Neutron star oscillations and equation of state

Hajime SOTANI (NAOJ)

International Symposium@NAOJ

Neutron stars

- Structure of NS
 - solid layer (crust)
 - nonuniform structure (pasta)
 - fluid core (uniform matter)
- Crust thickness \leq 1km
- Determination of EOS for high density (core) region could be quite difficult on Earth
- Constraint on EOS via observations of neutron stars
 - stellar mass and radius
 - stellar oscillations (& emitted GWs)

"(GW) asteroseismology"

Oyamatsu (1993)

Oscillations (QNMs) in NSs

- Quasi Normal Modes (QNMs)
 - GWs bring out the oscillation energy
 - damped oscillation \rightarrow QNMs (complex frequencies)
 - Re(ω): oscillation frequency, Im(ω): damping rate
- QNMs (polar parity) in NSs
 - Fluid modes
 - * fundamental mode (f -mode) ... ~ kHz
 - * pressure mode (p-mode) ... \gtrsim a few kHz
 - * rotational mode (*r*-mode) ... ~ rotation frequency
 - Relativistic modes
 - * spacetime mode (w-mode) ... \geq a few tens kHz
- QNMs (axial parity) in NSs
 - Relativistic modes; w-mode ... \gtrsim a few tens kHz
 - Fluid modes; torsional mode (t-mode) ... \gtrsim ten Hz

Oscillations of NSs

(Andersson & Kokkotas 96, 98)

QPOs in giant flares 1

- Magnetars : $B \gtrsim 10^{14}$ Gauss
- Candidates of magentars
 - Anomalous X-ray pulsars (AXPs)
 - Soft gamma repeaters (SGRs)
 - ~ sporadic emission with X and γ -rays (~ 10⁴¹ erg/s)
- Giant flares from SGRs $(10^{44}-10^{46} \text{ ergs/s})$
 - SGR 0526-66 in March.5.1979
 - SGR 1900+14 in August.27.1998
 - SGR 1806-20 in December.27.2004

QPOs in giant flares 2

- Afterglow of giant flares \rightarrow quasi periodic oscillations(QPOs)
 - → Barat et.al. (1983); Israel et.al. (2005);
 Watts & Strohmayer (2005, 2006)
 - SGR 0526-66 : 23ms (43Hz), B ~ 4 × 10¹⁴G
 - SGR 1900+14: B > 4 × 10¹⁴G, 28, 54, 84, 155 Hz
 - SGR 1806-20: B~8 × 10¹⁴G, L~ 10⁴⁶ ergs/s
 18, 26, 30, 92.5, 150, 626.5, 1837 Hz + something ?
- Theoretical attempts to explain...
 - torsional oscillations in neutron star crust.
 - magnetic oscillations (Alfven oscillations)

Crustal torsional oscillations

- observed QPOs is crustal torsional oscillations?
 - In Newtonian; Hansen & Cioffi (1980), McDermott et al. (1998),
 Carroll et al. (1986), Storhmayer (1991), ...
 - \rightarrow without magnetic field

SGR 1806-20

→ $_{2}t_{0} = 39$, $_{3}t_{0} = 55$, $_{4}t_{0} = 72$, $_{5}t_{0} = 88$, $_{6}t_{0} = 104$, ..., $_{\ell}t_{1} = 500$, ... - relativistic models; Schumaker & Thone (1983), Leins (1994), Samuelsson & Andersson (2007)

	QPOs	18	26	30	92.5	150	626.5	1837
	п	?	?	0	0	0	1	3
	l	?	?	2	6	10		

Samuelsson & Andersson (2007)

Constraint on NS model

Samuelsson & Andersson (2007)

Axial Alfven oscillations

(HS+2008a)

two families in Alfven oscillations

- continuum spectrum
- upper & lower QPOs

$$- f_{Ln} \cong (n+1) f_{LO}, f_{Un} \cong (n+1) f_{UO}$$

- $f_{L_n} / f_{U_n} \cong$ 0.6 independently of the stellar model

Effective amplitude

(Cerda-Dulan+2010)

- Upper QPOs are associated with the open field liens
- Lower QPOs are associated with the closed field liens

Different type of magnetic distribution

(Gabler+2012)

Taking into account the quadruple component as well as

dipole component, the Alfven oscillations are examined...

Crust effect

(Colaiuda+2011, Gabler+2010, 2012)

- Strong magnetic field
 - no crust torsional oscillations
- Weak magnetic field
 - Alfven oscillations are confined in core region
 - surface oscillations are crust torsional oscillations

Axial Alfven oscillations

Continuum spectrum

- upper & lower QPOs

Stronger magnetic field than $\sim 10^{15}$ G

- only Alfven oscillations can be excited

Weaker magnetic field than $\sim 10^{15}$ G

- crust torsional oscillations can be excited near surface
- Alfven oscillations are confined in the core region $\implies B \approx 10^{15} \text{ G}$

Constraint on magnetic configuration

(HS+2008b)

Observed magnetic field strength

- SGR 1900+14: $B \ge 4 \times 10^{14}$ G (Hurley+1999)
- SGR 1806-20: $B \sim 8 \times 10^{14}$ G (Kouveliotou+1998)

If magnetic field is confined in crust...

- type I super conductor
- oscillation is confined in crust.
- we have no way to explain the lower frequencies
- magnetic field should permeate the whole star
- type II super-conductor is favored!

remarks

- magnetic configuration inside NSs are still unknown.
- EOS for core region is unfixed yet.
- to avoid such uncertainties, we focus on the crustal torsional oscillations without magnetic field effects
 - fluid core; zero shear modulus ---> No torsional oscillations
 - torsional oscillations localize only in crust region.

EOS near the saturation point

• Bulk energy per nucleon near the saturation point of symmetric nuclear matter at zero temperature;

- Whether pasta phase exists or not depends strongly on L.
- For $L \ge 100$ MeV, pasta structure almost disappears.

What we do

- EOS for core region is still uncertain.
- To prepare the crust region, we integrate from r=R.
 - M, R: parameters for stellar models
 - L, K_0 : parameters for curst EOS (Oyamatsu & lida (2003), (2007))

 \rightarrow For $L \ge 100$ MeV, pasta structure almost disappears

- In crust region, torsional oscillations are calculated.
 - considering the shear only in spherical nuclei.
 - frequency of fundamental oscillation $\propto v_{\rm s} (v_{\rm s}^2 \sim \mu/H)$
 - calculated frequencies could be lower limit

Effect of neutron superfluidity

- For $\rho \ge 4 \times 10^{11}$ g cm⁻³, neutron could drip from nuclei
- Some of dripped neutron play a role as superfluid
- Effective enthalpy affecting on the shear oscillations could be reduced
 - shear speed $(v_s^2 \sim \mu/H)$ increases due to the effect of superfluidity

$$\mathcal{Y}'' + \left[\left(\frac{4}{r} + \Phi' - \Lambda' \right) + \frac{\mu'}{\mu} \right] \mathcal{Y}' + \left[\frac{\epsilon + p}{\mu} \omega^2 \mathrm{e}^{-2\Phi} - \frac{(\ell + 2)(\ell - 1)}{r^2} \right] \mathrm{e}^{2\Lambda} \mathcal{Y} = 0.$$

- $_{o}t_{i}$ could also increase due to the effect of superfluidity
- While, the fraction of superfluid neutron in dripped neutron is still unknown...
 - Chamel (2012): superfluid neutron are not so much (~10-30%?)

I = 2 fundamental oscillations $(_{0}t_{2})$

- For $M=1.4M_{\odot}$ & R=12km, calculated frequencies $_{0}t_{2}$
- $_{\rm O}t_2$ is almost independent of the value of $K_{\rm O}$
- For $R = 10 \sim 14$ km and $M/M_{\odot} = 1.4 \sim 1.8$, similar dependence on K_{\odot}
- One can write fitting line
- Focus on *L* dependence of $_{0}t_{2}$

1st overtone $(_1t_2)$ (HS+2012)

- for the stellar models with $M = 1.4 M_{\odot} \& R = 10$, 12, 14 km
- Unlike $_{0}t_{2}$, $_{1}t_{2}$ depends not only \mathcal{L} but also K_{0}
- dependence of K_0 :
 - pasta phase becomes crucial?

Constraint on L via SGR 1806-20

Constraint on L via SGR 1900+14

Allowed region for L

Effect of electron screening

- crust configuration is almost independent from such effect
- shear modulus can be modified
 - contribution due to Coulomb interaction

Ogata, Ichimaru 1990; Strohmayer+ 1991

$$\mu = 0.1194 \times \frac{n_i (Ze)^2}{a}$$

n, : number density of quark droplet

Z: charge of quark droplet

a : Wigner-Seitz radius

including effect of electron screening

Horowitz & Hughto 2008: 10% reduction

Kobyakov & Pethick 2013

$$\mu = 0.1194 \left[1 - 0.010 Z^{2/3} \right] \frac{n_i (Ze)^2}{a}$$

~11.7% reduction for Z = 40

- frequency \propto shear speed

frequency reduces due to electron screening effect (HS 2014)

full calc, β -equil

0.10

Shift of frequencies due to the electron screening effect

charge number generally reduces with \mathcal{L}

 the shift of frequencies due to electron screening effect, becomes small with large *L*.

Constraint on L

Constraint on \mathcal{L} for explaining the both observations in SGR 1806-20 and SGR 1900+14;

other constraints on L

most of constraints on L predict around 40 \leq L \leq 80MeV

Conclusion

NS oscillations are good candidates to extract the interior information.

- QPOs in SGRs are good evidences for adopting the asteroseismology
 - magnetic and/or crustal torsional oscillations?
- identifying the observed QPO frequencies in SGRs with the crustal torsional oscillations, we make a constraint on L
 - $101 \le L \le 131$ MeV without electron screening effect
 - 97 \leq L \leq 127 MeV with electron screening effect.
- still, a little larger than the predictions from nuclear experiments, which is around $40 \leq L \leq 80$ MeV.

We should take into account the additional missing effects

- magnetic fields, even though the magnetic configuration is unknown
- more realistic shear modulus, including the size effect and in pasta structure
- maybe shell effect
- examination of overtones