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1. INTRODUCTION 
Triple-alpha reaction 
 
 
 
-Resonant process (T>108 K) 
    8Be, 12C*  
        Resonance formula 
 
 
-Non-resonant process (T<108 K) 
[A] Extension of the resonance formula 
with energy dependent widths. 
     -NACRE [1] 

 
[B] Quantum mechanical 3-body 
calculations 
    -OKK: CDCC calculations (Ogata et al.[2]) 
       Significant effects at low temperature  
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[1] C. Angulo et al., NPA656 (1999) 3.    [2] K. Ogata et al., PTP122 (2009) 1055. 
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Resonant 

Non-resonant 

Extended. resonance formula 

=T/(107 K) 

Astrophysical input: 3a reaction rate <aaa> [cm6/s]  
 

                                             n12 (n4): Number density of 12C (4He) 
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• Ccontinuum Discretized Coupled Channel (CDCC)  
   K. Ogata et al., PTP122 (2009) 1055.  [OKK] 
 

• Hyperspherical Harmonics basis + R-matrix (HHR) 
   N.B. Nguyen et al. arXiv:1112.2136, arXiv:1209.4999 
 

• This workshop: 
    K. Yabana 
 
Ref: “Imaginary-time method for the radiative capture reaction rate” 
  K. Yabana and Y.Funaki, PRC 85, 055803 (2012) 
      

• Faddeev 
  S. Ishikawa, INPC2010, APFB2011, OMEG11 
   (paper in preparation) 

3-body calculations for 3a reaction 



In the present talk: 

 - Calculation of 3a reaction based on the Faddeev 3-
body theory. 

 - Discussion about the difference from the OKK rate 
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2. FORMALISM 



3a reaction 

1.  Inverse reaction: Photo induced 3a breakup of 12C(2+)  

 

2. Define a wave function for the breakup process 

 

 

 

3. Photodisintegration cross section 

 

12C(2 )a a a    

12C(2 )  a a a    

 ( )

5/ 2

0

1
, ,

iKR
B

b q
R

e
H f E x y

E i H V R


 
   

  

   
2

( )

0

ˆ ˆ ˆ ˆ; ,

q

B

q q p q

E

E dxdy dE E E f E x y


   Ep 

Eq 

q pE E E 

2 24

3
R x y 

x 

y 



4. Reaction rate 

 

 

5. Apply the Faddeev formalism [1] to solve the 
equation for the 3-body disintegration process. 

6. Apply the Sasakawa-Sawada method [2] to 
accommodate the long-range Coulomb 
interaction. 

7. An approximation is made to treat a long-range 
contribution 
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[1] L.D. Faddeev, Soviet Phys. JETP 12 (1961) 1041. 

[2] T. Sasakawa and T. Sawada, PRC 20 (1979) 1954. 



Faddeev eq. (1961) 
Multiple scattering with rearrangements 
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Channel-1 Channel-3 

Channel-2 

       (1) (2) (3)123 1,23 2,31 3,12      

 (1) 1,23

 (3) 3,12

 (2) 2,31

Symmetric for 2<->3 

Totally symmetric 

(Faddeev component) 



An approximation 

• A term                    appeared in the integral 
 
 kernel, which is expected to be short range because 
of a cancellation.  But, the cancellation is not perfect 
for breakup channels. 

 treat this problem  
    approximately by  
    a (mandatory) cutoff  
    procedure 
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3. CALCULATIONS AND RESULTS 



• aa-potential 
   Ali-Bodmer type (2-range Gaussian) 
 

 

 

 

• 3-body potential [1] to reproduce the 

binding energy and resonance energy 

3a model 
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[1] D.V. Fedorov and A. S. Jensen, PLB 389 (1996) 631 
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aR (fm) VR
(0)  (MeV) VR

(2) (MeV) aA (fm) VA( MeV) 

AB(A’) 1.53 125.0 20.0 2.85 -30.18 

AB(D) 1.40 500.0 320.0 2.11 -130.0 



Photodisintegration cross section  
(AB-A’ & AB-D) 
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3a energy in the cm system 



aaa reaction rate  (AB-A’, AB-D) 

OKK 

AB(D) 

NACRE 

~1026 for OKK at T7=1  

 
- AB(A’) 

- AB(D) 



4. DISCUSSION 
 

 

Comparison with CDCC results 



y x 

CDCC calculation of photo induced 3a breakup of 12C(2+)  
 

 

 

Wave function for (photo-) disintegration process 

 

 

 

 

 

 

Discretized a-a functions 
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# of base functions = 120 (~OKK) 
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Photodisntegration cross section (AB-A’) 
(CDCC calculations by S.I.)  

G=10 eV 

G=120 eV  

Single-channel cal. 



aaa reaction rate   
(Ratio to NACRE rate) 

CDCC(ISHIKAWA) 
CDCC(OKK) 

Faddeev 



• At low temperatures  (T<108 K): 
<aaa>NACRE ~   <aaa>Faddeev  <<  <aaa>CDCC 
 

• Explanation of this enhancement by Ogata: 
Coulomb barrier between aa-pair and a:  
 non-resonant pair vs. resonant pair  



• Coulomb potential between aa-pair and a-particle 

Reason for the enhancement (Ogata) 

Resonant state 
Non-resonant state 

    [MeV]V R
aa a

R R 



 

• Only one set of Jacobi coordinate is used: 
 Neglects of rearrangement channels as well 
as symmetrization of the wave functions 
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Model space of CDCC calculation 
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Rearrangement effect 

Non-resonant state 

Resonant state 



3a decay mechanism of the Hoyle state 

• The enhancement of (E) by the CDCC 
calculation at low energies  is due to the  
reduction of Coulomb barrier between a and 
non-resonant aa-pair. 

 

• This reduction may cause an enhancement of 
non-resonant (direct) process of 3a-decay of 
the Hoyle state. 



Sequential decay 
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Direct decay 



• Direct decay   or  Sequential two-step process  

 

• Ad.R. Raduta et al.,  PLB 705, 65 (2011). 
40Ca + 12C at 25MeV/nucleon 
Direct-decay contribution:  7.5 ± 4.0 % 

 

• O. S. Kirsebom et al. PRL 108, 202501 (2012). 
11B(3He,d) 
“no evidence for direct-decay branches” 

• J. Manfredi et al. PRC 85, 037603 (2012). 
10C + 12C  “An upper limit of 0.45%” 

 

3a decay of the Hoyle state  



Decomposition of the cross section 
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• 3a-decay of the Hoyle state 
Sequential decay vs. Direct decay 
  
--Faddeev:  Sequential decay-dominant 
 
--CDCC: large contribution from Direct decay 
        67% at E=380keV 

Faddeev vs. CDCC (SI) 



Non-resonant contribution (CDCC) 

Non-resonant 

Faddeev 

CDCC 



Non-resonant contribution (Faddeev) 

Non-resonant 



• Quantum mechanical 3-body calculations of 3a-reactionas 
photodisintegration of 12C(2+)  
  Faddeev method,  CDCC method 

• Faddeev calculation: similar to the NACRE 3a rate 

• CDCC calculations: Increase of the cross section at low  energies 
(similar to Ogata’s CDCC results) 

• 3a-decay of Hoyle resonance 
Faddeev：Sequential decay (via 8Be) dominant 
CDCC: A large contribution from the Direct decay 
   This may be tested by experiments. 

 

• Future problem: 
 ・Higher energies (theoretical calculations of 12C-resonance other 
than the Hoyle state) 
 . 9Be(a-a-n), 6He(a-n-n),  n-n-n (3-n potential)    
 ・4a problem,  12C(a,)16O  

5. SUMMARY 


