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Classical picture of pre-main seqguence evolution
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star shrinks

— central temperature increases
—opacity decreases

—radiative core develops




Classical picture of pre-main seqguence evolution
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stellar age and mass are estimated by comparing :
: observed Test and L with theoretical evolutionary tracks
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Classical PMS evolution may not be accurate

the classical PMS evolution has been called into question
by recent observations:

| o mass anomaly of PMS stars Sl _,
] PMS stars’ masses estimated with the classical evolutionary tracks
are inaccurate up to 50-100% using eclipsing binary systems

% luminosity (age) spread problem Hillenbrand09

“model mass”

Hayashi /
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Luminosity (age) spread problem
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PMS stars’ ages in the same
cluster widely spread (~10Myr)
if the classical PMS evolution is used

If stars in a cluster are almost coeval,
this is a big problem
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pOoSsible solutions:

(Muzerolle+05; Gatti+06,08;

Baraffe+98)

1. observational error

2. long-lasting star formation in a cluster
(Inutsuka+15)

3. classical isochrones are not accurate




Standard picture of star formation

molecular :
cloud core first core second core  main mass (PMS) (MS)
(protostar) accretion pre-main main
phase sequence Sequence
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second core  main mass _ |
(protostar) accretion pre-main main

phase sequence sequence

Configuration of accretion % .
nClassical picture
e.g., Stahler+80 . - ; .
:  gravitational energy (GMM/R)
shock front l
:  supersonic (free-fall) velocity
1
thermalized at stellar surface
: 1
spherical : inefficient radiative cooling
accretion \ : !
protostar ; large entropy is carried

.
---------------------------------------------------------

inefficient radiative cooling
—a large amount of entropy is injected
—star is formed with large radius




Configuration of accretion

second core main mass

(protostar) accretion pre-main main
phase sequence sequence

nClassical picture
e.q., Stahler+80

-

shock front

spherical
accretion

protostar

inefficient radiative cooling
—a large amount of entropy is injected
—star is formed with large radius

. e.q., Machida+10,
sRecent picture Tsukamoto+11,

e.g., Baraffe+09  kratter+10

protostar radiative cooling

efficient radiative cooling
from disk’s and/or stellar surface

—~low-entropy accretion

we revisit the PMS evolution
with the low-entropy accretion



Computational method

sStellar evolution code MESA Paxton+11,13

sStellar structure equations (1D)

accretion is included

or 1 M. mass coordinate
1. continuity oM,  4rr2p

0P GM, . _
2. momentum L Ay (hydrostatic equilibrium)

ol Os - mixing-length theor
3. ener = €nuc — I'— + €ad J J Y

i OM; ot ‘ / amr=1.905
_ oT GM,T dlnT (Cox & Giuli68;
4. temp. gradient - YA 5V ~ d P Henyey+65)
5. composition (5,) - (Zr;-z- Zr’k) + g (PD%) | composition
M, J k
_ X=0.70, £Z=0.02
nuclear reaction




Computational method

sEffect of the low-entropy accretion

o 705 accreting materials’ gravitational
oM,  cme ' TEadd heat injection | energy from infinity to star: |

by accretion

Luce = Z2e
Laga= f GM *M/R* » It
eheating efficiency ¢ (=0-1) : / N
£ is poorly constrained | [Ladd= ¢Lace|  [Lrad= (1—&)Lacc|
by RHD simulations injected radiated away |
! to the star  (+rotation)
& add:L add/ M ) ¢ prot?star

e

uniformly in the entire star 'f-‘ i

edistribute the injected heat : - f _SI /. /,ﬁ
; — . disk
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PMS evolution with low-entropy accretion
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MIHIZOOIMQ

Men=1Mo :
. . . - M=10Molyr |
Comparison with classical evolution 0 X2 0105
=Radius evolution =bvolutionary track
10 < e 1.5 .
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(ebelow 1Ro

e about one order of
kmagnituole smaller radiug

low-entropy accretion —
significantly different from
the classical evolution

esmall luminosity

*ho Hayashi track,

different evolutionary track
results in different estimation of
M, and age




Radius [Ro]

PMS evolution with low-entropy accretion
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stellar radius is determined
by mass and entropy

R T S e oy

(fully convective, hydrostatic
equilibrium, monoatomic ideal gas)
Chandrasekhar67
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MIHIZOOIMQ
Men=1Mo
M=10"Mo/yr |
&0, Xp=2.0x105!

/ (1: adiabatic contraction \

e constant entropy because =0
eshrink due to the mass accretion

(2: deuterium burning
eD+p—3He+5.5MeV  (T>10°K)

—entropy supply

(3: depletion of deuterium

®Mmass accretion overcomes

D-burning

- /
9

accreting material’s entropy
and deuterium content

are important
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Dependence on the deuterium content Xp . 10"Moyr
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& Deuterium content decreases with time after the Big-Bang
¢ It can be different in each star even in the same age

accretion stops
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elarge deuterium content—lots of entropy is generated —expansion
edifferent evolutionary tracks in the high temperature region




Impact on the luminosity spread problem
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{ Estimation of stellar ages and }
masses using the classical
fisochrones is no longer valid }

®isochrones spread widely

—isochrones of different &
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luminosity spread
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Anomaly of the solar surface composition

Our Sun is a peculiar star

(abundant volatile refractory AX/Fe] = [X/Felo - [X/F€lsolar-twins
nthe Sun) | - atvlailes) - 0011 x| . difference between the Sun and solar-twins
0.06 - - - |
IS SR A _ |ethe Sun is
g OO TRV I -abundant in volatile and
% ol s ‘y -scarce in refractory elements
| % | compared to the solar-twins
0.04, 2 edif . ~0.04dex ~10%
scarce  Leoie ] ifference: ~0.04dex ~10%
n the Sun) 0 500 1000 1500 Melendez+09

Condensation temperature [K] | | o
*solar-twins: stars with the similar

to the Sun



Relative mass [Mx]

INnternal structure evolution

m(Classical 1Mo evolution

classical evolution:
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Relative mass [Mx]

Internal structure evolution
with low-entropy accretion

mJow-entropy accretion
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classical evolution:
surface CZ shrinks
after ~20 Myr

¥

‘\Iovv—entropy accretion:

CZ shrinks much faster

esmaller radius
—higher internal temperature
—smaller opacity
—radiative zone can be developed
more easily



Relative mass [Mx]

Internal structure evolution
with low-entropy accretion
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low-entropy acc.: 2.7Myr

e ~10 times faster than the
classical evolution
e shorter than the typical

disk lifetime (~6Myr)




Pollution of stellar surface by planet formation

ethin CZ within the disk lifetime

e metal-poor accretion due to formation of rocky planets
— stellar surface can be polluted to be metal-poor composition

(e.qg., Chambers10,

accreting materials are mixed only in CZ Ramirez+14)

thin rocky
surface m objects
CZ core
metal-poor gas classical evolution: tgisk < tcz
(e.q.,Guillot, Ida+Ormel 14) —pollution to the fully convective star
|s neglrgrble

Planet formatron can aﬁeet the host stars surface Composrtlon ff

Thrs process may be the solutron of
ethe solar/stellar anomaly of composition
e the solar metallicity problem

We derive the condition
IN which this mechanism
occurs (taisk>tez)




Age of CZ shrinkage
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" ¢ given low entropy accreted (£=0-0.02), the solar surface
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We calculated PMS evolutions with the low-entropy accretion and found

(1) stars formed by the low-entropy accretion evolve with the much lower
radius and luminosity than the classical evolution
— affects the estimation of stellar mass and age,
disk evolution, and planet formation

(2) the PMS evolution strongly depends on the heat injection efficiency and

deuterium content

(3) the luminosity spread problem and the solar composition anomaly can be

explained by the low-entropy accretion

(4) multidimensional RHD simulations are needed to determine the accreting

Mmaterials’ entropy

{ {thin
§ {surface
| jcz

rad.
core ;

_.metal-poorgas _ °* ]

rocky |
objects }




