The Merger Rates of Binary Black Holes in Star Clusters

Michiko Fujii (UTokyo)

With Ataru Tanikawa (UTokyo) and Jun Makino (Kobe Univ.)

Gravitational Wave from Binary Black Hole

- The first GW (GW150914) has been detected!
- It was from a binary black hole (BBH);
 29 + 36 Msun!
 - More massive than any known stellarmass BHs
- BBH may be more common than expected before

Two Possible Formation Paths

 Primordial binaries + Common envelope evolution Belczynski et al. (2007)

Dynamical evolution in dense star clusters

Portegies Zwart & McMillan (2000)

Dominik et al. (2013)

Previous works: Primordial binaries

Belczynski et al. (2016)

Kinugawa et al. (2014)

Pop III stars

- The result strongly depends on the initial mass function, binary population, and stellar evolution (binary evolution) model
- These are still unclear

Previous works: Star clusters

Tanikawa (2013)

Similar works: O'Leary (2006), Banerjee+ (2010), Rodriguez (2016)

- Perform several N-body simulations of star clusters
 - The number of samples is not so large (10-a few hundreds per cluster)
 - The simulations consume a lot of computer resources

Tanikawa et al. (2013)

- Performed N-body simulations and obtained the distribution (eccentricity, mass ratio, merger time) of merging BBHs
- Following this distribution, they generated merging BBHs history per cluster and estimated the detection rate

Eccentricity distribution

Mass-ratio distribution

Massive BHs merge for a shorter time

This work

- We use the results of Tanikawa et al. (2013)
- But,
 - We assume BH mass function (MF) up to 54 Msun (Belczynski+ 2014)
 - We assume a cosmic star-cluster formation history from a cosmic star formation history (Madau & Dickinson 2014)
 - We update the sensitivity spectrum of the detector

Zero-age main-sequence and BH mass

Cosmic star-cluster formation history

Sensitivity spectrum

We assume 10-100 star clusters per 109Msun stellar mass

Results: BBH merger rates

- Each cluster starts to form merging BBHs after 5Gyr (corecollapse time of star cluster)
- Massive BHs merges in earlier time

Cumulative merger rate

Chirp Mass function

Results: Detection rates

- Weak two peaks, but almost flat mass distribution
 - Massive BHs are more effectively detected
- The detection rates is 0.69-6.9/yr for current detection limit and will be 8.5-85/yr for the designed sensitivity (depends on star-cluster formation rate)

Cumulative detection rate

Chirp Mass function

Results: MF of detected BBHs

Observed shape of the MF will tell us the BBH formation scenario

Star clusters

Belczynski et al. (2016)

Primordial binaries

Summary

- We estimate the detection rates and the mass function of binary black holes dynamically formed in star clusters
 - We follow the methods used in Tanikawa (2013), but update the details
- Our model predicts that the detection rates is 0.69-6.9/yr for current detection limit and will be 8.5-85/yr for the designed sensitivity
- The mass function of the detected BBHs characterize the BBH formation scenarios
 - Massive BBHs are enhanced for star cluster scenario
- Future observations will clarify the evolutionary path(s) of black hole binaries