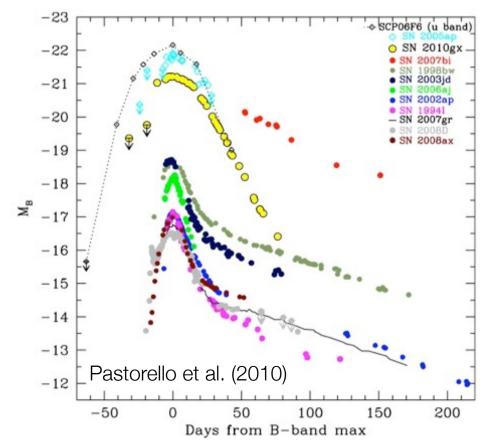
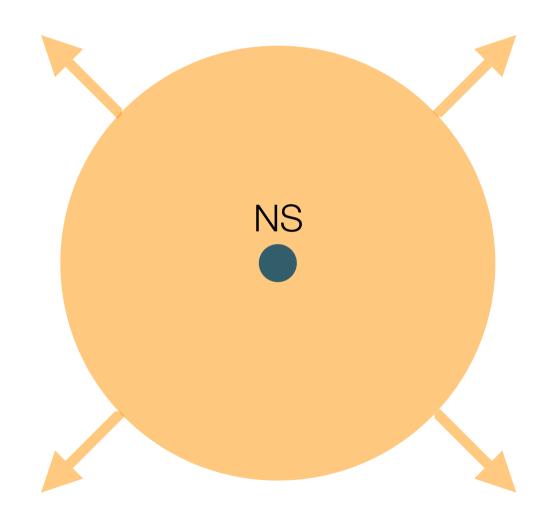
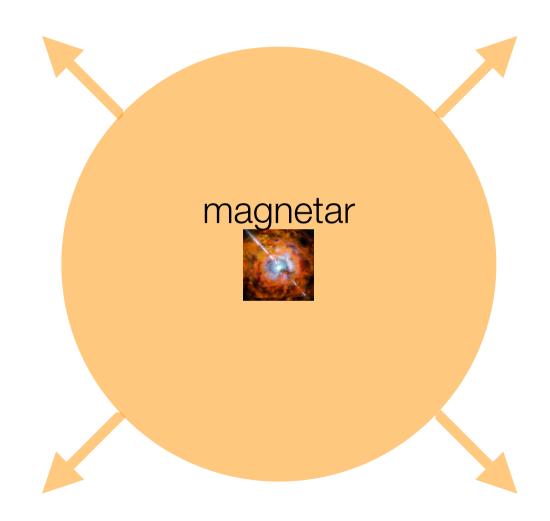
Constraining the ellipticity of magnetars powering superluminous supernovae


Takashi Moriya (NAOJ)

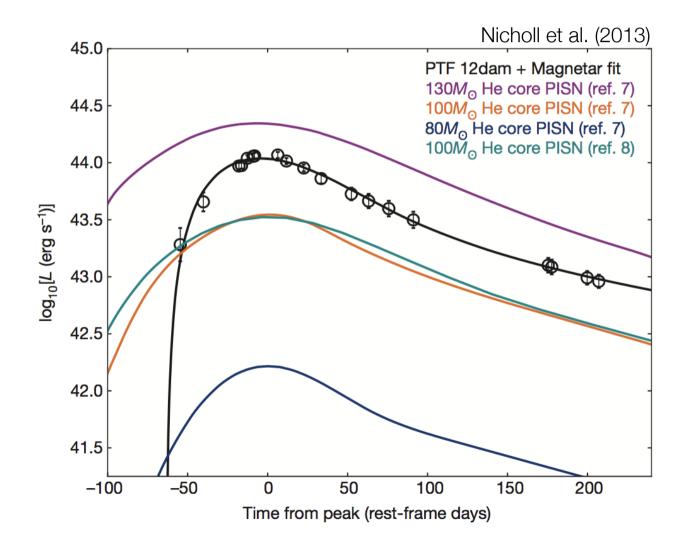

Thomas Tauris (Bonn)

MNRAS, 460, L55 (2016)


Superluminous supernovae (SLSNe)

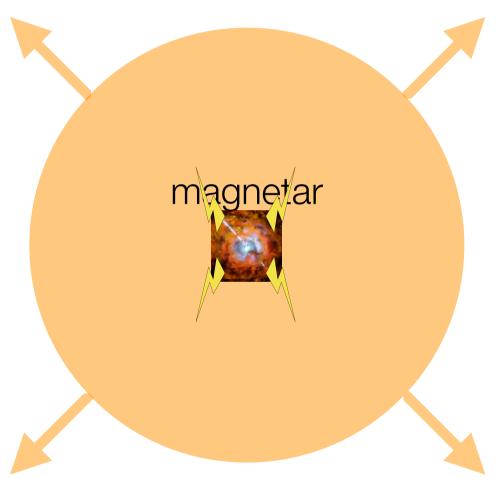
- SNe brighter than ~ -21 mag (or ~ 1e44 erg/s)
- total radiation energy exceeds 1e51 erg
 - usual SNe emit ~ 1e49 erg
 - comparable to kinetic energy of usual SNe

• magnetar

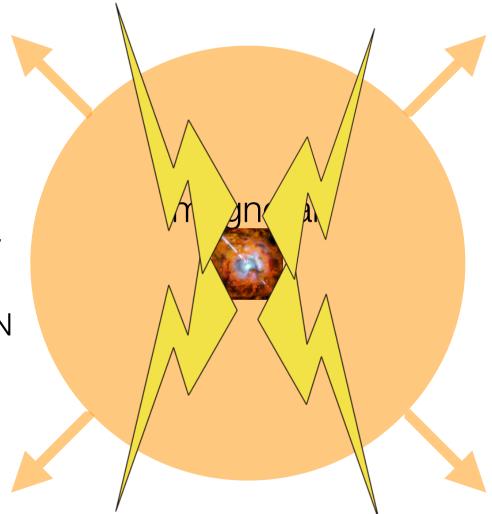


- magnetar
 - neutron star with rapid rotation • $E_{\rm rot} = \frac{1}{2} I_{\rm NS} \Omega^2 \simeq 2 \times 10^{52} \left(\frac{P}{1 \text{ ms}}\right)^{-2}$ erg magnetar strong magnetic field • $t_m = \frac{6I_{\rm NS}c^3}{B_{\rm dipole}^2 R_{\rm NS}^6 \Omega^2} \simeq 5 \left(\frac{B_{\rm dipole}}{10^{14} \ G}\right)^{-2} \left(\frac{P}{1 \ {\rm ms}}\right)^2 \ {\rm days}$

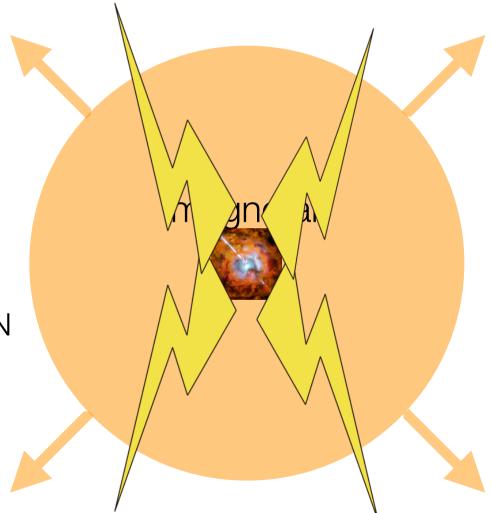
- magnetar
 - neutron star with rapid rotation • $E_{\rm rot} = \frac{1}{2} I_{\rm NS} \Omega^2 \simeq 2 \times 10^{52} \left(\frac{P}{1 \text{ ms}}\right)^{-2}$ erg magnetar strong magnetic field • $t_m = \frac{6I_{\rm NS}c^3}{B_{\rm dipole}^2 R_{\rm NS}^6 \Omega^2} \simeq 5 \left(\frac{B_{\rm dipole}}{10^{14} \ G}\right)^{-2} \left(\frac{P}{1 \ {\rm ms}}\right)^2 \ {\rm days}$


Light curve models

• B = 1e14 G, P = 2.6 ms


NSs are GW sources

- magnetars need to convert rotational energy to thermal energy almost in situ for SLSNe
- if magnetars are highly distorted, GW emission will be dominant way to lose their rotational energy


NSs are GW sources

- magnetars need to convert rotational energy to thermal energy almost in situ for SLSNe
- if magnetars are highly distorted, GW emission will be dominant way to lose their rotational energy
- GW emission will just leave the SN ejecta without heating the ejecta.

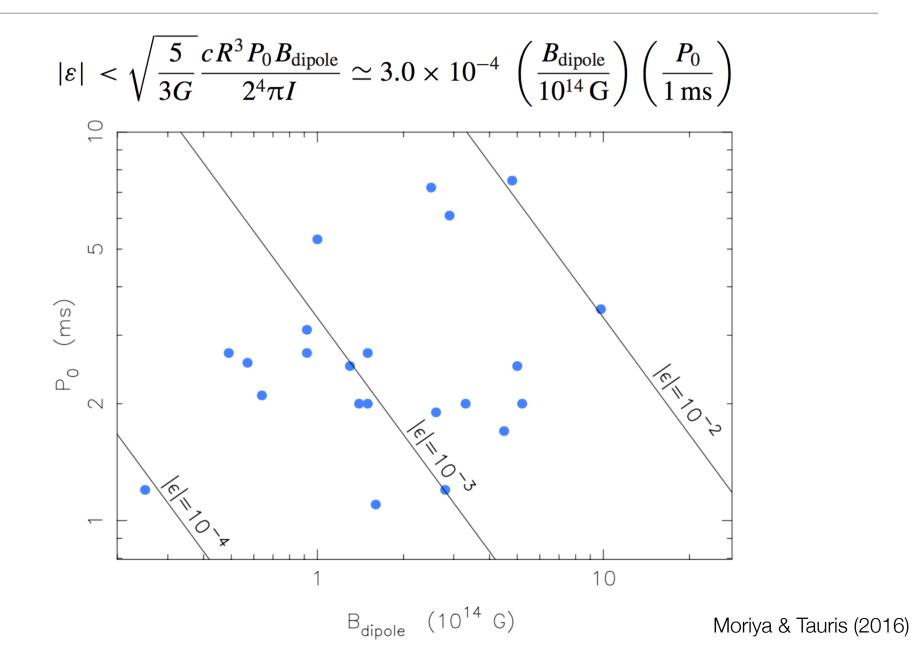
NSs are GW sources

- magnetars need to convert rotational energy to thermal energy almost in situ for SLSNe
- if magnetars are highly distorted, GW emission will be dominant way to lose their rotational energy
- GW emission will just leave the SN ejecta without heating the ejecta.
- magnetars in SLSNe should not be highly distorted!

EM emission vs GW emission

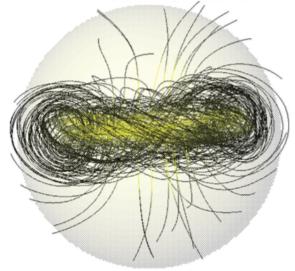
• EM emission timescale (dipole)

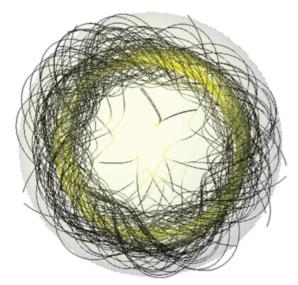
$$\tau_{\rm EM} = \frac{3}{4\pi^2} \frac{Ic^3 P_0^2}{B_{\rm dipole}^2 R^6 \sin^2 \alpha}$$


• GW emission timescale

$$\tau_{\rm GW} = \frac{5}{2^{10}\pi^4} \frac{c^5 P_0^4}{GI\varepsilon^2}$$

• for SLSNe

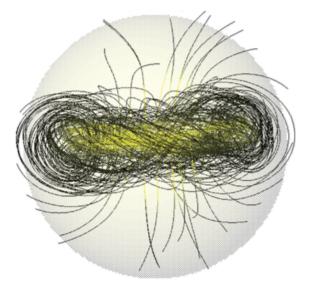

$$\tau_{\rm GW} > \tau_{\rm EM}$$

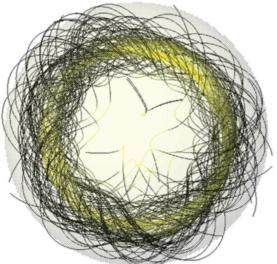

Constraint on magnetar ellipticities for SLSNe

Probable origin of ellipticities: toroidal fields

$$|\varepsilon| \simeq 1.6 \times 10^{-4} (B_{\text{toroidal}} / 10^{16} \text{ G})^2_{\text{Cutler (2002)}}$$
$$|\varepsilon| < \sqrt{\frac{5}{3G}} \frac{cR^3 P_0 B_{\text{dipole}}}{2^4 \pi I} \simeq 3.0 \times 10^{-4} \left(\frac{B_{\text{dipole}}}{10^{14} \text{ G}}\right) \left(\frac{P_0}{1 \text{ ms}}\right)$$
$$B_{\text{toroidal}} \lesssim 1.4 \times 10^{16} \text{ G} \left(\frac{B_{\text{dipole}}}{10^{14} \text{ G}}\right)^{1/2} \left(\frac{P_0}{1 \text{ ms}}\right)^{1/2}$$

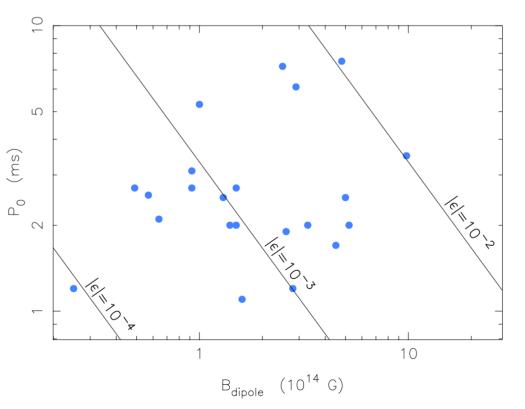
Braithwaite (2009)

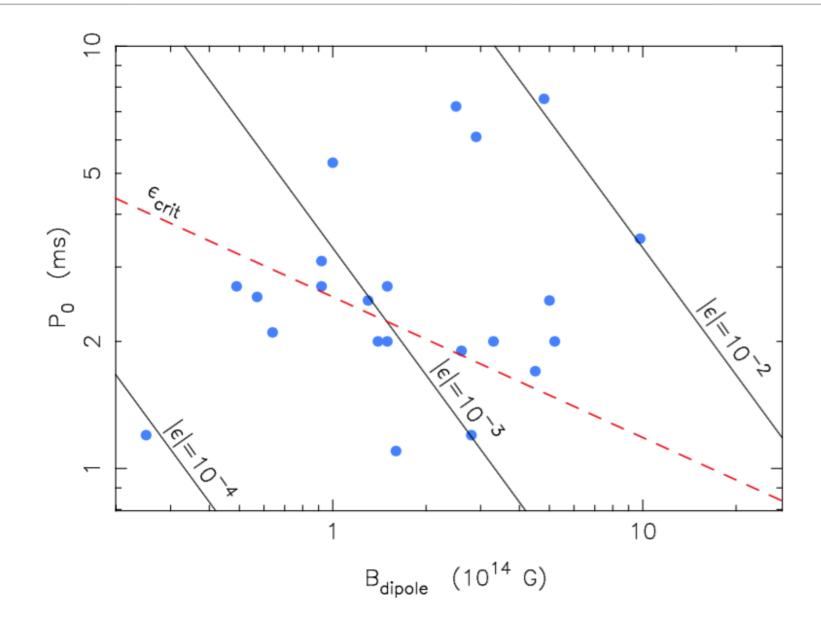

Constraint on toroidal field strengths


SN name	$B_{ m dipole}$ $10^{14} m G$	P ₀ ms	ε 10 ⁻³	$B_{ m toroidal}$ $10^{16} m G$	Reference
SN 2005ap	0.92	3.1	< 0.85	<2.4	Chatzopoulos et al. (2013)
SCP06F6	1.3	2.5	<0.98	<2.5	Chatzopoulos et al. (2013)
SNLS 06D4eu	1.4	2.0	< 0.85	<2.3	Howell et al. (2013)
SN 2007bi	0.92	2.7	< 0.75	<2.2	Chatzopoulos et al. (2013)
SN 2010gx	5.2	2.0	<3.1	<4.5	Inserra et al. (2013)
SN 2010kd	1.5	2.7	<1.2	<2.8	Chatzopoulos et al. (2013)
SN 2010kl	9.8	3.5	<10	<8.2	Bersten et al. (2016)
PTF10hgi	2.5	7.2	<5.4	<5.9	Inserra et al. (2013)
SN 2011ke	4.5	1.7	<2.3	<3.9	Inserra et al. (2013)
SN 2011kf	3.3	2.0	<2.0	<3.6	Inserra et al. (2013)
PTF11rks	4.8	7.5	<11	<8.4	Inserra et al. (2013)
SN 2012il	2.9	6.1	<5.3	<5.9	Inserra et al. (2013)
PTF12dam	0.49	2.7	< 0.39	<1.6	Chen et al. (2015)
CSS121015	1.5	2.0	<0.90	<2.4	Nicholl et al. (2014)
LSQ12dlf	2.6	1.9	<1.5	<3.1	Nicholl et al. (2014)
SSS120810	2.8	1.2	<1.0	<2.6	Nicholl et al. (2014)
SN 2013dg	5.0	2.5	<3.7	<5.0	Nicholl et al. (2014)
iPTF13ajg	1.6	1.1	<0.54	<1.9	Vreeswijk et al. (2014)
iPTF13ehe	0.57	2.55	<0.43	<1.7	Wang et al. (2015)
DES13S2cmm	1.0	5.3	<1.6	<3.2	Papadopoulos et al. (2015)
SN 2015bn	0.64	2.1	<0.40	<1.6	Nicholl et al. (2016)
ASASSN-15lh	0.25	1.2	< 0.090	<0.77	Bersten et al. (2016)

Btoroidal < ~ 1e16 G

Toroidal fields are required for stable poloidal fields


- Bdipole ~ 1e14 G (from LC modeling)
- Btoroidal < ~ 1e16 G (from ellipticities)
- Bdipole/Btoroidal > ~ 0.01
 - still OK (dipole field can be stable)
 - all SLSNe must have stable dipole if they are powered by magnetars
 - a test for the SLSN magnetar model



Summary

- SLSNe may be powered by magnetars
 - Bdipole ~ 1e14 G, P ~ 1 ms
- magnetars must lose their rotational energy as EM emission
 - magnetar ellipticities must be small enough to avoid GW emission
- magnetar ellipticities must be less than ~ 1e-3
 - Btoroidal < ~ 1e16 G
- Bdipole/Btoroidal > ~ 0.01
 - dipole field can be stable
- a test for SLSN magnetar model

