68 3.50+0.044

−0.036 7.0+2.6
−2.6 9.1

PERSEUS CLUSTER (PN) 215.5 62.6/62 3.46± 0.04 9.2+3.1
−3.1 8.0

PERSEUS (MOS) 1507.4 191.5/142 3.518+0.019
−0.022 8.6+2.2

−2.3 (Perseus) 25.9
+ M31 ON-CENTER 4.6+1.4

−1.4 (M31) (3 dof)
BLANK-SKY 15700.2 33.1/33 3.53± 0.03 < 0.7 (2σ) . . .

TABLE I: Basic properties of combined observations used in this paper. Second column denotes the sum of exposures of individual observa-
tions. The last column shows change in∆χ2 when 2 extra d.o.f. (position and flux of the line) are added. The energies for Perseus are quoted
in the rest frame of the object.
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FIG. 1: Left: Folded count rate (top) and residuals (bottom) for the MOS spectrum of the central region of M31. Statistical Y-errorbars on the
top plot are smaller than the point size. The line around 3.5 keV is not added, hence the group of positive residuals. Right: zoom onto the line
region.

with such a large exposure requires special analysis (as de-
scribed in [16]). This analysis did not reveal any line-like
residuals in the range 3.45−3.58 keVwith the 2σ upper bound
on the flux being 7×10−7 cts/cm2/sec. The closest detected
line-like feature (∆χ2 = 4.5) is at 3.67+0.10

−0.05 keV, consistent
with the instrumental Ca Kα line.3

Combined fit of M31 + Perseus. Finally, we have performed
a simultaneous fit of the on-center M31 and Perseus datasets
(MOS), keeping common position of the line (in the rest-
frame) and allowing the line normalizations to be different.
The line improves the fit by ∆χ2 = 25.9 (Table I), which
constitutes a 4.4σ significant detection for 3 d.o.f.

Results and discussion. We identified a spectral feature at
E = 3.518+0.019

−0.022 keV in the combined dataset of M31 and
Perseus that has a statistical significance 4.4σ and does not
coincide with any known line. Next we compare its properties
with the expected behavior of a DM decay line.

3 Previously this line has only been observed in the PN camera [9].

The observed brightness of a decaying DM line should be pro-
portional to the dark matter column density SDM =

∫

ρDMd% –
integral along the line of sight of the DM density distribution:

FDM ≈ 2.0× 10−6 cts

cm2 · sec

(

Ωfov

500 arcmin2

)

× (1)
(

SDM

500 M⊙/pc2

)

1029 s

τDM

(

keV

mDM

)

.

M31 and Perseus brightness profiles. Using the line flux
of the center of M31 and the upper limit from the off-center
observations we constrain the spatial profile of the line. The
DM distribution in M31 has been extensively studied (see an
overview in [13]). We take NFW profiles for M31 with con-
centrations c = 11.7 (solid line, [22]) and c = 19 (dash-dotted
line). For each concentration we adjust the normalization so
that it passes through first data point (Fig. 2). The c = 19
profile was chosen to intersect the upper limit, illustrating that
the obtained line fluxes of M31 are fully consistent with the
density profile of M31 (see e.g. [22, 24, 25] for a c = 19− 22
model of M31).
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Is there more? 

•  Neutrino oscillations? 
•  Oscillations with sterile neutrinos? 
•  Coherent neutrino scattering? 
•  Neutrinos from QCD phase transition? 
•  ….. 
•  … 
•  . 



Matter-enhanced neutrino oscillations 
Neutrinos experience a potential when moving 
through matter via interactions with electrons, 

nucleons, other neutrinos… 

3

pernova model, and in Section IV we present the details
of the numerical treatment of the active-sterile neutrino
oscillations. The results of this work are presented in
Section V where we show that not only an enhanced ex-
plosion is possible, but an interesting cycle develops in
the neutrino luminosity due to the dynamics of the neu-
trino conversion process. Our discussion and conclusions
are provided in Section VI.

II. MATTER-ENHANCED STERILE
NEUTRINO OSCILLATIONS

With the inclusion of a sterile neutrino, vacuum os-
cillations require a full 4-neutrino flavor evolution. For
the present illustration, however, it is adequate to treat
just the 2-neutrino mixing of ⌫e � ⌫s. This is su�cient
to explore the e↵ects of a sterile neutrino on shock re-
heating since electron neutrinos and antineutrinos play a
dominant role in these phenomena.

The Mikheyev-Smirnov-Wolfenstein (MSW) mecha-
nism [44, 45] describes neutrino flavor mixing in mat-
ter, including supernovae. As neutrinos propagate
through matter, they experience an e↵ective potential
from charged and neutral current interactions due to for-
ward scattering on baryonic and leptonic matter. The
forward scattering potential experienced by electron neu-
trinos in matter at some radius r has the general form
[46],

V (r) =
p
2GF ((ne� � ne+) + 2(n⌫e � n⌫̄e)

(n⌫µ � n⌫̄µ) + (n⌫⌧ � n⌫̄⌧ )� nn/2
�

, (1)

where GF is the Fermi coupling constant and ni is the
number density of species i. This scattering potential
derives from the asymmetries in matter and antimatter
and depends upon the local matter composition.

In the supernova environment, it is safe to ignore the
contribution from the forward scattering o↵ of ⌫µ,⌧ since
the µ and ⌧ neutrino and antineutrino flavors are cre-
ated entirely by thermal pair production. Therefore they
arise in equal numbers. Electron antineutrinos ⌫̄e are also
created via thermal pair production processes; however,
they are also generated by electron capture, and thus, a
complete cancellation of ⌫e and ⌫̄e does not occur.

The expression for V (r) in Eq. (1) can be further
simplified by using charge neutrality to relate the elec-
tron number density to the total proton density through
np = ne� � ne+ = nBYe. Also, the total neutron density
can be written nn = nB�np. After these simplifications,
the forward scattering potential for electron neutrinos in
supernovae reduces to

V (r) =
3
p
2

2
GF nB

✓

Ye +
4

3
Y⌫e �

1

3

◆

, (2)

where nB is the baryon number density.
The evolution of the forward scattering potential, and

thus the neutrino flavor evolution, is determined entirely

by the evolution of the baryon number density nB , the
electron fraction Ye, and the electron neutrino fraction
Y⌫e . It is important to note that the oscillation of electron
neutrinos into sterile neutrinos will in turn alter the local
values of Ye and Y⌫e , allowing for feedback e↵ects between
the oscillations and the local hydrodynamic environment.

For a ⌫e ! ⌫s conversion in medium, the vacuum oscil-
lations are altered by matter and depend not only upon
the local forward scattering potential V (r), but also on
the vacuum mixing parameters sin2 2✓, the mass squared
di↵erence �m2, and the neutrino energy E⌫ . An in-
medium mixing angle [45] can be defined,

sin2 2✓M (x) =
�2 sin2 2✓

(� cos 2✓ � V (x))2 +�2 sin2 2✓
, (3)

where � = �m2/(2E⌫). Even if the vacuum mixing an-
gle is small, it is possible to get maximal mixing in matter
(✓M = ⇡/2) if the condition V (x) = � cos 2✓ is satisfied.
This maximal mixing occurs at a MSW resonance. For
a given local environment, a MSW resonance will occur
for a neutrino with energy

Eres =
�m2

2V (r)
cos 2✓ . (4)

At some radius r within the star, a neutrino with en-
ergy E⌫(r) = Eres will experience maximal mixing and
undergo an oscillation to a sterile neutrino. This reso-
nance has a finite length scale (or time scale) along the
neutrino’s world line,

�rres =

�

�

�

�

d lnV (r)

dr

�

�

�

�

�1

tan 2✓s . (5)

This corresponds to the distance over which the in-
medium mixing falls to sin2 2✓s = 1/2 and the for-
ward scattering potential has changed by �V =
�m2/(2Eres) sin 2✓s.
There are two ways to induce an oscillation in-medium:

incoherent and coherent oscillations. An incoherent con-
version occurs when the neutrino mean free path �⌫

becomes short compared to the MSW resonance width
�rres. In this case scattering-induced incoherent conver-
sion of the neutrino is enhanced by the presence of the
resonance. Incoherent conversions will dominate when
matter densities are large, such as in the core of the
proto-neutron star. A coherent conversion will occur if
the mean free path �⌫ is long compared to the resonance
width �rres. Here, we have considered only the e↵ects
of a coherent conversion of the neutrino flavor. This is
a good approximation because, for the sterile neutrino
masses and mixing angles considered here, coherent fla-
vor evolution will dominate except for at the highest den-
sities achieved during the core bounce [16].

In addition, in order to obtain a complete flavor con-
version (i.e. all of the active neutrinos with the resonance
energy Eres oscillate to a sterile neutrino), one must force
the conversion to be both coherent and adiabatic. A co-
herent conversion can be ensured by requiring that the
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the neutrino luminosity due to the dynamics of the neu-
trino conversion process. Our discussion and conclusions
are provided in Section VI.

II. MATTER-ENHANCED STERILE
NEUTRINO OSCILLATIONS

With the inclusion of a sterile neutrino, vacuum os-
cillations require a full 4-neutrino flavor evolution. For
the present illustration, however, it is adequate to treat
just the 2-neutrino mixing of ⌫e � ⌫s. This is su�cient
to explore the e↵ects of a sterile neutrino on shock re-
heating since electron neutrinos and antineutrinos play a
dominant role in these phenomena.
The Mikheyev-Smirnov-Wolfenstein (MSW) mecha-

nism [42, 43] describes neutrino flavor mixing in mat-
ter, including supernovae. As neutrinos propagate
through matter, they experience an e↵ective potential
from charged and neutral current interactions due to for-
ward scattering on baryonic and leptonic matter. The
forward scattering potential experienced by electron neu-
trinos in matter at some radius r has the general form
[44],

V (r) =
p
2GF ((ne� � ne+) + 2(n⌫e � n⌫̄e)

(n⌫µ � n⌫̄µ) + (n⌫⌧ � n⌫̄⌧ )� nn/2
�

, (1)

where GF is the Fermi coupling constant and ni is the
number density of species i. This scattering potential
derives from the asymmetries in matter and antimatter
and depends upon the local matter composition.
In the supernova environment, it is safe to ignore the

contribution from the forward scattering o↵ of ⌫µ,⌧ since
the µ and ⌧ neutrino and antineutrino flavors are cre-
ated entirely by thermal pair production. Therefore they
arise in equal numbers. Electron antineutrinos ⌫̄e are also
created via thermal pair production processes; however,
electron neutrinos are also generated by electron capture,
and thus, a complete cancellation of ⌫e and ⌫̄e does not
occur.
The expression for V (r) in Eq. (1) can be further

simplified by using charge neutrality to relate the elec-
tron number density to the total proton density through
np = ne� � ne+ = nBYe. Also, the total neutron density
can be written nn = nB�np. After these simplifications,
the forward scattering potential reduces to

V (r) =
3
p
2

2
GF nB

✓

Ye +
4

3
Y⌫e �

1

3

◆

, (2)

for electron neutrinos in supernovae, where nB is the
baryon number density.
The evolution of the forward scattering potential, and

thus the neutrino flavor evolution, is determined entirely
by the evolution of the baryon number density nB , the
electron fraction Ye, and the electron neutrino fraction
Y⌫e . It is important to note that the oscillation of electron
neutrinos into sterile neutrinos will in turn alter the local

values of Ye and Y⌫e , allowing for feedback e↵ects between
the oscillations and local hydrodynamic environment.
For a ⌫e ! ⌫s conversion in medium, the vacuum oscil-

lations are altered by matter and depend not only upon
the local forward scattering potential V (r), but also on
the vacuum mixing parameters sin2 2✓, the mass squared
di↵erence �m2, and the neutrino energy E⌫ . An in-
medium mixing angle [43] can be defined,

sin2 2✓M (x) =
�2 sin2 2✓

(� cos 2✓ � V (x))2 +�2 sin2 2✓
, (3)

where � = �m2/(2E⌫). Even if the vacuum mixing an-
gle is small, it is possible to get maximal mixing in matter
(✓M = ⇡/2) if the condition V (x) = � cos 2✓ is satisfied.
This maximal mixing occurs at a MSW resonance. For
a given local environment, a MSW resonance will occur
for a neutrino with energy

Eres =
�m2

2V (r)
cos 2✓ . (4)

At some radius r within the star, a neutrino with en-
ergy E⌫(r) = Eres will experience maximal mixing and
undergo an oscillation to a sterile neutrino. This reso-
nance has a finite length scale (or time scale) along the
neutrino’s world line,

�rres =

�

�

�

�

d lnV (r)

dr

�

�

�

�

�1

tan 2✓s . (5)

This corresponds to the distance over which the in-
medium mixing falls to sin2 2✓s = 1/2 and the for-
ward scattering potential has changed by �V =
�m2/(2Eres) sin 2✓s.
There are two ways to induce an oscillation in-medium:

incoherent and coherent oscillations. An incoherent con-
version occurs when the neutrino mean free path �⌫

becomes short compared to the MSW resonance width
�rres. In this case scattering-induced incoherent conver-
sion of the neutrino is enhanced by the presence of the
resonance. Incoherent conversions will dominate when
matter densities are large, such as in the core of the
proto-neutron star. A coherent conversion will occur if
the mean free path �⌫ is long compared to the resonance
width �rres. Here, we have considered only the e↵ects
of a coherent conversion of the neutrino flavor. This is
a good approximation because, for the sterile neutrino
masses and mixing angles considered here, coherent fla-
vor evolution will dominate except for at the highest den-
sities achieved during the core bounce [16].
In addition, in order to obtain a complete flavor con-

version (i.e. all of the active neutrinos with the resonance
energy Eres oscillate to a sterile neutrino), one must force
the conversion to be both coherent and adiabatic. A co-
herent conversion can be ensured by requiring that the
mean free path be much longer than the resonance width,
�rres � �⌫ . The adiabaticity parameter � determines
the e�ciency of the conversion in an MSW resonance.
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FIG. 8: Electron fraction versus radius at bounce.
Dashed line is without a sterile neutrino and solid line
is for a sterile neutrino with �ms = 5.012 keV and

sin2 2✓s = 1.12⇥ 10�5.

net neutrino heating becomes enhanced.

4. 270 ms post-bounce

By t = 270 ms post-bounce, the resonance energy
has fallen below the neutrino chemical potential almost
everywhere interior to the neutrinosphere of the proto-
neutron star. However, it is important to note that the
resonant oscillations occur primarily for antineutrinos.
The combination of high core densities and low electron
fractions e↵ectively “shut o↵” the resonant electron neu-
trino oscillations inside of the proto-neutron star. The
high density suppresses coherent oscillations and the res-
onance energy, which is inversely related to the density,
is driven to very low energies. In addition, the electron
fraction falls below one third which results in a negative
forward scattering potential (see Eq. 2) and thus any
resonance occurs for electron antineutrinos, rather than
electron neutrinos.

Figure 9 shows the density structure, neutrino chem-
ical potential, resonance energy, and forward scattering
potential at 270 ms post bounce. There in an inflection in
the density and a corresponding dip in the forward scat-
tering potential and resonance energy that is caused by
the heating of material after the conversion of sterile neu-
trinos back to active neutrinos at this location. Here, one
can see that by this time the resonance energy falls below
the neutrino chemical potential until about 2 km below
the neutrinosphere. Except for a small region in the very
center of the proto-neutron star, the forward scattering
potential is negative and thus the resonant oscillations
occur almost exclusively for electron antineutrinos. The
electron antineutrinos resonantly oscillate to sterile an-

tineutrinos essentially through the entire region where
the resonance energy is below the neutrino chemical po-
tential. This enhances the cooling of the proto-neutron
star. The sterile antineutrinos produced in the proto-
neutron star core oscillate back to electron antineutrinos
in a region ranging from ⇠ 2 to 2.3 km below the neutri-
nosphere.
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(a) Density profile vs. radius at 270 ms post-bounce.
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(b) Neutrino chemical potential and resonance energy
vs. radius at 270 ms post-bounce

FIG. 9: Upper panel shows density versus radius at 270
ms post-bounce in the SN simulation. The dashed line
is without a sterile neutrino and solid line is for a sterile

neutrino with �ms = 5.012 keV and
sin2 2✓s = 1.12⇥ 10�5. Lower panels show the neutrino
chemical potential (solid line) and resonance energy

(dashed line) versus radius in the top plot, and neutrino
forward scattering potential vs. radius in the bottom

plot. The vertical dashed line marks the location of the
neutrinosphere in the model with a sterile neutrino.

105 106 107 108 109

Radius (cm)
0

0.1

0.2

0.3

0.4

0.5

El
ec

tro
n 

Fr
ac

tio
n



Matter-enhanced neutrino oscillations 
 

Potential difference enhances 
oscillations 

Resonance:  Maximal mixing 
(even for small vacuum 
mixing angle) 

 



How sterile neutrinos affect the explosion 
•  Diffusion time greatly 

diminished as electron 
neutrinos transfrom to freely 
streaming sterile neutinos then 
back again 

•  Neutrino Luminosity = 
(Neutrino internal energy)           

 (Diffusion time) 
•  =>Enhanced Luminosity and 

heating near the 
neutrinosphere 
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neutron star. However, it is important to note that the
resonant oscillations occur primarily for antineutrinos.
The combination of high core densities and low electron
fractions e↵ectively “shut o↵” the resonant electron neu-
trino oscillations inside of the proto-neutron star. The
high density suppresses coherent oscillations and the res-
onance energy, which is inversely related to the density,
is driven to very low energies. In addition, the electron
fraction falls below one third which results in a negative
forward scattering potential (see Eq. 2) and thus any
resonance occurs for electron antineutrinos, rather than
electron neutrinos.
Figure 11 shows the density structure, neutrino chem-

ical potential, resonance energy, and forward scattering
potential at 270 ms post bounce. There is an inflection in
the density and a corresponding dip in the forward scat-
tering potential and resonance energy that is caused by
the heating of material after the conversion of sterile neu-
trinos back to active neutrinos at this location. Here, one
can see that by this time the resonance energy falls below
the neutrino chemical potential until about 2 km below
the neutrinosphere. Except for a small region in the very
center of the proto-neutron star, the forward scattering
potential is negative and thus the resonant oscillations
occur almost exclusively for electron antineutrinos. The
electron antineutrinos resonantly oscillate to sterile an-
tineutrinos essentially through the entire region where
the resonance energy is below the neutrino chemical po-
tential. This enhances the cooling of the proto-neutron
star. The sterile antineutrinos produced in the proto-
neutron star core oscillate back to electron antineutrinos
in a region ranging from ⇠ 2 to 2.3 km below the neutri-
nosphere.
The oscillations between electron antineutrinos and

sterile antineutrinos are reflected in the density and tem-
perature profiles on Figures 11a and 12. The neutrino
losses from the proto-neutron star core and the additional
neutrino energy deposited just below the neutrinosphere
expands the surface of the proto-neutron star, as reflected
in the density profile in the upper panel of Figure 11b.
Figure 12 similarly shows the temperature versus ra-

dius profile at 270 ms post-bounce. The interior temper-
ature in the proto-neutron star core is slightly decreased
due to the energy lost to sterile neutrino oscillations. A
more dramatic e↵ect, however is that up to about 20 km,
the sterile antineutrinos can oscillate back to electron an-
tineutrinos. This enhanced flux of energetic active anti-
neutrinos increases the heating near the neutrinosphere,
thereby causing the star to expand near the surface.
The extended density profile means that the neutri-

nos decouple at larger radii. However, due to the in-
creased heating near and below the neutrinosphere, the
temperature at the neutrinosphere is unchanged for both
simulations as shown by the vertical lines in Figure 12.
Thus, the emergent neutrinos have roughly the same av-
erage energy in both simulations, but the larger radius of
the neutrinosphere results in increased luminosities (by a
simple factor of r2) for all three neutrino flavors. The en-
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FIG. 11: Upper panel a) shows density versus radius at
270 ms post-bounce in the SN simulation. The solid line

is for a sterile neutrino with �ms = 5.012 keV and
sin2 2✓s = 1.12⇥ 10�5 and dashed line is without a
sterile neutrino. Lower panel b) shows the neutrino
chemical potential (solid line) and resonance energy
(dashed line) versus radius and c) shows the neutrino
forward scattering potential vs. radius. The vertical

dashed line marks the location of the neutrinosphere in
the model with a sterile neutrino.

hanced neutrino heating behind the shock resulting from
the enhanced neutrino luminosity is responsible for the
increased kinetic energy in the explosion, as shown in
Figure 2.

5. 520 ms post-bounce

Figure 13a shows the density profile and resonance pa-
rameters at 520 ms post-bounce. One can see that by this
time, the heating and expansion of the neutrinosphere
has nearly subsided. This is because the cooling by neu-
trino emission at the neutrinosphere exceeds the heating

µ 

Eres 

V 



Successful explosion in a model 
that would not otherwise explode 

With sterile neutrinos Without sterile neutrinos 

M. Warren, Meixner, Mathews, Hidaka, and Kajino PRD, 90, 103007 (2014)   arXiv:1405:6101  
 



Enhancement of  Explosion Energy 

DM bounds from Boyarsky et al (2006) 

Allowed 
DM 

x1.5 energy 
without sterile neutrino 

x10 energy 



Constraints on Sterile 
Neutrino Dark Matter 

Decaying sterile neutrinos 

 

Assume dark matter is 
100% sterile neutrino 

Boyarsky et al (2014) 

keV 

keV 



It is likely that decoherent, scattering-induced oscillations will be important in the high
matter densities achieved in the collapsing core, but this will not be a dominant e↵ect and it
is su�cient here to just consider coherent and adiabatic neutrino oscillations. We leave the
exploration of scattering-induced e↵ects to future work.

We have used the UND/LLNL [32] spherically-symmetric general relativistic hydrody-
namic supernova model with a 20 M� progenitor model from Ref. [36]. Our primary interest
is the impact of sterile neutrino oscillations on the explosion energy and thus we have chosen
to use a model that can explode successfully as a starting place and baseline for comparison.
For further details of the UND/LLNL supernova model, we refer the reader to Refs. [31, 32].

4 Results

We have run simulations for a wide range of masses (1 keV < �ms < 10 keV) and mixing
angles (10�11

< sin2 2✓ < 10�2) which encompasses the region of parameter space that
corresponds with dark matter candidates.
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Figure 2. Enhanced explosion energies for the sterile neutrino mass �ms and mixing angle sin2 2✓
parameter space. The region above the solid line enhances the explosion energy by 1.01⇥ compared
to a simulation without a sterile neutrino, and above the dashed line is the region that enhances the
explosion by 1.10⇥. The shaded regions indicates the parameter space allowed for sterile neutrino
dark matter if sterile neutrinos contribute 100%, 10%, and 1% of the dark matter mass.
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Example:    
          

With sterile neutrino 

Without sterile neutrino 

~1.3x 
enhancement 



Observable 
Luminosities 

Episodic variation due to sudden 
decrease in diffusion time followed 
by depletion of spectrum 

Without 

With 



Expanded Neutrinosphere 

Neutrinosphere radius 
increased, 
temperature unchanged 

@ 270ms 
Without 

With 



Summary 
1.  Sterile Neutrinos are a natural DM 

candidate 
2.  Supernova models don’t explode 

 (Or explode with too little energy…) 
3.  Sterile neutrinos can enhance explosion 

energies and lead to an explosion in 
models that would otherwise not explode 

4.  Effects on SN neutrino emission might 
be detectable  

 



Supernova neutrinos and r-process 
nucleosynthesis 



Models for the r-Process 

Neutrino Driven Winds 
in the High Entropy 
Supernova Bubble 
 

High entropy: S~300  
Slightly neutron rich: 

 〈Z/A〉 = Ye ~ 0.4 

Ejection of 
neutronized core 
material in a low-mass 
supernovae or MHD 
jets 

Neutron star mergers 

Moderate entropy: S>15,  
Neutron rich: Ye ~ 0.2 

Low Entropy S ~ 1, 
Neutron rich: Ye ~ 0.2 



There are large differences in the emitted 
neutrino energies and spectra depending upon 

how one solves for the neutrino transport 

Fischer et al, PRD (2012) 
Roberts, Reddy & Shen (2012) 

This dramatically affects the nucleosynthesis of 
heavy elements in the r-process 

Nakamura, Sato, Harikae, Kajino, Mathews,  IJMPE, 22, 1330022  (2013) 
Shibagaki, Kajino, Chiba, Mathews, Nishimura, Lurosso, PRD, (2014) Submitted 



Best recent models have  Ye ~0.5 in the 
neutrino wind driven r-rrocess  

 
•  Ye = p/(n + p) ~ 0.5 
•  Few excess neutrons 
•  => no r-process 

Roberts & Reddy(2012) 

 p + νe → n + e+   
n + νe → p + e-  
 

Fischer et al.(2012) 



Not enough neutrons for the heaviest 
r-process nuclides 
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Figure 3. Top: mass-integrated nuclear abundances, which are compared with
the solar r-process abundances (circles) that shifted to match the third peak
height (A ∼ 200) for the 2.4 M" model. Bottom: ratios of mass-integrated
abundances relative to the solar r-process abundances (scaled at A = 90).
(A color version of this figure is available in the online journal.)

M = 2.4 M" model. As anticipated from the lower panel of
Figure 2, only the extreme model of M = 2.4 M" satisfactorily
accounts for the production of heavy r-process nuclei up to Th
(A = 232) and U (A = 235 and 238). The 2.2 M" model reaches
the third peak abundances but those beyond. The 2.0 M" model
reaches the second (A ∼ 130) but the third peak abundances. We
find no strong r-processing for the models with M < 2.0 M".

We find, however, quite robust abundance patterns below A ∼
110, which appears a fundamental aspect of nucleosynthesis in
PNS winds. The double peaks at A ≈ 56 and 90 with a trough
between them are formed in quasi-nuclear equilibrium (QSE;
!4 GK). Note also that the overproduction of N = 50 species
88Sr, 89Y, 90Zr (Woosley et al. 1994; Wanajo et al. 2001) is
not prominent in our result. This is due to the short duration
of moderate S (<100 kB nucleon−1; Figure 1) with Ye ∼ 0.45
(Figure 3), in which the N = 50 species copiously form in QSE.
The lower panel of Figure 3 shows the ratios of nucleosynthetic
abundances relative to their solar r-process values (normalized
at A = 90). For 2.2 M" and 2.4 M" models, the ratios are more
or less flat between A = 90 and 200, although deviations from
unity are seen everywhere.

Table 1 provides the masses (in units of 10−5 M") of the total
ejecta, 4He, those with A > 100, Sr, Ba, and Eu, for all the
PNS models. The total ejecta masses span a factor of six with
smaller values for more massive PNSs. The larger fractions of
4He in more massive models, however, lead to the ejecta masses

Table 1
Ejecta Masses (in Units of 10−5 M")

M/M" 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Total 219 143 100 74.1 56.7 44.6 36.0
4He 122 92.7 71.9 56.9 45.8 37.4 31.0
A > 100 2.19 2.75 2.76 2.27 1.78 1.37 0.893
Sr 3.61 1.92 1.09 0.627 0.346 0.177 0.0764
Ba 0.00 0.00 0.00 0.00 0.0420 0.0373 0.0199
Eu 0.00 0.00 0.00 0.00 0.00452 0.00585 0.00305

for A > 100 (total masses of r-process nuclei) ranging only
a factor of 2.5. The masses of Sr range a factor of 50 with the
greater amount for less massive models. Ba and Eu are produced
only in the massive models with M " 2.0 M".

Studies of Galactic chemical evolution estimate the average
mass of Eu per CCSN event (if they were the origin) to be
∼10−7 M" (Ishimaru & Wanajo 1999), that is, ∼a few 10−5 M"
for the nuclei with A > 100. Taken at the face value, the Eu
masses for M " 2.0 M" reach 30%–60% of this requirement.
The fraction of events with such massive PNSs would be limited
to no more than ∼20% of all CCSN events (e.g., !25 M"). The
masses of Eu from these massive PNSs are, therefore, about
10 times smaller than the requirement from Galactic chemical
evolution (the same holds for Ba). Note that, for massive PNS
cases, the ejecta masses would be further reduced by fallback
or black hole formation (Qian et al. 1998; Boyd et al. 2012).
For Sr, the required mass per CCSN event is estimated to be
∼2 × 10−6 M" from the solar r-process ratio of Sr/Eu = 16.4
(Sneden et al. 2008). The low-mass PNS models, which may
represent the majority of CCSNe, thus overproduce Sr by about
a factor of 10. The amount of QSE products such as Sr, Y, and
Zr is, however, highly dependent on the multi-dimensional Ye
distribution in early times (t < 1 s; Wanajo et al. 2011b).

Figure 4 compares the mass-integrated abundances with those
of Galactic halo stars. Two well-known objects are taken as
representative of r-process-poor (HD 122563, left panels; Honda
et al. 2006; Roederer et al. 2012) and r-process-rich (CS 31082-
001, right panels; Siqueira Mello et al. 2013) stars with the
metallicities [Fe/H] = −2.7 and −2.9, respectively. These stars
have [Eu/Fe] = −0.52 and +1.69, respectively, well below
and above the average value of ≈ +0.5 at [Fe/H] ≈ −3. The
top and bottom panels show, respectively, the mass-integrated
abundances and their ratios relative to the stellar abundances,
which are normalized to the stellar abundances at Z = 40.

In the left panels, we find that the 1.2 M" and 1.4 M" models
result in reasonable agreement with the stellar abundances
between Z = 38 (Sr) and Z = 48 (Cd). The 2.0 M" model nicely
reproduces the abundance pattern of HD 122563 up to Z = 68
(Er) but somewhat overproduces the elements of Z = 46–48 (Pd,
Ag, Cd). It could be thus possible to interpret that the abundance
signatures of r-process-poor stars were due to a weak r-process
that reaches Z ∼ 50 (M < 2.0 M") or 70 (M = 2.0 M")
with or without additional sources for Z > 50, respectively. In
the right panels, we find that the stellar abundances between
Z = 38 (Sr) and Z = 47 (Ag) are well reproduced by massive
models with M " 1.6 M". The models with M = 2.2 M" and
2.4 M" produce the heavier elements with a similar pattern to
that of CS 31082-001 but with a smaller ratio. Because of the
insufficient production of Eu (Table 1), our PNS models would
not account for the high [Eu/Fe] value in this star. The winds
from such massive PNSs (M ! 2.0 M") could be, however,
still the source of the low-level abundances (factor of several
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Weak r-process? 



Most likely the NDW only 
produces the light r-process 

elements 
 

What can make heavier r-process 
elements? 
 
  MHD jets? 
Neutron star mergers? 
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NEUTRINO-PAIR HEATING and R-
PROCESS NUCLEOSYNTHESIS  
COLLAPSAR JETs 
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Modeling the r-process 
K. Nakamura, et al A&A  (2015) in press 

•  Extend the jet beyond the MHD+neutrino 
pair heating using 2D hydo 

•  Attach tracer particles to evolve the flow of 
material into the accretion disk and out into 
the jet 
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Supernova relic neutrino background as a 
messenger of supernova physics 

Big Bang 
~1013 cm-2 s-1  Sun  

~1011 cm-2 s-1  

Cosmic  
Supernovae 
~50 cm-2 s-1  
 



Calculated Relic Neutrino Spectrum 
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consider a next-generation Čerenkov detector Hyper-
Kamiokande. This detector will consist of a mega-ton
of pure water laden with 0.2% GdCl3. Our goal is to
clarify the uncertainties involved in theoretical estimates
of the detection rate.
Most of the uncertainties arise from the energy flux of

the arriving SRNs. This flux is derived from an integral
over time or redshift of the SRN energy spectrum at the
source of the supernova explosion, multiplied by the su-
pernova rate in comoving volume. Here and throughout
we assume a standard ΛCDM cosmology.
The presently observed SRN flux spectrum dNν/dEν

can be derived (Strigari et al. 2005; Yüksel & Beacom
2007) from an integral over the cosmic redshift z, of the
neutrinos emitted per supernova and the cosmic super-
nova rate per unit redshift RSN (z):

dNν

dEν
=

c

H0

∫ zmax

0

RSN (z)
dNν(E′

ν)

dE′
ν

×
dz

√

(Ωm)(1 + z)3 + ΩΛ

, (5)

where zmax is the redshift at which star formation be-
gins. For our purposes we take zmax = 5. RSN is the
number of supernovae per unit redshift per comoving vol-
ume as discussed in the previous section. The quantity
dNν(E′

ν)/dE
′
ν is the emitted neutrino spectrum at the

source, where the energy E′
ν = (1 + z)Eν is the energy

at emission, while Eν is the redshifted energy observed
in the detector. In the present work we improve upon
previous estimates based only upon the neutrino emis-
sion from a typical type II core collapse supernovae. As
described below, we also average over the neutrino emis-
sion from ONeMg electron-capture supernovae and the
truncated neutrino emission from the collapse of mas-
sive stars to form black holes in addition to averaging
over the a range of progenitor models for normal Type
II supernovae.
The quantities Ωm and ΩΛ are the contributions to the

closure density of total baryonic plus dark matter and
the cosmological constant, respectively. In this work, we
adopt the best fit WMAP9 parameters (Hinshaw et al.
2013), i.e. H0 = 68.92+0.94

−0.95, Ωm = 0.2855+0.0096
−0.0097, ΩΛ =

0.717± 0.011.
In this study, we calculate SRN detection rate for a

water Čerenkov detector with a fiducial volume of 1.0 ×

106 t (with 0.2% GdCl3 laden). As shown below, the
threshold energy for SRN detection is 10.0 MeV due to
the existence of background ν̄e emitted from nuclear re-
actors, while the upper detection limit is 33 to 37 MeV
due to the existence of atmospheric background ν̄e. The
SRN energy spectrum at detection can then be written
as:

dNevent

dEe+
= Ntarget · ε(Eν) ·

1

c
·
dFν

dEν
· σ(Eν) ·

dEν

dEe+
(6)

where Ntarget is the number of target particles in the
water Čerenkov detector, ε(Eν) is the efficiency for neu-
trino detection, dFν/dEν is the incident flux of SRNs,
and σ(Eν) is the cross section for the neutrino reaction:
ν̄e + p → e+ + n, and Eν = [Ee+ + 1.3 MeV]. For sim-
plicity we set ε(Eν) = 1.0, and we use the cross sections
given in Strumia & Vissani (2003) when calculating the

reaction rate of SRN with target particles in the detector.
We only consider the detection of ν̄e, because the cross

section in a water Čerenkov detector for the ν̄e + p →

e+ + n reaction is about 102 times larger than that for
νe detection via νe + n → e− + n.

4. NEUTRINO SPECTRA FROM NORMAL SNII

Next, we analyze the uncertainties in the emitted neu-
trino spectrum, i.e. dNν(E′

ν)/dE
′
ν in Eq. (5).

4.1. Neutrino spectrum for SNII

Although the neutrino temperature Tν in core collapse
SNe may also depend upon progenitor mass (Lunardini
2012), we note that the dependence on progenitor mass
is rather small compared to the uncertainty in the neu-
trino temperatures. The reason for this is the masses of
observed neutron stars is rather tightly constrained to
be ∼ 1.4 M# (with a maximum mass of ∼ 2 − 3 M#).
Because the mass is also proportional to the degeneracy
pressure, the narrow range of observed remnant neutron
star masses suggests that the associated neutrino tem-
peratures should also be tightly constrained. Hence, for
our purposes we ignore the dependence on progenitor
mass. In this study, therefore, we adopt a fiducial SN
1987A model (i.e. progenitor mass % 16.2 M#, rem-
nant mass % 1.4M#, liberated binding energy % 3.0 ×

1053 erg). We assume that this model is representative
of every core-collapse SN with progenitor masses in the
range of 10 to 25 M#. We also assume that the the proto-
neutron star formed during core-collapse SNII explosions
is in thermodynamic equilibrium. Hence, the liberated
binding energy is equally divided among the 6 neutrino
species (3 flavors and their anti-particles). Even in the
context of this single progenitor model, however, there is
a range of predicted neutrino temperatures and chemical
potentials in various supernova core-collapse simulations
in the literature. These we now analyze as a means to
estimate the uncertainty in the neutrino detection rate
due to these parameters.

4.2. Constraint on Tνe Tν̄e , Tνµ , Tντ

As discussed below, the uncertainty in the neutrino
temperatures constitutes the largest present uncertainty
in the expected relic neutrino detection rate. Indeed, re-
cent results from Super-Kamiokande (Bayes et al. 2012;
Sekiya 2013) already place some constraints on the relic
neutrino temperatures. In this section we review the
independent constraints and their uncertainties on theo-
retical models for the temperatures of emitted neutrinos.
One result we make use of is from Yoshida et al. (2008)
where it was concluded that the temperature (Tνx) of
νµ, ντ and their anti-neutrinos is should be in the range
4.3 to 6.5 MeV for SN 1987A models. This constraint is
based (Yoshii et al. 1997) upon the observed solar-system
meteoritic abundance ratio of boron isotopes. Similarly,
it has been demonstrated Hayakawa et al. (2010) that
both Tνe and Tν̄e should be ∼ 4.0 MeV to produce the
correct abundance ratio of 180Ta/138La. We adopt these
constraints here.
The range of uncertainty in all neutrino types from

core collapse models is indicated in Figures 3ab and Ta-
bles 2-4. The tables summarize values derived in pre-
vious models for (Tνe , Tν̄e , and Tνx), the dimensionless

GJM, Hidaka, Kajino, Suzuki ApJ (2014)  
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tainty in the SFR dependence. For one, deduce a revised
SFR is based upon a a piecewise linear fit to the observed
star formation rate vs. redshift as shown on Figure 1. For
illustration we also consider the theoretical SFR model
of Kobayashi et al. (2000) with and without a correction
for dust extinction.
For the SFR deduced in this paper we make use of

all available observational data obtained at a variety of
wavelengths, i.e. X-ray, γ-ray, UV, Optical, NIR-Hα,
and FIR (Arnouts et al. (2005), Barger et al. (2000),
Bouwens et al. (2003), Bouwens et al. (2003), Bunker et
al. (2004), Condon (1989), Condon et al. (2002), Con-
nolly et al. (1997), Gallego et al. (1995), Geogakakis et
al. (2003), Hoog et al. (1998), Hopkins et al. (2000),
Hopkins (2004), Hopkins & Beacom (2006), Hughes et
al. (1998), James et al. (2009), Le Floc’h et al. (2005),
Lilly et al. (1996), Machalski & Godlowski (2000), Madau
et al. (1996), Massarotti et al. (2001), Moorwood et al.
(2000), Ouchi et al. (2004), Perez-Gonzalez et al. (2003),
Perez-Gonzalez et al. (2005), Pettini et al. (1998), Reddy
& Steidel (2008), Sadler et al. (2002), Serjeant et al.
(2002), Steidel et al. (1999), Thompson et al. (2006),
Tresse & Maddox (1998), Treyer et al. (1998), Yan et al.
(1999)). In addition to the data summarized in Yüksel et
al. (2008), we include new dust corrected SFR data de-
rived from multiple wavelengths, e.g. UV, Ir and sub-mm
observations. As can be seen on Figure 1, this complete
data set implies a larger uncertainty and lower normal-
ization in the redshift range of z = 0−1 than the selected
data summarized in Yüksel et al. (2008) and employed in
Horiuchi et al. (2009). This larger uncertainty was also
noted in Ouchi et al. (2009) and Kobayashi et al. (2013).
For χ2 fitting, we use a linear [in log (1 + z)] piecewise

star formation rate Ψ∗(z) as as a function of redshift as
given in Yüksel et al. (2008), i.e.

ψ∗(z) = ρ̇0

[

(1 + z)αη +

(

1 + z

B

)βη

+

(

1 + z

C

)γη
]

1
η

,

(1)
where our deduced parameters for the best fit and ±1σ
upper and lower limits are given in Table 1.
Figure 1 shows the data-points from rest-frame X-ray,

γ-ray, UV, Optical, NIR-Hα, FIR to sub-mm observa-
tions compared with our deduced SFR ψ∗(z) and that
given in Yüksel et al. (2008). The red thick line shows
the best fit SFR. The red thin lines show the ±1σ upper
and lower limits to the SFR. A key difference between
our star formation rate and that of Yüksel et al. (2008)
is the uncertainty in the correction for dust extinction
(Kobayashi et al. 2013). A similar conclusion was ob-
tained in Kobayashi et al. (2000). In our analysis below
we also considered the theoretical star formation rate de-
duced in Kobayashi et al. (2000) both with and without
dust correction. As shown in that paper, the magnitude
of the dust correction is comparable to the error bars in
the piecewise linear star formation rate of Figure 1. On
the other hand, as shown below, there is little difference
between the relic neutrino detection rate with either form
for the SFR. For our purposes we will mainly utilize the
piecewise linear SFR as the best direct representation
of the observed massive star formation rate. However,
for illustration, we also make some comparisons with the
rate of Kobayashi et al. (2000) with and without dust

correction.
To deduce the core-collapse supernova rate from the

total SFR one must determine the fraction of total stars
that produce observable supernovae. For this we adopt a
standard Salpeter IMF (Salpeter 1955), φ(M), such that
the rate of normal core collapse supernovae, RSN (z), is
given by

RSN (z) = Ψ∗(z)×

∫ 25M!

10M!
dMφ(M)

∫
Mmax
Mmin

dMMφ(M)
, (2)

and φ(M) is taken to be (Salpeter 1955)

φ(M) = M−ζ , (3)

with ζ = 2.35, and the star formation rate Ψ∗(z) is taken
to be the piecewise linear rate shown in Figure 1. For the
integration we adopt Mmin = 0.1 and Mmax = 125 M#,
while the mass range for Type-II supernova progenitor
stars is taken to be from 10 to 25 M#.
Figure 2 then shows our version of the supernova rate

problem. This figure compares the measured supernova
rates RSN in the redshift rage of z = 0 − 1 of (Li et al.
(2011b), Cappellaro et al. (1999), Botticella et al. (2008),
Cappellaro et al. (2005), Bazin et al. (2009), Dahlen, et
al. (2004)) with the inferred cosmic RSN based upon the
Salpeter IMF and our piecewise-linear SFR as summa-
rized in Figure 1. One can see that our inferred super-
nova rate based upon the multi-wavelength observations
is much closer to the observed supernova rate. Indeed,
at the 1σ level the error bars overlap. Statistically we
find that the ratio of the two determinations is

RSN (cosmicSFR)

RSN (observed)
= 1.4+1.2

−1.0 . (4)

This is consistent with no supernova problem at the 1σ
level as also noted in Kobayashi et al. (2013). On the
other hand, as much as a factor of 2 discrepancy as de-
duced in Horiuchi et al. (2011) is not ruled out. The
reason for the difference between the ratio deduced here
and that in Horiuchi et al. (2011) is that we have consid-
ered the combination of all data from many wavelengths
to deduce the overall star formation rate to use in Eq. (2)
rather than only the limited gamma-ray data as in Yüksel
et al. (2008). One can see from the dotted line in Figure
1 that the SFR of Yüksel et al. (2008) is systematically
higher in the redshift intervals z = 0− 1 and 4− 7.
In what follows we will consider the possibility that a

discrepancy of a factor of 1.4 (or even a factor of 2) exists.
We will examine whether the shortfall of visible super-
novae might be due to a significant fraction of supernovae
being to dim to observe either as ONeMg supernovae or
failed supernovae leading to a black hole remnant. A key
point is that, although such SNe are optically dim, they
are quite luminous in neutrinos. Hence, as a means to
test this hypothesis we analyze whether the relic neutrino
detection rate and spectrum can be used to identify one
or the other possible solutions to the putative supernova
rate problem.

3. SRN BACKGROUND

In this section we analyze the detection rate and spec-
trum along with various theoretical uncertainties in the
predicted SRN background. As a fiducial detector, we
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A

B
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Fig. 4.— Number flux of SRN arising from redshift bins as a function of ν̄e energy, assuming (Tν̄e , Tνx) = (5.0 MeV, 6.0 MeV). Each
panel presents a different oscillation case. Panel (a) is for oscillation case I (ν̄e = 0.7 × ν̄e0 + 0.3 × ν0x). Panel (b) is for oscillation case
II (ν̄e = νx0), Panel (c) is for no oscillations (case III). Black dashed lines indicate the background noise from atmospheric neutrinos. The
intersections of the SRN flux with the background sets the upper detection limit at ∼ 33 − 37 MeV for the detected neutrino spectrum.
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Supernova model neutrino 
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error in predicted detection rate   
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consider a next-generation Čerenkov detector Hyper-
Kamiokande. This detector will consist of a mega-ton
of pure water laden with 0.2% GdCl3. Our goal is to
clarify the uncertainties involved in theoretical estimates
of the detection rate.
Most of the uncertainties arise from the energy flux of

the arriving SRNs. This flux is derived from an integral
over time or redshift of the SRN energy spectrum at the
source of the supernova explosion, multiplied by the su-
pernova rate in comoving volume. Here and throughout
we assume a standard ΛCDM cosmology.
The presently observed SRN flux spectrum dNν/dEν

can be derived (Strigari et al. 2005; Yüksel & Beacom
2007) from an integral over the cosmic redshift z, of the
neutrinos emitted per supernova and the cosmic super-
nova rate per unit redshift RSN (z):

dNν

dEν
=

c

H0

∫ zmax

0

RSN (z)
dNν(E′

ν)

dE′
ν

×
dz

√

(Ωm)(1 + z)3 + ΩΛ

, (5)

where zmax is the redshift at which star formation be-
gins. For our purposes we take zmax = 5. RSN is the
number of supernovae per unit redshift per comoving vol-
ume as discussed in the previous section. The quantity
dNν(E′

ν)/dE
′
ν is the emitted neutrino spectrum at the

source, where the energy E′
ν = (1 + z)Eν is the energy

at emission, while Eν is the redshifted energy observed
in the detector. In the present work we improve upon
previous estimates based only upon the neutrino emis-
sion from a typical type II core collapse supernovae. As
described below, we also average over the neutrino emis-
sion from ONeMg electron-capture supernovae and the
truncated neutrino emission from the collapse of mas-
sive stars to form black holes in addition to averaging
over the a range of progenitor models for normal Type
II supernovae.
The quantities Ωm and ΩΛ are the contributions to the

closure density of total baryonic plus dark matter and
the cosmological constant, respectively. In this work, we
adopt the best fit WMAP9 parameters (Hinshaw et al.
2013), i.e. H0 = 68.92+0.94

−0.95, Ωm = 0.2855+0.0096
−0.0097, ΩΛ =

0.717± 0.011.
In this study, we calculate SRN detection rate for a

water Čerenkov detector with a fiducial volume of 1.0 ×

106 t (with 0.2% GdCl3 laden). As shown below, the
threshold energy for SRN detection is 10.0 MeV due to
the existence of background ν̄e emitted from nuclear re-
actors, while the upper detection limit is 33 to 37 MeV
due to the existence of atmospheric background ν̄e. The
SRN energy spectrum at detection can then be written
as:

dNevent

dEe+
= Ntarget · ε(Eν) ·

1

c
·
dFν

dEν
· σ(Eν) ·

dEν

dEe+
(6)

where Ntarget is the number of target particles in the
water Čerenkov detector, ε(Eν) is the efficiency for neu-
trino detection, dFν/dEν is the incident flux of SRNs,
and σ(Eν) is the cross section for the neutrino reaction:
ν̄e + p → e+ + n, and Eν = [Ee+ + 1.3 MeV]. For sim-
plicity we set ε(Eν) = 1.0, and we use the cross sections
given in Strumia & Vissani (2003) when calculating the

reaction rate of SRN with target particles in the detector.
We only consider the detection of ν̄e, because the cross

section in a water Čerenkov detector for the ν̄e + p →

e+ + n reaction is about 102 times larger than that for
νe detection via νe + n → e− + n.

4. NEUTRINO SPECTRA FROM NORMAL SNII

Next, we analyze the uncertainties in the emitted neu-
trino spectrum, i.e. dNν(E′

ν)/dE
′
ν in Eq. (5).

4.1. Neutrino spectrum for SNII

Although the neutrino temperature Tν in core collapse
SNe may also depend upon progenitor mass (Lunardini
2012), we note that the dependence on progenitor mass
is rather small compared to the uncertainty in the neu-
trino temperatures. The reason for this is the masses of
observed neutron stars is rather tightly constrained to
be ∼ 1.4 M# (with a maximum mass of ∼ 2 − 3 M#).
Because the mass is also proportional to the degeneracy
pressure, the narrow range of observed remnant neutron
star masses suggests that the associated neutrino tem-
peratures should also be tightly constrained. Hence, for
our purposes we ignore the dependence on progenitor
mass. In this study, therefore, we adopt a fiducial SN
1987A model (i.e. progenitor mass % 16.2 M#, rem-
nant mass % 1.4M#, liberated binding energy % 3.0 ×

1053 erg). We assume that this model is representative
of every core-collapse SN with progenitor masses in the
range of 10 to 25 M#. We also assume that the the proto-
neutron star formed during core-collapse SNII explosions
is in thermodynamic equilibrium. Hence, the liberated
binding energy is equally divided among the 6 neutrino
species (3 flavors and their anti-particles). Even in the
context of this single progenitor model, however, there is
a range of predicted neutrino temperatures and chemical
potentials in various supernova core-collapse simulations
in the literature. These we now analyze as a means to
estimate the uncertainty in the neutrino detection rate
due to these parameters.

4.2. Constraint on Tνe Tν̄e , Tνµ , Tντ

As discussed below, the uncertainty in the neutrino
temperatures constitutes the largest present uncertainty
in the expected relic neutrino detection rate. Indeed, re-
cent results from Super-Kamiokande (Bayes et al. 2012;
Sekiya 2013) already place some constraints on the relic
neutrino temperatures. In this section we review the
independent constraints and their uncertainties on theo-
retical models for the temperatures of emitted neutrinos.
One result we make use of is from Yoshida et al. (2008)
where it was concluded that the temperature (Tνx) of
νµ, ντ and their anti-neutrinos is should be in the range
4.3 to 6.5 MeV for SN 1987A models. This constraint is
based (Yoshii et al. 1997) upon the observed solar-system
meteoritic abundance ratio of boron isotopes. Similarly,
it has been demonstrated Hayakawa et al. (2010) that
both Tνe and Tν̄e should be ∼ 4.0 MeV to produce the
correct abundance ratio of 180Ta/138La. We adopt these
constraints here.
The range of uncertainty in all neutrino types from

core collapse models is indicated in Figures 3ab and Ta-
bles 2-4. The tables summarize values derived in pre-
vious models for (Tνe , Tν̄e , and Tνx), the dimensionless
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Conclusions 

•  Supernova neutrinos and nucleosynthesis 
provide insight into: 

– Beyond standard model physics 
– Site for r-process nucleosynthesis  
– Relic neutrino spectrum and the 

temperature at the neutrinosphere 

 


