3rd DTA Symposium The Origins of Planetary Systems: from the Current View to New Horizons June 1 - June 4, 2015, NAOJ, Tokyo

Masashi Omiya

Extrasolar Planet Detection Project, NAOJ, ABC

Occurrence rate of giant planets around massive stars

- 1. Introduction : Dependence on stellar mass
- 2. Precise Radial Velocity Survey of Massive stars
- 3. Occurrence Rates of giant planets

Massive stars → Giant planets → Occurrence rate

Dependence on stellar mass

Dependence of Planetary systems

- Occurrence rate of giant planets
 - Theory : Peak at 3M_{Sun}
 - Obs. : Peak at $2M_{Sun}$

Semi-major axis log (a/1AU)

- Type-II migration and stellar mass
 - Theory : inward
 - Obs. : further

Stellar & Planetary mass

Precise Radial Velocity Survey PRVS

Precise RV Survey of 3~4 M_{Sun} giant stars

 Okayama Astronomical Observatory, OAO
 Check planets with < 3 AU and > 3~5 M_{Jupiter}

- Scientific Goals
 - To estimate an occurrence rate of planets
 - To verify the **Planet Desert** with $>3M_{Sun}$ stars

Sample stars of PRVS • Number: **70 GK giants** -0.6 < B - V < 1.0 $-1.5 < M_{v} < -0.1$ -6 < V mag. < 7.1 $\mathbf{3M}$ $-\delta > -25$ 3.00M Exclude followings 2.00M~ Binaries .50M Variable stars Luminosi (log L/L_{Su} Our sample Sample at EAPS-Net L Z = 0.019 [Fe/H] = -0.02Effective temperature (log T_{eff}) D.60M

Observation @ OAO

- HIDES/OAO188cm – High Dispersion Echelle Spectrograph
- Period: 2010.1-2013.1
 Long term RV monitoring!
- Observation setting
 - Slit mode or fiber-feed mode
 - $-R=\lambda/\Delta\lambda\sim65,000 \text{ or } 50,000$
 - 3750-7500Å
 - I2 absorption cell
 - -SN > 100 / pixel

Properties of samples

- Stellar metallicity from spectra
 [Fe/H]=-0.1-0.3 → NO trend
- Stellar mass from evolutionally tracks

–
$$\sim$$
3-4M_{Sur}

Completeness of our PRVS

- Sample: 89 stars in total
 - This survey : 41 stars
 - Okayama project : 42 stars
 - Planet: 3.1 M_{Sun} @ 3.9AU (Sato+12)
 - Brawn dwarf: 3.0 M_{Sun} (Sato+12)
 - Planet candidates: 3.1-3.3 M_{Sun}
 - Korean-Japanese planet search program : 6 stars
 - Brown dwarf: 3.9 M_{Sun} (Omiya+09)

Completeness of our PRVS

Occurrence rates of giant planets

- Occurrence rates of giant planets with semimajor axis <3AU decrease with increasing stellar mass in >2.0M_{sun} stars.
 - Our result is consistent with results of Reffert et al. 2015.
 - Long period planets may be fruitful around massive stars.
 - NOTICE: less massive giant planets with $< 3M_{Jupiter}$ cannot be detected around massive stars.

Summary

- Radial Velocity Survey of 3-4 M_{Sun} stars
 - Check planets with < 3 AU and > $3-5 M_{Jupiter}$
 - ->10 RV observations for 4 years
 - Many stars with a long term RV variation
 Long period planets are fruitful ?
- Occurrence rate of giant planets around massive stars

NO GIANT PLANETS? with >3M_{Jupiter} and <3AU