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‘Star Formation Process \

@ : Observations have shown that

0 Low-velocity outflows and high-velocity jets are
ubiquitous

] Circumstellar disk formation in the Class O stage :
(Tobin et al. 2012,2015, Murillo et al. 2013, Codella et al.. 2014,
Lee et al. 2014, Yen et al. 2015) -

] Planet formation in the early stage (?)

- Molecylar Cidud €oré -+

: To understand star and disk formation process,
: we need to clarify

1 Driving mechanism of low-velocity outflows
and high-velocity jets

.

] Circumstellar disk and planet formation

process B Protostar, Circumstellar , Disk,
: Jets

: in collapsing cloud core



Star forms in Gravitationally Collapsing Cloud

O |Is star formation simple ? Spherical symmetry?

0 Magnetic field and rotation cause complexities

» Both are an anisotropic force 5
= Anisotropic structure formation (disk, jet and outflow)

» Both are conserved
= Magnetic flux and angular momentum problem

DQEC

Wirartr 097

I:I Disk formation, outflow and jet driving are
closely related to B and .2

0 We need to understand the star formation
process with B and (2




Star Formation Process can be Divided into Two Stages

i Molecular Cloud

B Core
X l Gas Collapsing Stage  Gas Accretion Stage I
1. Disk formation 2. Bipolar Outflow 3. Protostar Formation 4. Protostellar Jet

\ First Core X
QOutflow

- Fragmentation

: _  Magnetic dissipation - Massive circumstellar disk - Two component flows
- Magnetic Braking

— Protostar Formation Epoch

[C1Gas collapsing stage (before p.s. formation)

.

CIProtostar Formation

CGas accretion stage (after p.s. formation) Protostar



Pathway for Protostar Formation: Gas Collapsing Phase

Larson(1969), Winkler & Newman (1980), Tscharnuter(1987), Masunaga & Inutsuka(2000),
Whitehouse & Bate(2006), Stematellos et al.(2007), Bate (2010), Tomida et al.(2010)




1. Gas Collapsing Phase before the
Protostar Formation

2. Early Gas Accretion Phase ~500
years after the Protostar Formation

3. Long-term Evolution of
Circumstellar Disk with Sink



1. Gas Collapsing Phase before
the Protostar Formation




Gas Collapsing phase: 2D w/ B w/o non-ideal effects radiation
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Gas Collapsing phase: 3D w/ B w/o non-ideal effects w/ radiation

Bate (1998,
2010, 2011)

y[AU]

First core is the
. origin of the rotation !
. supported disk!!

1 With rotation, the first core remains after the protostar formation

1 (the remnant of) the first core is supported by the rotation and becomes to
circumstellar disk

Abstract

rotation rates. In the most extreme case we model, a pre-stellar disc with a mass of 0.22 M
‘and a radius of ~100 au can form in a 1-M, cloud and last several thousand years before a

stellar core is formed. Such large, massive objects may be imaged using the Atacama Large




‘ Gas Collapsing phase: 3D w/ B w/o non-ideal effects w/o radiation H

Without rotation, first core disappears in ~1 yr after the protostar formation
»>Gas behaves adiabatically at n=10™ cm=3= Adiabatic (or first core) formation

> Dissociation of H, at n= 106 cm-3= Rapid collapse again (second collapse)

»Protostar formation= Collapse of the first core remnant= Disappearance of F.C

Machida & Matsumoto’ 11



‘ Gas Collapsing phase: 3D w/ B w/o non-ideal effects w/o radiation H

With rotation, the first core evolves into the rotation supported disk

n [cm-3]
16 18 20 Machida & Matsumoto’ 11
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Gas Collapsing phase: 3D w/ B w/ non-ideal effects w/ radiation

Both non-ideal effect of B and radiation are considered

Just after p.s. formation,
we can see the first
core (remnant) or
nascent disk in density,
temperature, and
velocity profiles

Rotation
supported

“

Color: density

CIThe protostar formation process was successfully simulated
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»Protostar, nascent disk, low-velocity outflow, high-velocity jet were well reproduced

OBut, only 1 years after protostar formation



Recent Study of Gas Collapsing phase

Induction equation

oB
=VX(wxB)—Vx[nVxB

ot Ohmic
+nu(V x B) x B+ na(V x B) ],
Hall Ambipolar

w/ non-ideal effects w/ radiation

Both radiation non-ideal MHD effect of Ohmic, ambipolar and Hall terms are
considered

I:I Tomida et al. (2015): Ohmic + ambipolar diffusion, just before the protostar
: formation epoch, Nested Grid

I:I Tsukamoto et al. (2015): Ohmic + ambipolar diffusion until the protostar formation,
: SPH :

0 Tsukamoto et al. in preparation: Ohmic + ambipolar diffusion + Hall term

......................................................................................................................................................................................................................................



Tomida + 15
Basic Equations (w/o div B cleaning)
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Tomida + 15

Non- |deaI MHD I\/Iodels Flrst Cores

203882, yrs =% [kr /5]

24 ¢

v |

OD: Slow-rotating, vertical inflation by heating from second core

AD: Supported by rotation, non-axisymmetric (Gl), but size is still small



Tomida + 15

Disk Formation af
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Outflows by radiation+shock heating -> magnetic pressure driven jets



Tomida + 15

Force Balance

Ideal MHD OD Only OD+AD
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- ldeal MHD model is essentially not rotating, and is totally
supported by the gas pressure.

« OD model has considerable rotation, but not enough to
support the first core and it is still pressure supported.

« Rotation is dominant, but not by far, in OD+AD model. The
gas pressure is still contributing.



SPH: Non-ldeal (Ohmic + Ambipolar diff.) Radiation MHD
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important role in a further
evolutionary stage
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» G.l. is expected to play an



2. Early Gas Accretion Phase
~500 years after the
Protostar Formation




Gas Accretion phase: 3D w/ B w/o non-ideal effect w/o radiation

COResistive MHD eqs.

I Initial Condd
—= V . ) = 0
Ot * (pv)
a 1
/)%;' - /l( v* Vv)l’ = VP — 4—”8 X (V X B) — /)V(f).
( /"
‘B =
"TI =Vx(exB)+nV~B,. n=n(o,T) /
C
(Barotropic eos + Protostellar Mode

Moleculatllﬂoud core In this study,

O Both protostar (h<0.01AU) and molecular cloud core >10° AU are
spatially resolved

O Cloud evolution was calculated for >500 years after the protostar
formation

O Without Sink

0 With huge computational time (~10 months (wall clock time))
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Magnetic field dissipates in a high density gas region
»>~3 AU (magnetic coupling region): magnetic braking, low-velocity outflow
» ~0.5 <r <3 AU (magnetic decoupling region): non-axisymmetric structure by G.I

»<~0.5 AU (magnetic coupling region): (tower) jet, magnetic braking, MRI (disk surface)



Time variability of Outflow and Jet

log (Mow/Mg)

log (Eou /J)

Episodic Jets cause Episodic Accretion
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370 AU

Jets, Outflow, Disk and Protostar
Schematic viewmp

0 High-velocity jet is driven near the protostar
O Low-velocity outflow is driven by the outer disk region==«_

0 High-velocity jet is enclosed by the low-velocity

outflow
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3. Long-term Evolution of
Circumstellar Disk with Sink




. We cannot calculate this phase for a long time
S| A k ’? W;thajt cheating (sink) .

Gas Accretion Stage

Gas Collapsing Stage *

< >

Molecular ) F.C. formation P.S. formation Disk formation?
G

Class O Class | Class i

C1To calculate the disk formation process
»serious calculation without sink= an impracticably huge CPU time (power) IS required ’;‘\."

»easy calculation with sink= we can easily acquire outcomes! /
(However, we donot know whether the outcomes are correct or not)

C1Sink method (there are many prescriptions)

A high-density gas region requires a short time step which
impedes a long time disk evolution

» a high density region is masked and is removed

» an inner boundary is imposed around the protostar




Serious Caution?

Machida, Inutsuka, Matsumoto (2014)

CIStarting from the same initial condition, the disk formation was calculated with different sink sizes

COResults dramatically and qualitatively differ with different sink treatment (or sink radius)

C1Sink radius of <1AU and spatial resolution of <0.1 AU are inevitably needed
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FlfSt Adlabath COfe Magnetcally Ihactive Rex

Long-term evolution of disk o v, s ‘y
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Machida, Inutsuka, Matsumoto (2014)
See also Dapp & Basu ‘10, 12



Exponential Disk Growth

The disk rapidly grows as the infalling envelope dissipates.
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“ Evolution of Outflow H

(a) t=5.11y,c=7188 [yr]

Magnetic Field Line

Initizl Cloud Radli us

(b) 1=6.51,c=0141 [yr]

Protoatellar Outflowr |
|

(c) 1=7.T1c=10678 [yr]  (d) t=16.6ty c=23238 [yr]

\ll

Circumstellar Disc
|

0 As the disk grows, the outflow also grows

0 As the infalling envelopes dissipates, the
outflow weakens and finally disappears
A

Star forming cloud
(Molecular cloud core)
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. - eye stage= 1088316960
Gravitational Instability and

Planet Formation

Disk gravitational instability without sink

» Fragmentation occurs in the disk

» But, fragments falls onto the protostar

Gravitational instability inevitably
occurs during the early phase of
star formation

B 3 : 0.0 05 .. 1.0 15
10 x [AU] Machida & Nakamura’' 15
Cloud core

To M.S.

Gas collapsing phase
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[0 The star formation process from prestellar cloud until protostar and circumstellar
disk formation have been investigated using numerical simulations

] Recent theoretical studies indicates that

» The first core forms before the protostar formation and evolves into the
protostar formation: the first core is the origin of circumstellar disk

» The low-velocity outflow is driven by the first core or outer disk region, while
jets are driven near the protostar: the magnetic dissipation region causes two
distinct flows

» The dissipation of magnetic field occurs in the first core or nascent disk and
alleviates the angular momentum transfer due to magnetic braking

» To accurately investigate the disk formation, sink radius of < 1AU and spatial
resolution of ~0.1AU are inevitably needed

» The size of rotation disk is within ~10 AU during the Class 0 stage, while the
disk size exponentially grows as the infalling envelope dissipates and reaches
~100 AU

» Gravitational instability occurs and tends to form planetary mass objects
during the (early) gas accretion phase



