2015.06.02 3rd DTA Symposium The Origins of Planetary Systems: from the Current View to New Horizons

ELECTRON HEATING AND SUPPRESSION OF MAGNETOROTATIONAL TURBULENCE IN PROTOPLANETARY DISKS

Shoji Mori^{1,2},

Satoshi Okuzumi¹, and Shu-ichiro Inutsuka²

¹ Tokyo Institute of Technology ² Nagoya University

Okuzumi & Inutsuka (2015) ApJ 800, 47 Mori & Okuzumi, submitted; arXiv# 1505.04896

INTRODUCTION

Disk turbulence affects

angular momentum transport and dust dynamics

Magnetorotational instability (MRI) is

- a possible source of the turbulence
 - Interplay between ionized gas and magnetic fields

Ionization Fraction

MRI growth requires sufficient ionization fraction

High ionization fraction

- → MRI grows and generates turbulence
- Low ionization fraction
- → MRI is stabilized by magnetic dissipation

New Concept: Electron Heating (EH) by MRI

MRI turbulence generates strong electric fields which can heat electrons (Electron Heating; Inutsuka & Sano 2005)

Cosmic rav

Ionization

Sticking

lons

Neutral gas

Dust Grains

e

X-rav

Heated electrons stick to grains.

→ Ionization fraction decreases (Okuzumi & Inutsuka 2015)

→ Electron heating can suppress MRI turbulence

The effect of electron heating on MRI turbulence in PPDs is unknown

We investigate

WHERE the electron heating occurs and HOW this effect suppresses MRI turbulence

MODEL & METHOD

How to know whether EH occurs and affects MRI turbulence

Current—Field relation including electron heating (Okuzumi & Inutsuka 2015)

MRI has an upper limit of current (Muranushi et al. 2012)

Ohmic dissipation stabilizes MRI (Magnetic Reynolds # R_m < 1)

When MRI grows from E=0, current decreases and Ohmic dissipation occurs

Current Density Model & Disk Model

We calculate the *J*-*E* relation in the following steps:

Disk Model

- MMSN
- Temperature: optically thin
- Midplane β (:= $P_{\text{gas}}/P_{\text{mag}}$) = 1000
- Dust grain : radius = 0.1µm, material density = 3g/cm³
- Dust-to-gas ratio $f_{dg} = 0.01$

Determination of Turbulent State

We determine the turbulent state as follows:

E-Heating Zone

How to Estimate Turbulent Strength a

- Shakura-Sunyaev α parameter (Shakura & Sunyaev 1973)
- Scaling relation between a and J_{sat}/J_{max}
 from Ampere's law, Maxwell stress,
 and simulation results (Sano et al. 2004)

$$\alpha \approx 0.2 \left(\frac{\beta_c}{10^3}\right)^{-1} \left(\frac{J_{\text{sat}}}{J_{\text{max}}}\right)^2 \exp\left(\frac{z^2}{2H^2}\right)$$

(Mori & Okuzumi, submitted)

α in dead zone = 0

```
We plot a_{mid} (: midplane a)
in the same disk model
```

Assumption : J is saturated at $R_{\rm m} = 1$ **J**_{max} Current Density J J_{sat} Electric Field E

Suppression of MRI Turbulence

*a*_{mid} (: midplane α) is decreased by more than two orders of magnitude

DISCUSSION

Discussion: Secular GI in HL Tau

HL Tau observed by ALMA

- Multiple rings
- Widths are typically ~ 10 AU

Secular Gravitational Instability (Youdin 2011)

- Dust concentration mediated by gas friction with GI

Takahashi & Inutsuka 2014

- did linear analysis that consistently treats gas and dust
- found most unstable wavelength is ~ 10 AU at ~ 100 AU

→ SGI may explain HL Tau's multiple ring structure

Effect of Electron Heating

The SGI condition (Takahashi & Inutsuka 2014):

 f_{dg} : Dust-to-Gas ratio η : Pressure/Gravity Q: Toomre's Q value → Weak turbulence is needed !

- Strong turbulence diffuses dust region

Electron heating can suppress MRI turbulence far from the star

→ Electron Heating causes SGI ??

Test Calculation: Model

Disk model

```
Midplane plasma beta = 1000
```

Stellar Mass = $1.2 M_{\odot}$ (White & Hillenbrand 2004)

(Steady) accretion rate = $6 \times 10^{-6} M_{\odot}/yr$ (Hayashi et al. 1993)

Surface density:

$$\Sigma(r) = \frac{M}{3\pi\alpha_{\text{active}}c_sH} = 4 \times 10^3 \left(\frac{r}{1\text{AU}}\right)^{-1} \text{ g/cm}^2$$

$$\alpha_{\text{active}} = 0.2$$

Dust grain: radius = 1µm
Dust-to-gas ratio $f_{\text{dg}} = 0.1$
Temperature: optically thin

Test Calculation: Result

We investigated where **electron heating** affects MRI turbulence. We found **e-heating zone** extends out to 80 AU in MMSN with abundant submicron grains.

We also estimated the MRI turbulent strength and found electron heating can **suppresses** the MRI turbulence.

Suppression of turbulence may cause **secular GI** which may explain HL Tau's multiple ring structure.