Pion Production via Proton Synchrotron Radiation in Strong Magnetic Fields in Relativistic Quantum Approach Particle Productions in TeV Energy Region

> Tomoyuki Maruyama BRS. Nihon University

Collaborators

Toshitaka Kajino *Myong-Ki* Cheoun *Grand. J.* MATHEWS NaO, Japan Sonnsil Univ., Koread Univ. of Notre Dome, USA

T.Maruyama et al., Phys. Rev. D91, 123007 (2015). Phys. Lett. B757, 125 (2016).

§1 Introduction

Soft Gamma Repeater (SGR), Anomalous Xray pulsar (AXP)

http://commons.wikimedia.org

 \Rightarrow Magnetar 10¹⁵G in surface 10¹⁷⁻¹⁹G inside

B.C.Duncan & C.Thompson ApJL 392, L9 (1992) S.Merghetti, A&AR 15, 225 (2008)

Observation of \gamma-ray \rightarrow **Study od Magnetar Structure**

γ-ray Radiation

Proton is accelerate up to 1GeV~1TeV

⇒ Synchtotron Radiation
... Meson Prod (Str. > El.Mag
All Theories are Semi-Classical
V.L.Ginzburg et al., UsFiN 87, 65, ARA&A 3, 297 (65)
G.F. Zharkov, Sov. J. Nucl. Phys., 1, 17314 (65)
V. Berezinsky, et al., Phys. Lett. B 351, 261 (95)
A. Tokushita and T. Kajino, ApJ. 525, L117 (99).
T.Kajino et al., ApJ 782, 70 (2014)

Many Assumption and Approxs. Mom.-Dist. cannot be calculated

Quantum Calulations.

§2 Formulation in Relativistic Quantum Approach

Magnetic Field :
$$\vec{B} = B\hat{z}$$
. $\vec{A} = (0, xB, 0)$

Dirac Equation

$$\left\{\vec{\alpha}(-i\vec{\nabla}_r - e\vec{A}) + \beta m_N + \frac{e\kappa}{2m_N}B\beta\Sigma_z\right\}\tilde{\psi}(\boldsymbol{r}) = \varepsilon\tilde{\psi}(\boldsymbol{r})$$

Anomalous Mag. Moment Tensor-Type Mean-Field

Scale Transformation : $M_N = m_N / \sqrt{eB}$, $P_i \equiv p / \sqrt{eB}$, $X_i = \sqrt{eB} x_i$. Def: $U_T = \kappa \sqrt{eB} / 2m_N = \kappa / 2M_N$.

$$E_{T} = \sqrt{P_{z}^{2} + \left(\sqrt{2n + 1 - s + M_{N}^{2}} - s \kappa_{p} B / M_{N}\right)^{2}}$$

 $\Sigma_{z} = \begin{pmatrix} \sigma_{z} & 0 \\ 0 & -\sigma_{z} \end{pmatrix} = -\sigma_{12} = \frac{i}{2} [\gamma_{1}, \gamma_{2}]$

$$\begin{aligned} & \text{Decay Width of } p \text{ to } p + p^{0} \\ & \pi \text{N interaction} \end{aligned} \qquad \mathcal{L} = \frac{if_{\pi}}{m_{\pi}} \psi \gamma_{5} \gamma_{\mu} \tau_{a} \psi \partial^{\mu} \phi_{a} \end{aligned} \qquad \textbf{PV coupling} \\ & \frac{d^{3} \Gamma_{p\pi}}{dQ^{3}} = \frac{1}{8\pi^{2} E_{\pi}} \left(\frac{f_{\pi}}{M_{\pi}} \right)^{2} \sum_{n_{f},s_{f}} \frac{\delta(E_{f} + E_{\pi} - E_{i})}{4E_{i}E_{f}} R_{E} \\ & \mathcal{I} \end{aligned} \qquad \qquad \mathcal{I} \end{aligned} \qquad \mathcal{I} \Biggr \\ & \frac{d^{3} \Gamma_{p\pi}}{dQ^{3}} = \frac{1}{8\pi^{2} E_{\pi}} \left(\frac{f_{\pi}}{M_{\pi}} \right)^{2} \sum_{n_{f},s_{f}} \frac{\delta(E_{f} + E_{\pi} - E_{i})}{4E_{i}E_{f}} R_{E} \\ & \mathcal{I} \Biggr \\ & \mathcal$$

Transition Strengths between two Landau Levels

-1 -> +1 small Landau-level difference

Very Large AMM Effects

 $p \rightarrow p + \pi^{\theta}$ Energy Momentum Conservation is not satisfied in the free kinematics

Mag. Fld.+AMM Tensor Type Mean-Field s = -1 (repulsive), s = +1 (attractive)

Level Interval of Transition $n_i - n_f$

 $s_i = -1 \rightarrow s_f = +1$ Smaller Intervals \Rightarrow Enhances Transition Strength

 $s_i = +1 \rightarrow s_f = -1$ Larger Intervals

⇒ Reduces Transition StrengthV

Small Shifts $n_i - n_f$ make Large change of Transition Strength

§4 Realistic System

Pion Production Dominant Energy Region

 $B = 10^{15}$ G Landau Number : $n_i \approx 10^{12} - 10^{13}$

Actual calculations are almost impossible

Problem : HO overlap integral

$$\mathcal{M}(n_1, n_2) = \int dx f_{n_1} \left(x - \frac{Q_T}{2} \right) f_{n_2} \left(x + \frac{Q_T}{2} \right) = \sqrt{\frac{n_2!}{n_1!}} \left(\frac{Q_T}{\sqrt{2}} \right)^{n_1 - n_2} e^{-\frac{Q_T^2}{4}} L_{n_2}^{n_1 - n_2} \left(\frac{Q_T^2}{2} \right)^{n_2 - n_2} \left(\frac{Q_T^2}{2} \right)^{n_1 - n_2} \left(\frac{Q_T^2}{2} \right)^{$$

 $\chi = eBe_p / m_N^3 \approx 0.01 - 1$

It is possible to make a Lorentz Transportation along z-direction

$$\Gamma(n_i, P_{iz}) = \frac{\sqrt{E_i^2 - P_{iz}^2}}{E_i} \Gamma(n_i, P_{iz} = 0)$$

Semi-Classical Theory \Rightarrow **Scaling, Dep. Only on** χ

Contribution at Fixed Final Landau Number

Scaling Law Function of χ , $(n_i - n_f)/n_i$ Prediction Results $n_i \approx 10^4 \implies \text{Results } n_i \approx 10^{12-13} \text{ (B} \sim 10^{15}\text{G})$ Huge Effects of AMM remain even in $\text{ B} \sim 10^{15}\text{G}$

Small
$$\chi$$

Larger $n_i \rightarrow$ Scaling
Total Decay Width
Scaling Relation
(All Semi-Classial Theoryies Show)
3 Variables B, n_i, n_f
 $\Rightarrow 2$ Variables
 $\chi = eBEe_i/m_N^3, (n_i - n_f)/n_i$

Peak position $(n_{\rm i} - n_{\rm f}) / n_{\rm i} \rightarrow 0.3$

Adiabatic Limit

Relative Momentum between Final **Proton** and Pion is Zero,

Same Velocity

$$e_{\pi} = \frac{m_{\pi}}{m_{N} + m_{\pi}} e_{i}, \quad e_{f} = \frac{m_{\pi}}{m_{N} + m_{\pi}} e_{i} \quad \left(e_{i,f} \approx \sqrt{2n_{i,f}}\right)$$
$$\rightarrow \frac{n_{i} - n_{f}}{n_{i}} \approx 0.28 \quad \Leftrightarrow \text{ Semi-Classical}: \frac{n_{i} - n_{f}}{n_{i}} <<1$$

Angular Distribution of Pion Luminocity

Proton Decay Width
$$n_i \gg 1$$

 $p_{iz} = 0$
 $\frac{d\Gamma_{p\pi}(p_{iz} = 0, s_i)}{dq^3} = \frac{1}{e_{\pi}} \sum_{n_f} \Gamma_{p\pi}(n_i, n_f) \delta(e_i - e_f - q_0) \delta(q_z)$
 \downarrow Lorentz Transformation
 $p_{iz} \neq 0$
 $\frac{d\Gamma_{p\pi}(p_{iz}, s_i)}{dq^3} = \frac{1}{e_{\pi}} \frac{e_{iT}}{e_i} \sum_{n_f} \Gamma_{p\pi}(n_i, n_f) \delta(e_i - e_f - q_0) \delta\left(q_z - \frac{e_{\pi}}{e_i} p_z\right)$
Scaling Results with $n_i, n_f \sim 10^4 \Rightarrow$ Results with 10^{12}

Semi-Classical Approximation assume $n_i - n_f \ll n_i$ π has massThis Assumption is wrong

$$\sqrt{n_i} - \sqrt{n_f} > \frac{m_\pi}{m_N + m_\pi} \sqrt{n_i}$$

Total Decay Width

Semi-Classical A.Tokushita and T. Kajino, ApJ. 525, L117 (99).

Luminocity-Distribution of Emitted Photons

 $p \rightarrow p + \pi^0$ $\pi^0 \rightarrow 2 \gamma$

Average over Initial Proton Angle

Distribution

is Spherical

Total Decay Width

$$\Gamma(n_i, \chi; P_{iz} = 0) \propto n_i$$

Semi-Classical A.Tokushita and T. Kajino, ApJ. 525, L117 (99).

$$\Gamma(n_i, \chi; P_{iz} = 0)$$

indep.of n_i

§5 Summary

- π⁰ emission from Proton Transition between two Landau Levels
 n_i, n_f ~ 10⁵ ⇒ B ~ 10¹⁷ G
 AMM effect −1→+1 Dccay widths become 50 100 times larger
- Scaling Law, predicted by the Semi-Classical theory 3 Variables $B, n_i, n_f \Rightarrow 2$ Variables $\chi = eBEe_i/m_N^3$, $(n_i - n_f)/n_i$ $B \sim 10^{17} \text{ G} \Rightarrow B \sim 10^{15} \text{ G}$ (Magnetar) Results with $n_i, n_f \sim 10^4 \Rightarrow$ Results with 10^{12}
 - Angular Dist $\theta_{i} \approx \theta_{f} \approx \theta_{\pi}$

$$\frac{d\Gamma_{p\pi}(n_i, p_{iz})}{dq^3} \alpha \,\delta\!\!\left(q_z - \frac{e_{\pi}}{e_i} \, p_z\right)$$

Pion Energies are distributed in Broad Region

$$\sqrt{n_i} - \sqrt{n_f} > \frac{m_\pi}{m_N + m_\pi} \sqrt{n_i}$$

Semi-Classical Approx. $n_i - n_f \ll n_i$ The Results come from HO overlap Integral

$$\mathcal{M}(n_1, n_2) = \int dx f_{n_1}\left(x + \frac{Q_T}{2}\right) f_{n_2}\left(x - \frac{Q_T}{2}\right) = (2\pi)\mathcal{W}(n_i, n_f)\delta(Q_z)$$

It is a function of $Q_{\rm T}$ and very rapidly change when $n_{\rm i,f} >> 1$

$$\mathcal{W}(n_i, n_f) \propto \frac{1}{\sqrt{n_i}}$$
(Function of χ)

Generally

$$\Gamma(n_i, P_{iz} = 0) = \mathcal{W}(n_i, n_f) \times F(P_{iz} = P_{fz} = Q_z = 0)$$

\Rightarrow Other Particle Productions

 \Rightarrow Magnetic Structure inside Magnetars

HO Overlap Integral

$$\mathcal{M}(n_1, n_2) = \int dx f_{n_1}\left(x + \frac{Q_T}{2}\right) f_{n_2}\left(x - \frac{Q_T}{2}\right) = (2\pi)\mathcal{W}(n_i, n_f)\delta(Q_z)$$

$$\mathcal{W}(n_1, n_2) = \int \frac{Q_z}{2\pi} \int dx f_{n_1} \left(x + \frac{Q_T}{2} \right) f_{n_2} \left(x - \frac{Q_T}{2} \right).$$

In PS-coupling $\Gamma(n_i, n_f)$ does not satisfy Scaling Relation

