Dynamical mass ejection from binary compact-star mergers

Yuichiro Sekiguchi (Toho)

with K. Kiuchi, K. Kyutoku, M. Shibata, S. Wanajo, N. Nishimura, and K. Taniguchi

Toward GW astronomy

Introduction

Toward GW detection and GW astronomy

Advanced Virgo

<u>One of the most promising source</u> <u>merger of compact-star binary with NS</u>

- Expected event rate ~ a few × 10 / yr
- Matched filter : huge parameter space
 - Location, time, distance, etc.
- Identification of EM counterpart
 - Reducing parameter space (effectively S/N个)
- First detection may be near the threshold
 - Multi-messenger confirmation

Complementary information for GW astronomy

- Gravitational waves: physics of the binary system
 - Mass, radius, orbit, NS EoS, BH formation
- **EM detection: Astrophysical environment**
 - Redshift, host galaxy, NS EoS

Dynamical mass ejection from NS-NS
Main topic

- Dynamical mass ejection from BH-NS
 - Discuss briefly later

x (km)

y (km)

Kiuchi et al. PRL (2010); Hotokezaka et al. (2013)

Shibata et al. 2005,2006 Sekiguchi et al, 2011 Hotokezaka et al. 2013

Evolution of NS-NS mergers inspiral **Inspiral of NS binary** NS – NS merger Dependent on BΗ EoS, Mtot Formation of hot, differentially **Prompt formation** of BH + Torus rotating massive NS Dependent on BΗ EoS, Mtot NS **Delayed collapse Rigidly rotating NS** to BH + Torus

Messengers of NS-NS mergers

Messengers of NS-NS mergers

Possible EM counterparts : Similarities to SNe

<u>Supernovae</u>

- Long GRBs
 - Prompt (γ), afterglow (X to Radio)

Supernova remnants

- Synchrotron: Ejecta-ISM interaction
- Activities Powered by Pulsar
- Radioactive decay of ⁵⁶Ni
 - produced in the explosive ejecta
 - Optical
- Classification by spectra
- Shock breakout
 - UV ~ X. (e.g. Tominaga+ 2009)

Merger of NS-NS, BH-NS

- Short GRBs
 - Prompt (γ), afterglow (X to radio)

Merger remnants

- Radio Flare: Ejecta-ISM interaction
- Powered by Massive NS ? (Zhang 2013)
- Decay of r-process elements
 - Proceeds in the n-rich ejecta
 - Opticall-IR : Macronova
- Classification by spectra ???
- Merger Shock breakout
 - X-ray : Kyutoku et al. (2012)

SGRB and Quest for 4π emission

- Jets of short GRBs may be collimated in general
- Jet opening angle estimated from the jet break
 - SGRB111020A : $\theta_j \sim 3-8^\circ$ (Fong et al. 2012)
 - SGRB051121A : $\theta_j \sim 7^\circ$ (Burrows et al. 2006)
 - Most of GRB Jets are expected to be Off-Axis ⇒ <u>very faint</u>
 - There will be GW-events without SGRB counterparts
- We need 4π emission events
 - Associated with 4π ejecta
 - Dynamical ejecta
 - neutrino-driven/MHD winds
 - Late-time disk dissolution
 - □ Fernandez & Metzger 2013

Radio flare from Ejecta-ISM interaction

- External shock with inter stellar matter (ISM) : a 4π emission
- Synchrotron radiation becomes most luminous when ejecta mass = swept-up ISM mass: for typical values (Nakar & Piran 2011)

$$t_{\text{peak}} \sim 4 \text{ yrs} \left(\frac{E_{\text{ejecta}}}{10^{50} \text{ ergs}}\right)^{1/3} \left(\frac{n_{\text{ISM}}}{1 \text{ cm}^{-3}}\right)^{-1/3} \left(\frac{v_{\text{ejecta}}}{0.2c}\right)^{-5/3}$$

$$F_{\nu} \sim 0.1 \,\mathrm{mJy} \,\left(\frac{E_{\mathrm{ejecta}}}{10^{50} \mathrm{ergs}}\right) \left(\frac{n_{\mathrm{ISM}}}{1 \,\mathrm{cm}^{-3}}\right)^{0.9} \left(\frac{\nu_{\mathrm{ejecta}}}{0.2c}\right)^{2.8} \left(\frac{D}{200 \,\mathrm{Mpc}}\right)^{-2} \left(\frac{\nu_{\mathrm{obs}}}{1.4 \,\mathrm{GHz}}\right)^{-0.75}$$

ISM density may be much smaller : according to recent SGRB obs.

- $n_{ISM} \sim 0.01-0.1 \text{ cm}^{-3}$ for SGRB 111020A (Fong et al. 2012)
- $n_{IMS} \sim 0.0001-1 \text{ cm}^{-3}$ for SGRB 111117A (Margutti et al. 2012)
- Radio flare may be less bright and shine in a very late time : Not very suited as EM counterparts of GWs

Rotation powered activities ?

- If a stable massive NS is survived, additional EM emissions powered by NS-rotation may be expected (Metzger et al. 2011; Zhang 2013; Gao et al. 2013)
 - ▶ Compared to normal pulsars, rapid rotation (P~ms), strong B-fields (B~10¹⁵ G)

However, such additional emissions may be not very frequent :

- Nuclear theory : hard to make such a very stiff EoS with Mmax > 2.4Msolar
- SGRB : if central engine of SGRB is BH + Disk, frequent formation of the massive NS may lead to too much mergers (only low mass NS merger ?)

- ~1/3 of SGBRs may have late-time activity
 - which could be originated in the massive SN
- Most of them are short duration < O(100s)
 - Collapse to a BH ?
 - shorter than the spin down timescale > 1000s

Macronova

Merger ejecta will be very neutron rich: rapid neutron capture (r-process)

LETTER

doi:10.1038/nature12505

A 'kilonova' associated with the short-duration γ-ray burst GRB130603B

N. R. Tanvir¹, A. J. Levan², A. S. Fruchter³, J. Hjorth⁴, R. A. Hounsell³, K

Short-duration γ -ray bursts are intense flashes of cosmic γ -rays, lasting less than about two seconds, whose origin is unclear^{1,2}. The favoured hypothesis is that they are produced by a relativistic jet created by the merger of two compact stellar objects (specifically two neutron stars or a neutron star and a black hole). This is supported by indirect evidence such as the properties of their host galaxies³, but unambiguous confirmation of the model is still lacking. Mergers of this kind are also expected to create significant quantities of neutron-rich radioactive species^{4,5}, whose decay should result in a faint transient, known as a 'kilonova', in the days following the burst⁶⁻⁸. Indeed, it is speculated that this mechanism may be the predominant source of stable r-process elements in the Universe^{5,9}.

Importance of Ye in the r-process

Electron fraction (Ye) is the key parameter : Ye ~ 0.2-0.25 is critical threshold

- Ye < 0.2-0.25 : strong r-process \Rightarrow nuclei with A>130
- Ye > 0.2-0.25 : weak r-process \Rightarrow nuclei with A< 130
- Different decay heat and opacity for them (Smaller κ for smaller A: Grossman et al. 2013 Kasen et al. 2015)

Neutrino-matter interaction Yi Ye can be changed 10⁻⁴ Two reactions which increase Ye Positron capture : $n + e^+ \rightarrow p + \overline{v}_e$ 10⁻⁶ **Important for higher temperature** there are more positrons 10⁻⁸ Neutrino capture : $| n + v_e \rightarrow p + e^-$ Copious neutrinos are emitted 10⁻¹⁰ NS matter is neutron rich Not considered in the previous 10⁻¹² studies (need neutrino transfer) 80 100 120

Korobkin et al. 2012

Key observations for r-process : Universality solar pattern = event by event r-process pattern

Sneden et al. (2008)

- Abundance pattern comparison :
 - r-rich low metallicity stars
 - Solar neighborhood
- Low metallicity suggests
- Such stars experience a few r-process events
- Such stars preserve the original pattern of the r-process events (chemical fossil)

Key observations for r-process : Universality solar pattern = event by event r-process pattern

The solar and chemical fossil r-process element patterns agree well suggests that <u>r-process event synthesize</u> <u>heavy elements with a</u> <u>pattern similar to solar</u> <u>pattern (Univsersality)</u>

Low metallicity !!

Universality should be achieved before chemical enrichment

- Should not rely on many events
- Single event has to satisfy the universality

Dynamical mass ejection from NS-NS

With 'Universality' point of view : NS-NS merger ejecta: too neutron-rich ?

- Goriely et al. 2011; Bauswein et al. 2013
 - Approx. GR SPH sim. without weak interactions
 - No way to change Ye => ejecta remains n-rich (initial low Ye)
 - See also post-process calculation of weak interactions
- Korobkin et al. 2012; Rosswog et al. 2013
 - Newtonian SPH sim. with neutrino
 - tidal mass ejection (explained in the next slide) of 'pure' neutron star matter
- Ejecta is very n-rich with Ye < 0.1 ??</p>

Mass ejection from BNS merger (1) : Tidal torque + centrifugal force

- Less massive NS is tidally deformed
- Angular momentum transfer by spiral arm and swing-by
- A part of matter is ejected along the orbital plane
- reflects low Ye of
 cold NS (β-eq. at T~0),
 no shock heating,
 rapid expansion
 (fast T drop), no time
 to change Ye by weak
 interactions

Density contour [log (g/cm³)] Ē

t=11.81719 ms

t=11.35916 ms

t=11.63398 ms

t=11.90880 ms

Hotokezaka et al. (2013)

13

t=12.00041 ms

With 'Universality' point of view : NS-NS merger ejecta: too neutron-rich ?

Korobkin et al. 2012; Rosswog et al. 2013; see also Goriely et al. 2011

- tidal mass ejection of 'pure' neutron star matter (very n-rich) with Ye < 0.1</p>
 - Ye is that of T=0, β-equilibrium
- strong r-process with fission recycling only 2nd (A~130; N=82) and 3rd (A~195; N=126) peaks are produced (few nuclei in A=90-120)
- the resulting abundance pattern does not satisfy universality in A=90-120

How to satisfy the universality

Electron fraction (Ye) is a key parameter : Ye ~ 0.2 is critical threshold

- Ye < 0.2 : strong r-process ⇒ nuclei with A>130 (the pattern is robust)
- Ye > 0.2 : weak r-process \Rightarrow nuclei with A< 130 (for larger Ye, nuclei with smaller A)

Korobkin et al. 2012

How to satisfy the universality

- Introduce new ejecta components
 - Neutrino driven winds from the remnant system
 - Dessart et al. (2009); Grossman et al. (2014); Perego et al. (2014); Just et al. (2015)
 - late time disk/torus disintegration
 - Fernandez & Metzger (2013)
 - It is not clear whether it is possible to satisfy the universality robustly
- Take into account effects of both <u>GR and weak interaction</u> in the dynamical ejecta (this talk)

What will change if you include GR and microphysics (1) : Stronger shock in GR

van Riper (1988) ApJ <u>326</u> 235

Mass ejection from BNS merger (2): Shock driven components

- > Shocks occur due to oscillations of massive NS and collisions of spiral arms
- Isotropic mass ejection, higher temperature (weak interactions set in)

What will change if you include GR and microphysics (1) : Stronger shock in GR

Newtonian simulation by S. Rosswog et al.

Almost no isotropic component (shock-driven) in Newtonian simulation Only the tidal component

Full GR simulation by Y. Sekiguchi et al.

-1500 -1000 -500 0 500 1000 1500

2000

What will change if you include GR and microphysics (2) : Ye can change via weak interaction

Previous studies and our study

- **Korobkin et al. 2012 :** Newtonian SPH simulations with neutrinos
- **Bauswein et al. 2013:** Relativistic SPH simulations with many EOS but without neutronos
- This Study : Full GR, approximate gray radiation hydrodynamics simulation with multiple EOS and neutrinos (brief summary of code is in appendix of lecture note)
 - BNS merger simulations with multiple EOS,
 BNS merger simulations with multiple EOS,
 R radiation-hydrodynamics (neutrino heating can be approximately treated) different mass ratio, and switch-on and -off Advection terms : Inducated Moment scheme (Shibata et al. 2011)
 neutrino interactions become accessible gray or multi-energy but advection in energy is not included
 hanksritoarXC30 cin CfCA and K-computer 12 13
 - Source terms : two options
 - Implicit treatment : Bruenn's prescription
 - Explicit treatment : trapped/streaming v's
 - □ e-captures: thermal unblocking/weak magnetism; NSE rate
 - □ Iso-energy scattering : recoil, Coulomb, finite size
 - $\hfill\square$ e±annihilation, plasmon decay, bremsstrahlung
 - □ diffusion rate (Rosswog & Liebendoerfer 2004)
 - two (beta- and non-beta) EOS method
 - Lepton conservation equations

Adopted EOS & (expected) Mass ejection mechanism

- <u>'Stiffer EOS'</u>
 - $\Leftrightarrow \mathsf{R}_{\mathsf{NS}} : \mathsf{larger}$
 - TM1, TMA
 - Tidal-driven dominant
 - Ejecta consist of low T & Ye NS matter
- <u>'Intermediate EOS'</u>
 - DD2
- <u>'Softer EOS'</u>
 - $\Leftrightarrow \mathsf{R}_{\mathsf{NS}} : \mathsf{smaller}$
 - SFHo, IUFSU
 - Tidal-driven less dominant
 - Shock-driven dominant
 - Ye can change via weak processes

See also, Bauswein et al. (2013); Just et al. (2014)

Entropy per baryon : DD2 relatively **stiff**, tidal component dominated

Ye : DD2 relatively **stiff**, tidal component dominated

Entropy per baryon : SFHo relatively **soft**, multiple shock components

Ye : SFHo relatively **soft**, multiple shock components

Soft(SFHo) vs. Stiff(TM1): Ejecta temperature

- Soft (SFHo): temperature of unbound ejecta is higher (as 1MeV) due to the shock heating, and produce copious positrons
- Stiff (TM1): temperature is much lower

Sekiguchi et al PRD (2015)

Soft(SFHo) vs. Stiff(TM1): Ejecta Ye = 1- Yn

Soft (SFHo): In the shocked regions, Ye >> 0.2 by weak processes

Stiff (TM1): Ye is low as < 0.2 (only strong r-process expected)</p>

Wanajo, Sekiguchi et al. ApJL (2014)

Achievement of the universality (soft EOS (SFHo), equal mass (1.35-1.35))

- The Ye-distribution histogram has a broad, flat structure (<u>Wanajo, Sekiguchi, et al. (2014)</u>.)
 - Mixture of all Ye gives a good agreement with the solar abundance !
 - Robustness of Universality (dependence on binary parameters)

Sekiguchi et al PRD (2015)

EOS dependence : 1.35-1.35 NS-NS

Unequal mass NS-NS system: SFHo1.25-1.45

- Orbital plane : Tidal effects play a role, ejecta is neutron rich
- Meridian plane : shock + neutrinos play roles, ejecta less neutron rich

Ye

Sekiguchi et al PRD (2015); Prego et al. (2014); Just et al. (2014); Goriely et al. (2015); Martin et al. (2015) Importance of neutrino absorption in dynamical mass ejection

Evolution of BH-NS

Shibata & Taniguchi (2008) Kyutoku et al. (2010), (2011)

Symmetry energy and NS radius

NS radius is sensitive to symmetry energy (@ps)

 empirical correlation for radius and pressure near the saturation density

$$R_{NS}(n_S, M_{NS}) \approx$$

 $C(n_S, M_{NS}) \left(\frac{P(n_S)}{\text{MeV fm}^{-3}}\right)^{1/4}$

- For pure neutron matter,
- P @ saturation depends on symmetry energy

$$P(n_s, x=0) \propto L \approx S_V n_s$$

Symmetry energy of adopted EOS

BH-NS merger (DD2 EOS: density) MBH=5.5Msun, MNS=1.35Msun, aBH=0.75

BH-NS merger (DD2 EOS: Ye) MBH=5.5Msun, MNS=1.35Msun, aBH=0.75

- Main mass ejection mechanism: tidal disruption of NS by BH ⇒ ejecta is very neutron rich
 - For lager RNS (for stiff EOS or EOS with larger symmetry energy), ejecta mass is larger (promising as EM counterpart to GW)
- Neutrino heating effects less dominant
- Too neutron rich to satisfy the Universality
 - Need some additional ejecta components. (e.g., MHD driven winds: Kiuchi, YS, et al. 2015)

Not only ejecta mass but also ejecta Ye reflects the symmetry energy

