
Asteroseismology with protoneutron stars

Hajime Sotani (NAOJ) Tomoya Takiwaki (NAOJ)

Gravitational wave asteroseismology

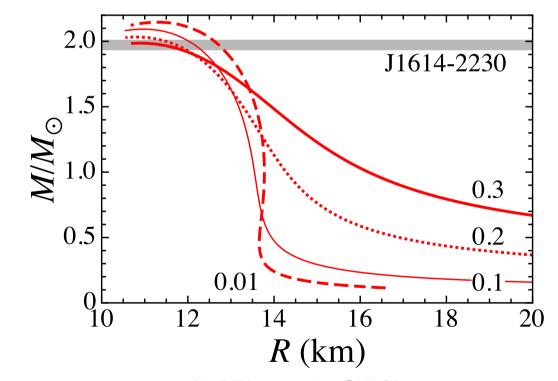
- oscillation spectra are important information for extracting the interior information of star
 - seismology on the Earth
 - helioseismology on the Sun

$$f_f^{(\rm NS)} \; ({\rm kHz}) \approx 0.78 + 1.635 \left(\frac{M}{1.4 M_{\odot}}\right)^{1/2} \left(\frac{R}{10 \; {\rm km}}\right)^{-3/2} \; {\rm ars} \; {\rm properties...}$$

via the observations of f and w mode oscillations, one could determine the M and R within $\sim 10\%$ accuracy.

Andersson & Kokkotas (1998)

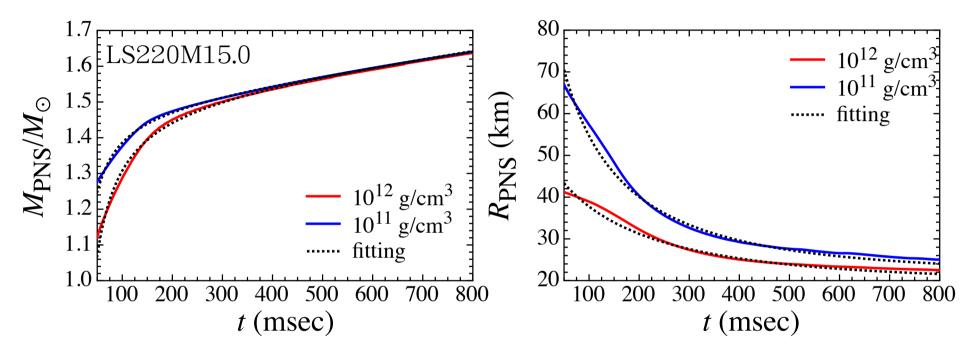
How about protoneutron stars?


- it could be possible if one can construct stellar models

13 May 2016

4th DTA symposium@NAOJ

Protoneutron stars (PNSs)

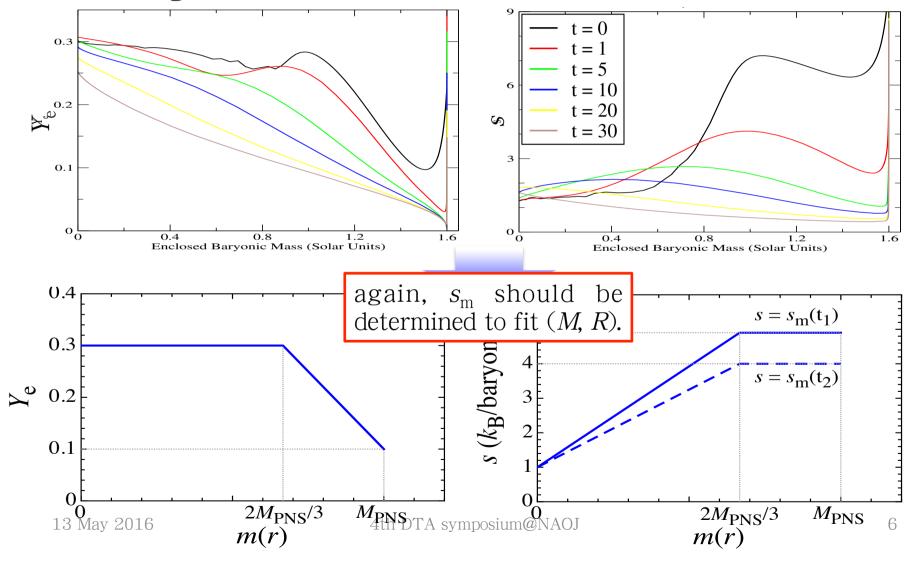

- Unlike cold neutron stars, to construct the PNS models, one has to prepare the profiles of $Y_{\rm e}$ and s.
 - for example, with LS220 and s =1.5 ($k_{\rm B}$ /baryon), but $Y_{\rm e}$ =0.01, 0.1, 0.2, and 0.3

strategy

- calculate the 1D simulation of core-collapse supernova (by Takiwaki)
 - time evolutions of radius and mass of PNS are determined
 - radius and mass of PNS are fitted by simple formula
- PNS models are constructed in such a way that the radius and mass of PNS are equivalent to the expectation from the fitting
 - with the assumption that the PNS is quasi-static at each time step
 - with the profiles of $Y_{\rm e}$ and s
- calculate the eigen-frequencies via the eigen-value problems on PNS models
 - dependence of the frequencies on the profiles of $Y_{
 m e}$ and s
 - dependence on the average density of PNS
 - dependence on the progenitor models
 - LS220 $(M_{\rm pro}/M_{\odot} = 11.2, 15, 27, 40)$, Shen $(M_{\rm pro}/M_{\odot} = 15)$

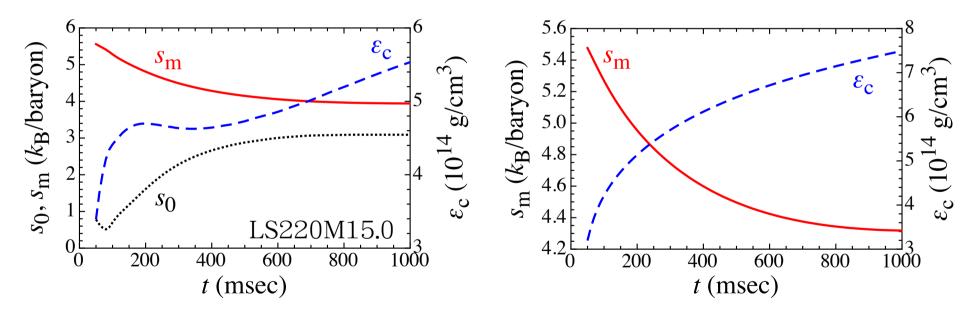
evolutions of mass and radius

fitted with


$$R_{\text{PNS}}(t) = \frac{R_{\text{i}}}{1 + \left[1 - \exp(-\frac{t}{\tau})\right] \left[\frac{R_{\text{i}}}{R_{\text{f}}} - 1\right]}$$
$$\frac{M_{\text{PNS}}(t)}{M_{\odot}} = \frac{c_0}{t} + c_1 t + c_2$$

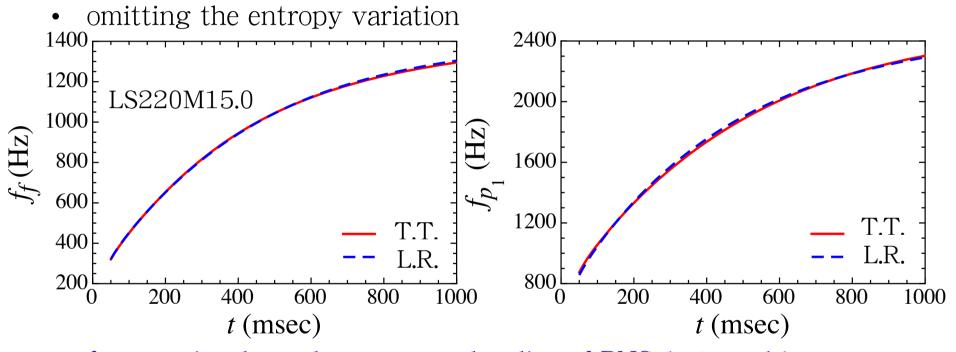
$Y_{\rm e}$ and s profiles

the snap shot at t=100, 200, and 500ms after bounce 0.3 $\varrho_{\rm s} = 10^{12} \, {\rm g/cm^3}$ 100 ms 200 ms s (k_B/baryon) 500 ms 0.2 0.1 100 ms 200 ms $\varrho_{\rm s} = 10^{12} \,\mathrm{g/cm^3}$ 500 ms 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1.0 1.0 $m/M_{
m PNS}$ $m/M_{
m PNS}$ s_0 is given from numerical results, but 0.4 $s_{\rm m}$ should be determined to fit (M, R). $s = s_{\rm m}(t_1)$ 0.3 s (k_B/baryon $s = s_{\rm m}(t_2)$ 0.2 $s_0(t_2)$ 0.1 $s_0(t_1)$ 0 $\overline{M_{\mathrm{PNS}}}_{5}$ $\overline{M}_{ ext{PNS}}$ $2M_{\rm PNS}/3$ 13 May 2016 4th DTA symposium@NAOJ m(r)m(r)


comparison with other results

• results by Roberts (2012), where he has done the 1D simulations for long-term.

PNS models

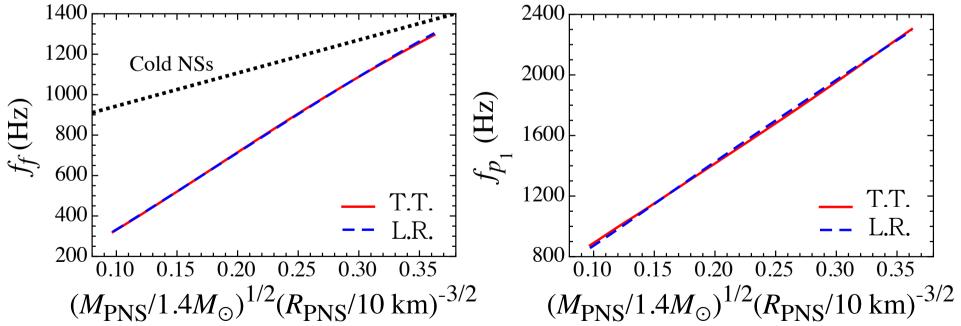

- adopting two different profiles of $Y_{\rm e}$ and s inside the PNS, we construct the PNS models.
 - unknown parameter: $\varepsilon_{
 m c}$ & $s_{
 m m}$
 - to reproduce the PNS models with given (M, R), $\varepsilon_{\rm c}$ and $s_{\rm m}$ are fixed.

• evolutions of $\varepsilon_{\rm c}$ and $s_{\rm m}$ depend strongly on the profiles of $Y_{\rm e}$ and $s_{\rm c}$

oscillations in PNS

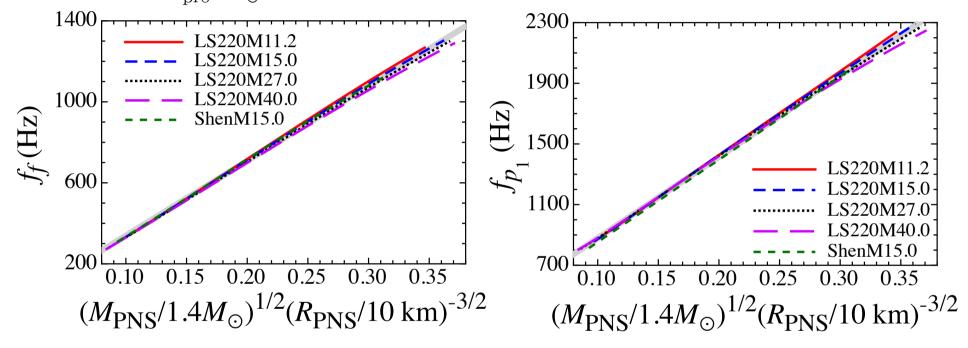
• with relativistic Cowling approximation

- frequencies depend on mass and radius of PNS, but weakly depend on ($Y_{\rm e}$, s) profiles.
- in the early stage, the typical frequencies of *f*-mode is ~ a few hundred hertz, which is good for gravitational wave detectors.


characterized by average density

• frequencies of f-mode for cold neutron stars:

$$f_f^{(\rm NS)} \; ({\rm kHz}) \approx 0.78 + 1.635 \left(\frac{M}{1.4 M_{\odot}}\right)^{1/2} \left(\frac{R}{10 \; {\rm km}}\right)^{-3/2}$$


Andersson & Kokkotas (1998)

• Similarly, frequencies for PNS can be characterized by average density, but obviously different from those for neutron stars.

dependence on progenitor models

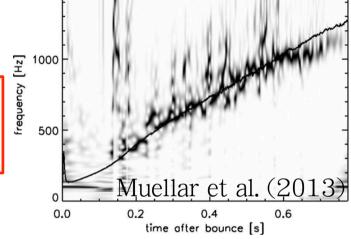
• results for LS220 with $M_{\rm pro}/M_{\odot}$ =11.2, 15, 27, and 40, for Shen with $M_{\rm pro}/M_{\odot}$ =15

progenitor model dependence is quite weak.

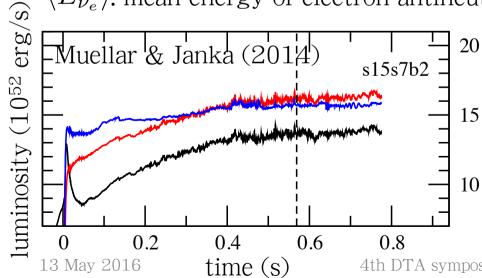
$$f_i^{(\text{PNS})}(\text{Hz}) \approx c_i^0 + c_i^1 \left(\frac{M_{\text{PNS}}}{1.4M_{\odot}}\right)^{1/2} \left(\frac{R_{\text{PNS}}}{10 \text{ km}}\right)^{-3/2}$$

comparison with g-modes

as characteristic GWs from core-collapse supernova, the excitation of g-modes around PNS has been reported (Muellar et al. (2013);


Cerda-Duran et al. (2013))

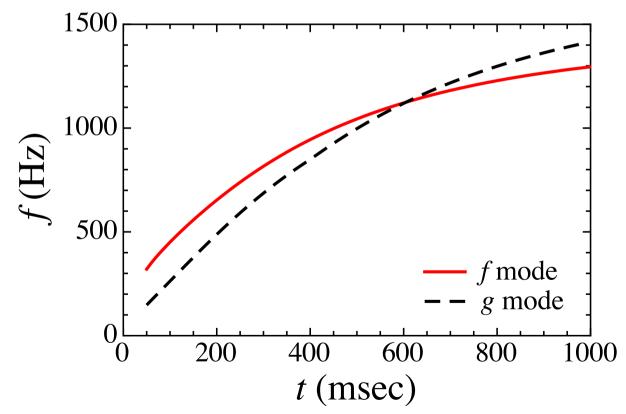
- due to the convection and the standing accretion-shock instability.


$$f_g \approx \frac{1}{2\pi} \frac{GM_{\rm PNS}}{R_{\rm PNS}^2} \left(\frac{1.1m_n}{\langle E_{\bar{\nu}_e} \rangle}\right)^{1/2} \left(1 - \frac{GM_{\rm PNS}}{c^2 R_{\rm PNS}}\right)^2$$

Muellar et al. (2013)

 m_n : neutron mass $\langle E_{\overline{\nu}_e} \rangle$: mean energy of electron antineutrinos

black: electron neutrinos red: electron antineutrinos blue: μ/τ neutrinos



$$\langle E_{\bar{\nu}_e} \rangle = \begin{cases} 3t/400 + 13 & (0 \le t \le 400 \text{ msec}) \\ 16 & (400 \text{ msec} \le t) \end{cases}$$

4th DTA symposium@NAOJ

comparison with g-modes

- careful observing the gravitational wave spectra after corecollapse supernova, one might see the different sequences in spectra
 - which tells us the radius and mass of PNS

conclusion

- We examine the frequencies of gravitational waves radiating from PNS after bounce.
- The PNS models are constructed in such a way that the mass and radius obtained from 1D simulation are reconstructed.
 - two different profiles of $Y_{\rm e}$ and s are considered

•
$$f_i^{(PNS)}(Hz) \approx c_i^0 + c_i^1 \left(\frac{M_{PNS}}{1.4M_{\odot}}\right)^{1/2} \left(\frac{R_{PNS}}{10 \text{ km}}\right)^{-3/2}$$
 m

•
$$p f_g \approx rac{1}{2\pi} rac{GM_{
m PNS}}{R_{
m PNS}^2} \left(rac{1.1m_n}{\langle E_{ar{
u}_e}
angle}
ight)^{1/2} \left(1 - rac{GM_{
m PNS}}{c^2 R_{
m PNS}}
ight)^2$$
 p-modes as a

function of average density

- different dependence for g-mode around PNS
- one might be possible to determine the mass and radius of PNS via careful observations of time evolution of gravitational wave spectra.