Magnetic Activities of Magnetars and X-ray Observations マグネターの磁気活動とX線観測

Overview of the NS diversity, magnetars, and future projects

Teruaki Enoto

NASA Goddard Space Flight Center RIKEN High Energy Astrophysics Laboratory

> 第2回 DTA シンポジウム 「コンパクト天体の活動性と磁気的性質」

> > 1

Neutron Stars: Lab. for the Fundamental Physics

Dense nuclear matter, strong gravity, rapid rotation, and strong magnetic field

Wide Range of Fundamental Quantities + Surrounding Environment = Diversity of Neutron Star (Zoo)

Astronomically Interesting & Physically Important (for e.g., EoS)

Magnetic Field and Evolution of NSs

Strongly magnetized NSs has been implied in recent studies.

Soft Gamma Repeater (SGR)

Discovered by "Giant Flares" or recurrent burst activities. ~ 5 SGRs

Exceeding the Eddington Luminosity (~10³⁸ erg/s) by ~6 orders of magnitudes
 B > 10¹⁴ G is required to confine a few dozen keV plasma for ~400 sec

Anomalous X-ray Pulsar (AXP)

Discovered as pulsed bright persistent X-ray sources. ~15 AXPs

Associated with SNR

Persistent X-ray Emission

Chandra Image (c)CXO

- Exceeding the Spin-down luminosity by ~2 orders of magnitudes (Lx >> Lsd)

1E 1841-045 (SNR Kes73)

Persistent X-ray Luminosity of SGR/AXP

L_x >> Spin-down E_{sd}, no evidence for a binary companion (e.g., Kaspi+99) Magnetars; Magnetically-powered Pulsars?

"Magnetar Hypothesis"

"SGRs and AXP are ultra-strongly magnetized NSs with B~10¹⁴⁻¹⁵ G powered by their stored magnetic energy in the stellar interior." Thompson & Duncan+95, 96

- 1. SNR association, slow P and large Pdot \Rightarrow Young (τ <100 kyr) & B~10^{14-15} G
- 2. $L_x >> L_{sd}$ by 2-3 orders of mag. \Rightarrow Not rotation-powered pulsars
- 3. No evidence of binary system \Rightarrow Not accretion-powered pulsars
- 4. Marginal "proton" cyclotron resonance \Rightarrow Suggests B > 10¹⁴ G
- 5. Peculiar burst activities ⇒ Magnetic dissipation (e.g., reconnections)??
- 6. Super-Eddington giant flares \Rightarrow B > 10¹⁴ G & suppression of σ

Multi-wavelength Emissions of the Magnetar Class

Discoveries of New Magnetars

Magnetars are a glowing new class of NS: A key to understand NS diversity.

X-ray Outburst of AXP 1E 1547.0-5408 (1)

Known as a fast rotation faint AXP (P~2 sec)

Feature1: Recurrent Bright Short Burst

Duration ~100-500 ms, (Empirically) Two blackbody spectrum (kT ~ 4, 11 keV)

X-ray Outburst of AXP 1E 1547.0-5408 (2)

Known as a fast rotation faint AXP (P~2 sec)

Feature2: Persistent X-ray becomes brighterby 2-3 orders of magnitude.

X-ray Outburst of AXP 1E 1547.0-5408 (3)

Suzaku ToO Observation 2009 January (33 ks)

Hard X-rays were clearly discovered during the magnetar outburst. Follow-up observation confirmed the hard component one year after the outburst.

Feature2: Persistent X-ray becomes brighter by 2-3 orders of magnitude Both components (soft thermal + hard X-rays) become brighter

X-ray Outburst of AXP 1E 1547.0-5408 (4)

Feature3: A frequency derivative jump at the outburst ($\Delta \dot{\nu} / \nu = -0.69 \pm 0.07$) Pulse profile change around the onset of the burst \Rightarrow Hot spot?

Magnetar Outbursts

Surface and Magnetospheric Emission

Magnetospheric hard X-rays were detected from 7 sources (+1 candidate).

- Ratio of soft and hard X-ray luminosities ($\xi = L_h/L_s$) is found to be positively correlated with *B*-field by period *P* and its derivative P_{dot} .
- Photon index of hard X-rays becomes harder toward low *B*-field old sources.

Spectral **EVOLUTION** as a function of *B***-field**.

(e.g., photon-splitting down-cascade in the QED field magnetosphere?)

TE et al., ApJL, 2010

Hard X-ray emission mechanism

Photon Splitting Effect?

No model has not yet explained the observed properties of magnetars.

Observational & theoretical progress is strongly required.

And also other models; Heyl & Hernquist 2007 Trumper+2010 Kuiper+2006

Magnetar Outbursts

Toroidal Magnetic Field

Huge energy reserver is needed inside the magnetars ⇒ Strong toroidal Field inside NSs? (can not be measured by *P*-*P*_{dot})

Evidence for Precession

Prototypical AXP 4U 0142+61 (P=8.69 s, Poloidal field B_d~1.3x10¹⁴ G)

Magnetar Outbursts

Hot spots heated by the internal B-field?

Discoveries of Low-Field Magnetars

Population of hidden magnetars is larger than previously expected?

Summary

- Magnetic field (B~10⁸⁻¹⁵ G) is one of origins of the NS diversity.
 B~10⁸⁻¹⁵ G に及ぶ磁場が中性子星の多様性を作り出すひとつの要因である。
- There is growing evidence that some compact objects are powered by the stored huge magnetic energy with *B*~10¹⁴⁻¹⁵ G.
 10¹⁴⁻¹⁵ Gを超える磁場をエネルギー源とする星の存在が確立しつつある。

Examples:

- Evolution of surface & magnetospheric radiation (Enoto et al., ApJL 2010)
- Toroidal field indicated by NS free precession (Makishima et al., PRL 2014)
- Low-field magnetars with a cyclotron feature (Tiengo et al., Nature, 2013)
- Complementary two X-ray observatories will be launched soon 相補的な2つのX線観測ミッションが 2015, 2016年に打ち上げられる。
 - 2015: ASTRO-H, High resolution spectroscopy + wide-band
 - 2016: NICER, Large effective area + high time resolution.

16/16