Three-body calculations of the triple-alpha reaction rate at low temperatures

Souichi Ishikawa

(Hosei University)
The 1st NAOJ Visiting Fellow Workshop Program Element Genesis and Cosmic Chemical Evolution:
r-process perspective
October 17(Wed.)-19(Fri.), 2012
Nishina Hall, RIKEN, Japan

1. INTRODUCTION

Triple-alpha reaction

$$
{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}
$$

-Resonant process ($\mathrm{T}>10^{8} \mathrm{~K}$)
${ }^{8} \mathrm{Be},{ }^{12} \mathrm{C}^{*}$
Resonance formula
-Non-resonant process ($\mathrm{T}<10^{8} \mathrm{~K}$)
[A] Extension of the resonance formula with energy dependent widths.
-NACRE [1]
[B] Quantum mechanical 3-body calculations
-OKK: CDCC calculations (Ogata et al.[2]) Significant effects at low temperature

[1] C. Angulo et al., NPA656 (1999) 3. [2] K. Ogata et al., PTP122 (2009) 1055.

Astrophysical input: 3α reaction rate $\left\langle\alpha \alpha \alpha>\left[\mathrm{cm}^{6} / \mathrm{s}\right]\right.$
$\dot{n}_{12} \equiv \frac{\left(n_{4}\right)^{3}}{6}\langle\alpha \alpha \alpha\rangle \quad \mathrm{n}_{12}\left(\mathrm{n}_{4}\right)$: Number density of ${ }^{12} \mathrm{C}\left({ }^{4} \mathrm{He}\right)$

3-body calculations for 3α reaction

- Ccontinuum Discretized Coupled Channel (CDCC) K. Ogata et al., PTP122 (2009) 1055. [OKK]
- Hyperspherical Harmonics basis + R-matrix (HHR) N.B. Nguyen et al. arXiv:1112.2136, arXiv:1209.4999
- This workshop:
K. Yabana

Ref: "Imaginary-time method for the radiative capture reaction rate"
K. Yabana and Y.Funaki, PRC 85, 055803 (2012)

- Faddeev
S. Ishikawa, INPC2010, APFB2011, OMEG11 (paper in preparation)

In the present talk:

- Calculation of 3α reaction based on the Faddeev 3body theory.
- Discussion about the difference from the OKK rate

CONTENTS

(1. Introduction)
2. Formalism
3. Calculations and Results
4. Discussion -- Comparison with CDCC results
5. Summary

2. FORMALISM

3α reaction $\quad \alpha+\alpha+\alpha \rightarrow{ }^{12} \mathrm{C}\left(2^{+}\right)+\gamma$

1. Inverse reaction: Photo induced 3α breakup of ${ }^{12} \mathrm{C}\left(2^{+}\right)$

$$
{ }^{12} \mathrm{C}\left(2^{+}\right)+\gamma \rightarrow \alpha+\alpha+\alpha
$$

2. Define a wave function for the breakup process

$$
|\Psi\rangle \equiv \frac{1}{E+i \varepsilon-H_{0}-V} H_{\gamma}\left|\Psi_{b}\right\rangle \underset{R \rightarrow \infty}{\rightarrow} \frac{e^{i K R}}{R^{5 / 2}} f^{(B)}\left(E_{q}, x, y\right)
$$

3. Photodisintegration cross section

$$
E=E_{q}+E_{p}
$$

$$
\sigma_{\gamma}(E) \propto \iint d \hat{x} d \hat{y} \int_{E_{q}>0} d E_{q} \sqrt{E_{q} E_{p}}\left|f^{(B)}\left(E_{q} ; \hat{x}, \hat{y}\right)\right|^{2}
$$

4. Reaction rate
5. Apply the Faddeev formalism [1] to solve the equation for the 3-body disintegration process.
6. Apply the Sasakawa-Sawada method [2] to accommodate the long-range Coulomb interaction.
7. An approximation is made to treat a long-range contribution
[1] L.D. Faddeev, Soviet Phys. JETP 12 (1961) 1041.
[2] T. Sasakawa and T. Sawada, PRC 20 (1979) 1954.

Faddeev eq. (1961)

Multiple scattering with rearrangements

An approximation

- A term $\left(\frac{1}{x_{3}}-\frac{1}{y_{1}}\right)$ appeared in the integral
kernel, which is expected to be short range because of a cancellation. But, the cancellation is not perfect for breakup channels.
\rightarrow treat this problem
approximately by a (mandatory) cutoff procedure

$$
\begin{array}{r}
\left(\frac{1}{x_{3}}-\frac{1}{y_{1}}\right) \times e^{-\left(x_{3} / R_{\mathrm{cut}}\right)^{4}} \\
R_{\mathrm{cut}}=20 \mathrm{fm}-35 \mathrm{fm}
\end{array}
$$

3. CALCULATIONS AND RESULTS

3α model

- $\alpha \alpha$-potential

Ali-Bodmer type (2-range Gaussian)

$$
V_{\alpha \alpha}(x)=\left(V_{R}^{(0)} \hat{P}_{L=0}+V_{A}^{(2)} \hat{P}_{L=2}\right) e^{-\left(x / a_{R}\right)^{2}}+V_{A} e^{-\left(x / a_{A}\right)^{2}}
$$

	$a_{R}(\mathrm{fm})$	$\mathrm{V}_{\mathbf{R}}{ }^{(0)}(\mathrm{MeV})$	$\mathrm{V}_{\mathbf{R}}{ }^{(2)}(\mathrm{MeV})$	$a_{A}(\mathrm{fm})$	$\mathrm{V}_{\mathrm{A}}(\mathrm{MeV})$
$\mathrm{AB}\left(\mathrm{A}^{\prime}\right)$	1.53	125.0	20.0	2.85	-30.18
$\mathrm{AB}(\mathrm{D})$	1.40	500.0	320.0	2.11	-130.0

-3-body potential [1] to reproduce the binding energy and resonance energy

$$
V_{\alpha \alpha \alpha}=\left(W_{0} \hat{P}_{L=0}+W_{2} \hat{P}_{L=2}\right) e^{-(\rho / 3.9)^{2}} \quad \rho^{2}=3.97 \sum_{i=1}^{3} r_{i}^{2}
$$

[1] D.V. Fedorov and A. S. Jensen, PLB 389 (1996) 631

Photodisintegration cross section
($A B-A^{\prime} \& A B-D$)

$\alpha \alpha \alpha$ reaction rate ($\mathrm{AB}-\mathrm{A}^{\prime}, \mathrm{AB}-\mathrm{D}$)

Comparison with CDCC results

4. DISCUSSION

CDCC calculation of photo induced 3α breakup of ${ }^{12} \mathrm{C}\left(2^{+}\right)$

$$
{ }^{12} \mathrm{C}\left(2^{+}\right)+\gamma \rightarrow \alpha+\alpha+\alpha
$$

Wave function for (photo-) disintegration process

$$
\begin{aligned}
& |\Psi\rangle \equiv \frac{1}{E+i \varepsilon-H_{0}-V} H_{\gamma}\left|\Psi_{b}\right\rangle \underset{R \rightarrow \infty}{\rightarrow} \frac{e^{i K R}}{R^{5 / 2}} f^{(B)}\left(E_{q}, x, y\right) \\
& \left(E-H_{0}-V\right)|\Psi\rangle=H_{\gamma}\left|\Psi_{b}\right\rangle
\end{aligned}
$$

Discretized α - α functions $u_{n}(x): \quad\left[T_{x}+V_{\alpha \alpha}(x)\right] u_{n}(x)=E_{q_{n}} u_{n}(x)$

$$
\begin{aligned}
& \Psi(x, y)=\sum_{n} u_{n}(x) \varphi_{n}(y) \\
& \varphi_{n}(y) \rightarrow[\text { Outgoing wave }] \times T_{n} \\
& \sum_{n^{\prime}}\left[\left(E_{p}-T_{y}\right) \delta_{n, n^{\prime}}-V_{n, n^{\prime}}(y)\right] \varphi_{n^{\prime}}(y)=\left\langle u_{n}\right| H_{\gamma}\left|\Psi_{b}\right\rangle
\end{aligned}
$$

\# of base functions = 120 (OKK)

$$
\sigma_{\gamma}(E) \propto \sum_{n<n_{0}} \frac{\left|T_{n}\right|^{2}}{p_{n}}
$$

Photodisntegration cross section ($\mathrm{AB}-\mathrm{A}^{\prime}$) (CDCC calculations by S.I.)

$\alpha \alpha \alpha$ reaction rate (Ratio to NACRE rate)

- At low temperatures ($\mathrm{T}<10^{8} \mathrm{~K}$):
$\langle\alpha \alpha \alpha\rangle_{\text {NACRE }}{ }^{\sim}\langle\alpha \alpha \alpha\rangle_{\text {Faddeev }} \ll\langle\alpha \alpha \alpha\rangle_{\text {CDCC }}$
- Explanation of this enhancement by Ogata:

Coulomb barrier between $\alpha \alpha$-pair and α : non-resonant pair vs. resonant pair

Reason for the enhancement (Ogata)

- Coulomb potential between $\alpha \alpha$-pair and α-particle

Model space of CDCC calculation

- Only one set of Jacobi coordinate is used: Neglects of rearrangement channels as well as symmetrization of the wave functions

Rearrangement effect

3α decay mechanism of the Hoyle state

- The enhancement of $\sigma_{\gamma}(\mathrm{E})$ by the CDCC calculation at low energies is due to the reduction of Coulomb barrier between α and non-resonant $\alpha \alpha$-pair.
- This reduction may cause an enhancement of non-resonant (direct) process of 3α-decay of the Hoyle state.

3α decay of the Hoyle state

- Direct decay or Sequential two-step process
- Ad.R. Raduta et al., PLB 705, 65 (2011). ${ }^{40} \mathrm{Ca}+{ }^{12} \mathrm{C}$ at $25 \mathrm{MeV} /$ nucleon
Direct-decay contribution: $7.5 \pm 4.0 \%$
- O. S. Kirsebom et al. PRL 108, 202501 (2012). ${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$
"no evidence for direct-decay branches"
- J. Manfredi et al. PRC 85, 037603 (2012). ${ }^{10} \mathrm{C}+{ }^{12} \mathrm{C}$ "An upper limit of 0.45% "

Decomposition of the cross section

$$
\begin{aligned}
& \sigma_{\gamma}(E) \propto \iint d \hat{x} \hat{y} \int_{E_{q}>0} d E_{q} \sqrt{E_{q} E_{p}}\left|f\left(E_{q} ; \hat{x}, \hat{y}\right)\right|^{2} \\
& \sigma_{\gamma}^{\mathrm{R}}(E) \propto \iint d \hat{x} \hat{x} \hat{y} \iint_{E_{q}=E_{i}+ \pm \Delta E} d E_{q} \sqrt{E_{q} E_{p}}\left|f\left(E_{q} ; \hat{x}, \hat{y}\right)\right|^{2}
\end{aligned}
$$

$$
\sigma_{\gamma}^{\mathrm{NR}}(E)=\sigma_{\gamma}(E)-\sigma_{\gamma}^{\mathrm{R}}(E)
$$

Faddeev vs. CDCC (SI)

- 3α-decay of the Hoyle state Sequential decay vs. Direct decay
--Faddeev: Sequential decay-dominant
--CDCC: large contribution from Direct decay 67% at $\mathrm{E}=380 \mathrm{keV}$

Non-resonant contribution (CDCC)

Non-resonant contribution (Faddeev)

5. SUMMARY

- Quantum mechanical 3-body calculations of 3α-reactionas photodisintegration of ${ }^{12} \mathrm{C}\left(2^{+}\right)$

Faddeev method, CDCC method

- Faddeev calculation: similar to the NACRE 3α rate
- CDCC calculations: Increase of the cross section at low energies (similar to Ogata's CDCC results)
- 3 α-decay of Hoyle resonance Faddeev: Sequential decay (via ${ }^{8} \mathrm{Be}$) dominant CDCC: A large contribution from the Direct decay \rightarrow This may be tested by experiments.
- Future problem:
- Higher energies (theoretical calculations of ${ }^{12} \mathrm{C}$-resonance other than the Hoyle state)
. ${ }^{9} \mathrm{Be}(\alpha-\alpha-n),{ }^{6} \mathrm{He}(\alpha-n-n)$, n-n-n (3-n potential)
-4 4 problem, ${ }^{12} \mathrm{C}(\alpha, \gamma)^{16} \mathrm{O}$

