Analytical Formulas of Molecular Ion Abundances and N_2H^+ Ring in Protoplanetary Disks

ApJ in press http://arxiv.org/abs/1505.07550

Yuri Aikawa (Center for Computer Sciences, Univ. of Tsukuba) Kenji Furuya (JSPS fellow, Leiden Observatory) Hideko Nomura (Titech) Chunhua Qi (CfA)

N_2H^+ ring

Anti-correlation of CO and N_2H^+

 $CO + N_2H^+ \rightarrow HCO^+ + N_2$

→ N_2H^+ ring as a probe of CO snow line

★But, the sublimation temperature of N₂ and CO are similar. → Why is N₂H⁺ abundant outside CO (N₂) snow line?

This Work

- 1. Numerical calculation of disk chemistry
- 2. Derive analytical formulae of N_2H^+ , HCO⁺, H_3^+ abundances \rightarrow Good agreement with numerical calculation
- 3. Dependence on ionization rate

- T Tauri Disk model (Nomura et al. 2005; 2007)
 - M_{disk}=0.017M_{sun}
 - T_{*}=4000 K
 - $L_x = 10^{30} \text{ erg s}^{-1}$
 - L_{UV} =10³¹ erg s⁻¹

- Chemical model (Furuya &YA 2014)
 - Gas + Grain-surface reactions
 - shielding of H_2 , HD, CO and N_2
 - Ionization X-ray
 - cosmic-ray
 radio-active

Analytical Formulas

Density, Temperature, ionization rate, CO&N2 abundances $\Rightarrow N_2H^+$, HCO⁺, H₃⁺, e abundances

ex
$$x(N_2H^+) = \frac{k_1x(H_3^+)x(N_2)}{k_2x(e) + k_3x(CO)}$$

$$\begin{cases} H_3^+ + N_2 \rightarrow N_2H^+ + H_2 \\ N_2H^+ + e \rightarrow NH + N \text{ or } N_2 + H \\ N_2H^+ + CO \rightarrow N_2 + HCO + \end{cases}$$

Analytical Formulas

Density, Temperature, ionization rate, CO&N2 abundances $\Rightarrow N_2H^+$, HCO⁺, H₃⁺, e abundances

ex
$$x(N_2H^+) = \frac{k_1 x(H_3^+) x(N_2)}{k_2 x(e) + k_3 x(CO)}$$

Analytical formulas agree well with the full network results.

Analytical Model

If CO and N₂ abundances (gas + ice) are constant

Analytical Model

If CO and N₂ abundances (gas + ice) are constant

Dependence on ionization rate

Ionization source in disk: X-ray Cosmic Ray radioactive nuclei

Cosmic ray is the dominant ionization source in the midplane, but could be scattered by stellar winds. (Glassgold et al, 1997; Aikawa et al, 1999; Cleevs et al, 2014)

Summary

- 1. Numerical calculation of disk chemistry
 - Outside the CO snow line, N_2H^+ is abundant in layers with CO conversion to less volatile species
- 2. Derive analytical formulae of N₂H⁺, HCO⁺, H₃⁺ abundances
 Good agreement with numerical calculation
 N₂H⁺ abundance is maximized when CO/e ~3000
- 3. Dependence on ionization rate
 - $N_2 H^+$ column density declines by ${\sim}100$ w/o cosmic-ray