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Figure 4. J - (∼1.2 µm), H- (∼1.6 µm), Ks- (∼2.2 µm), and L′-band (∼ 3.8 µm) images of the newly discovered exoplanet, GJ 504b. The four top panels show
images reduced with the LOCI pipeline ((a) J, (b) H, (c) Ks, and (d) L′). The corresponding signal-to-noise maps are shown on the four bottom panels ((e) J, (f) H,
(g) Ks, and (h) L′), in which the planet is detected with signal-to-noise ratios of 18.4, 9.0, 4.6, and 8.0, respectively. All signal-to-noise maps are shown at a stretch of
[–5, 5]. In all panels, the star is located approximately in the lower left corner. North is up and east is left.

(a) (b)

Figure 5. Discovery images of the exoplanet GJ 504b. The central 6′′ × 6′′ of two different high-contrast images were overlaid for this false color-composite image:
orange represents H band (∼1.6 µm; Subaru/HiCIAO; 2011 May 22), and blue represents J band (∼1.2 µm; Subaru/HiCIAO; 2012 April 12). The J-band image
was rotated by 0.◦9 to compensate for the planet’s observed orbital motion (cf. Figure 7). Panel (a) shows the intensity after suppressing flux from the central star.
Panel (b) shows the associated signal-to-noise ratio (∼9 in H; ∼18 in J). The orbital radius of Neptune (∼30 AU) is shown for comparison with our own solar system.
The planet GJ 504b is clearly visible as a white spot at a projected distance of 43.5 AU from the star GJ 504. The white color implies that the planet signal is persistent
in both observations, setting it apart from the uncorrelated residual noise in each of the constituent images.
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    Gas giant planets 
○Direct imaging of the exoplanet

Gas giant planets are observed 
far from central stars. 

 (M~10MJ, >20AU)

It is difficult to explain the 
formation of such gas giant planets 
by the core accretion model.

Protopranetary disks are massive during its early formation 
(Mdisk & M⇤)

○Numerical simulations

(cf. Inutsuka et .al. 2010,

 Vorobyov and Basu2010)

Fragmentation of the disks due to 
gravitational instability is candidate for the 
formation process of gas giant planets.

Kuzuhara et. al. 2013



When fragmentation occurs?
Toomre’s Q parameter

⇒Spiral arms 

Stabilization

1 . Q . 2

Angular momentum transfer 

due to the gravitational torque

⇒gas accretion 

●

Protoplanetary disk

Spiral arm

(Takahara 1976, 1978, Iye 1978)
Global Stability Analysis

We need the condition for the fragmentation due to the 
gravitational instability to overtake the stabilizing effect.
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Local Stability Analysis
Q < 1⇒ gravitationally unstable 

●

●

(Toomre 1969)



(Gammie 2001, Rice et al.  2005, 2014, Meru and Bate2012 )

t
cool

= ���1

Previous works
Gammie's criterion

dE

dt
= � E

t
cool

� < �crit ⇠ 30 (Meru and Bate 2012)

Numerical simulation of the self-gravitating disks

Conditions for the fragmentation given by previous works are

Q ~ 1 and  cooling is fast enough.

Radiative cooling is modeled with parameter β

The fragmentation occurs when 

Gammie 2001

rad



The results of some numerical simulations are 
inconsistent with Gammie's criterion.

Tsukamoto et al. 2015 : 	


β < βcrit , Fragmentation does not occur.
Machida et al. 2010 : 

adiabatic (β = ∞), Fragmentation occurs

The criterion of the cooling time

 is not always correct.

Validity of Gammie's criterion

In this work, we perform the numerical simulations of 
the self-gravitating protoplanetary disks to investigate 
the realistic criterion for the fragmentation.

Tsukamoto et al. 2015

●

●
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ii Chapter 1 Condition for the fragmentation of disks

1.1.1 Basic equations

We solve the two-dimensional hydrodynamic equations including self-gravity:

∂Σ

∂t
+∇ · (Σv) = 0, (1.1)

Σ

(
∂v

∂t
+ v ·∇v

)
= −∇P − Σ∇Φ, (1.2)

∂E

∂t
+∇ · (Ev) = −P∇ · v − ΛC, (1.3)

where Σ is surface density, v is velocity, E is internal energy per unit area, P is the vertically

integrated pressure, Φ is the gravitational potential, ΛC is the cooling rate per unit area. We

calculate Φ from the thin disk approximation. We assume an ideal gas equation of state,

P = (γ − 1)E, (1.4)

where γ is the ratio of specific heat. We adopt γ = 5/3 in this calculation. The temperature

is given by

T =
µmH

kB

P

Σ
, (1.5)

where µ is the mean molecular weight, kB is the Boltzmann constant and mH is hydrogen

mass. Here we adopt µ = 2.34. The cooling rate ΛC is modeled as follows (Hubeny, 1990;

Menou & Goodman, 2004);

ΛC =
8

3
σ(T 4 − T 4

ext)
τ

1
4τ

2 + 1√
3
τ + 2

3

(1.6)

where σ is the Stefan-Boltzmann constant, Text is the equilibrium temperature due to the

irradiation from the central star, and τ = κRΣ is the optical depth of the disk. The Rosseland

mean opacity κR is given by

κR = κ10

(
T

10[K]

)2

[cm2g−1] (1.7)

This modeling approximates to the result of Semenov et al. (2003) in T ! 200 K, and almost

all temperature of the disk is smaller than 200 K. We assume Text as follows (cf. Chiang &

Goldreich, 1997);

Text = max

[
T100[K]

(
r

100[AU]

)−3/7

, 10[K]

]
. (1.8)

1.1.2 Numerical procedure and Initial conditions

We use two-dimensional polar grid (r,φ). The inner and outer boundary is given by r =

Rin, 1000[AU], respectively. Open boundary conditions are used at the inner and outer

boundary. The grid is covered with 512 and 1024 cells along the radial and azimuthal

directions, respectively. We perform our calculations with a logarithmic radial spacing. A

central star mass is M∗ = 0.5M⊙ and we take into account the gravity of the central star.

-

(Hubeny 1990)
Optical depth
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Result: No fragmentation

The disk does 

not fragment.

Mdisk = 0.28M�0.34

We test the criterion 
given by the previous 
works

t
cool

= ���1

T ∼ Text (1)

Q̄ =
cs(Text)Ωepi

πGΣini
(2)

Q̄ ! 1 (3)

Q̄ " 2 (4)

Q ! 0.6 (5)

τ (6)

β (7)

Qcrit ∼ 0.6 (8)

< 30Ω−1 (9)

1

Spiral arms are formed 

due to gravitational 

instability. 



Cooling time in the spiral arm
t=6285 yr
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4.2.2 The structures of the spiral arms

We perform the detail analysis of spiral arms to investigate the condition for the fragmenta-

tion of the spiral arms. Figure 4.5 shows the structure of the spiral arm at 4285 yr for model

1. This spiral arm collapses and a fragment is formed at ∼ 5× 103 yr (Figure 4.2). The left

top panel of Figure 4.5 shows the spiral arm that we focus on. The color scale shows the

surface density. The large green squares show the centers of the spiral arm and the small

green squares show the edge of the spiral arm. The centers of the spiral arm are given to

follow the peak of the surface density. The separation between the large green points is 0.1r.

The edge of the spiral is defined as the region where the surface density is 0.3 times the

central surface density. The other panels in Figure 4.5 shows the distribution of the physical

values along the spiral arm. The horizontal axis s is the distance along the spiral arm. The

origin of the s is the large green point whose radius is smallest. The right panel of the top

row shows the distributions of the surface density and the velocity along the spiral at the

center of the spiral. The left panel of the second row shows the width of the spiral arm

and the scale height cs/Ω evaluated at the center of the spiral. The width of the spiral is

comparable to the scale height. The right panel of the second row shows the line mass of

the spiral arm. The line mass of the spiral arm is approximately given by c2s/G. Since the

line mass is smaller than the critical line mass 2c2s/G, the spiral is supported by the pressure

against the self-gravity in the direction perpendicular to the spiral arm. The left panel of

the third row shows the pitch angle of the spiral arm and the velocity along the spiral arm

subtracted the azimuthal averaged rotation velocity. The right panel of the third row shows

the distribution of the Toomre’s Q parameter at the center of the spiral arm. The minimum

value of Q is about 0.5. The left panel of the bottom row shows the normalized net cooling

time βnet, the normalized cooling time βcooling and the optical depth τ . the normalized net

cooling time βnet and the normalized cooling time βcooling are defined as follows;

βnet =
E

ΛC
Ω, (4.13)

βcooling = EΩ
3
(

1
4τ

2 + 1√
3
τ + 2

3

)

8σT 4τ
. (4.14)

The right panel of the bottom row shows the epicycle frequency, angular frequency, and the

Kepler frequency estimated from the central star mass
√
GM∗/r3.

4.2.3 Condition of the fragmentation of the spiral arms

Figure 4.6 shows the radial distribution of the azimuthal averaged surface density, tempera-

ture, angular frequency and Toomre’s Q parameter. In the model 5, no fragment is formed.

Thus the structures are smooth compered with the model 1.

Figure 4.7 shows the structure of the spiral arm in the model 5. The width of the spiral

arm is larger than the scale height. The line mass is comparable to the c2s/G. The minimum

value of Q is ∼ 0.8.
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In the spiral arm, is satisfied,
but the disk does not fragment.



Result: Fragmentation 

Spiral arms fragment.

What is the difference between these two results?
We focus on the Q parameter in the spiral arms.

Mdisk = 0.28M�0.38

Spiral arms are formed 

due to gravitational 
instability. 



Q parameter in the spiral arms

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 0  20  40  60  80  100  120

Q

s [AU]

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

 0  50  100  150  200  250

Q

s [AU]

No fragmentation 

Fragmentation 
Mdisk = 0.28M�0.38

Mdisk = 0.28M�0.34



Q parameter in the spiral arms

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 0  20  40  60  80  100  120

Q

s [AU]

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

 0  50  100  150  200  250

Q

s [AU]

No fragmentation 

Fragmentation 
Mdisk = 0.28M�0.38

Mdisk = 0.28M�0.34

Q=0.6

T ∼ Text (1)

Q̄ =
cs(Text)Ωepi

πGΣini
(2)

Q̄ ! 1 (3)

Q̄ " 2 (4)

Q ! 0.6 (5)

1

Condition for fragmentation: 



Condition for disk fragmentation

0 1 2 3 4 5 6 7
-5
0
5
10
15
20
25
30

kL

[�
/(L

/c
s)
]2 Q=1

Q=0.6

Q=0.4

Dispersion relation

Chapter 1 Condition of the fragmentation of disks xiii

of the model 1 because the disk mass of the model 14 (∼ M∗) is larger than the disk mass

of the model 1 (∼ 0.5).

Figure 1.9 show the spiral structure of the model 14 at t=12427 years. The structure is

different from the spiral structure of the model1. The width of the spiral arm is large and

the amplitude of surface density of the spiral is small. Thus we define the edge of the spiral

as the region where the surface density is 0.85 times peak surface density. The width of the

spiral arm is larger than 20 AU since the temperature is high and the scale height is large.

The line mass of the spiral arm is comparable to c2s/G and the Q value at the center of the

spiral is larger than 0.75. Thus the result that this spiral does not fragment is consistent

our criterion for the fragmentation Q ! 0.6. Since the temperature of the spiral is large, the

cooling rate is also large. As the result, βcooling ∼ βnet ! 3 in satisfied in the spiral arm. This

result also suggests that the normalized cooling time itself is not related to the condition of

the fragmentation.

1.2.6 Inner radius

In the simulations performed in this chapter, the surface density of the inner region decreases

quickly after the calculations start. Thus results of our simulations are affected by the

artificial inner boundary. The fragmentation does not occur if the inner radius is large

(model 6). In this case, the spiral arms in model 6 do not satisfy the condition of the

fragmentation. Figure 1.10 shows the structures of the spiral arm for model 6. Our condition

for the fragmentation is not affected by the inner radius and inner boundary condition.

1.2.7 Softening length

Since we use the tow-dimensional numerical simulation code, we do not calculate the thick-

ness of the disk. The thickness of the disk affects the self-gravity of the disk. We model the

effect of the thickness of the disk by using the softening length of the self-gravity. The effect

of the self-gravity decreases with increasing the softening length. In the case that we adopt

the softening length 0.012r, the critical Q value for the fragmentation is ∼ 0.6, as discussed

so far. To investigate the dependence on the softening length, we perform the calculations

for the softening length 0.03r (model 15, 16). The results of these calculations indicate that

the spirals are difficult to fragment in the case where the softening length is large. Figure

1.11 shows the structures of the spiral arm that does not fragment. Although the minimum

value of Q is less than 0.6, the spiral does not fragment. Figure 1.12 shows the structures of

the spiral arm that does not fragment. In this case, the minimum value of Q is about 0.2.

The critical Q value for the fragmentation decreases with increasing the softening length.

In this section, we investigate the effect of the thickness of the disks on the conditions for the

fragmentation by using the softening length. The softening length, however, cannot mimic

the effect of the thickness of the disk. Thus we need the three-dimensional simulation to

evaluate the exact value of the critical Q for the fragmentation.

xxiv Appendix A Filament fragmentation

Figure A.2: Dispersion relation of the flattened ring with f = l = 1. The ring is unstable in

the case ω̃2 < 0.

where L0, L−1 are modified Struve functions. In this case, we obtain the dispersion relation

as follows;

ω2 = c2sk
2 − πGML[K0(kR)L−1(kR) +K1(kR)L0(kR)]k2 + Ω2

epi (A.28)

We define the normalized frequency and wavenumber as follows;

ω̃ =
2R

cs
ω, (A.29)

k̃ = 2Rk. (A.30)

Then, normalized dispersion relation is given by

ω̃2 = k̃2 − πGML

c2s
[K0(k̃/2)L−1(k̃/2) +K1(k̃/2)L0(k̃/2)]k̃

2 +
4R2Ω2

epi

c2s
(A.31)

We define two parameters

f ≡ GML

c2s
, (A.32)

l ≡ 2RΩepi

cs
. (A.33)

Then, we can rewrite normalized dispersion relation

ω̃2 = k̃2 − πf [K0(k̃/2)L−1(k̃/2) +K1(k̃/2)L0(k̃/2)]k̃
2 + l2. (A.34)

We assume that the structure of the surface density of the ring as Gaussian whose stander

deviation is 0.5R. Then Toomre’s Q parameter is

Q =
csΩ

πGΣ
=

l√
8πf

. (A.35)

Figure A.2 shows the dispersion relation with f = l = 1. The flattened ring is unstable in

the case ω̃2 < 0. In the case where minimum value of ω̃2 is zero, we obtain the relation

=(Line mass ⇔ f =1)

wavenumber 

Stable

Unstable

most unstable 

wavelength ~2L

T ∼ Text (1)

Q̄ =
cs(Text)Ωepi

πGΣini
(2)

Q̄ ! 1 (3)

Q̄ " 2 (4)

Q ! 0.6 (5)

τ (6)

β (7)

Qcrit ∼ 0.6 (8)

1

    Condition for fragmentation of disks

⇔ Condition for the gravitational instability of spiral arms

For simplicity, we treat the spiral arms as rotating thin rings.

kL, L: ring width

(cf. Inutsuka-san’s talk)
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The condition for the fragmentation, Q<0.6, is 

valid even in the adiabatic case.

This criterion is consistent with all results 
obtained by our simulations.

Effect of Cooling



Conclusion
Fragmentation process is divided into two steps

(1) Spiral arm formation (2) Fragmentation of spiral arm  

(1) (2)

Q<0.6

The problem is reduced to the formation process 
of the spiral arms that satisfy the condition Q<0.6.



Summary
• Fragmentation of the protoplanetary disks due to the gravitational 

instability is important for the formation of gas giant planets.


• Previous works suggest that the condition of the fragmentation of 
the disks is that the cooling is fast enough. However, the criterion 
of cooling time is inconsistent with some results of numerical 
simulations of disk formation.


• We performed the numerical simulations of self gravitating disks, 
and found that the condition of the fragmentation of the disks is 
that the Q<0.6 is satisfied in the spiral arms. This criterion is the 
same as the condition of the gravitational instability of the thin 
rings obtained by the linear stability analysis.


• Large disk mass is required for fragmentation when the opacity is 
large and the cooling is slow.  The criterion of the fragmentation 
obtained from this work is valid even in the adiabatic case.


