Nucleosynthesis in Magnetorotationally Driven Jets and Search for the Evidence of the *r*-process in supernova remnants

Masaomi Ono YITP, Kyoto Univ.

r-process workshop at RIKEN

Collaborators

- S. Nagataki, J. Mao, S.-H. H. Lee, H. Itoh (YITP)
- M. Hashimoto (Kyushu Univ.)
- S. Fujimoto (Kumamoto Nat. Coll. Tech.)
- K. Kotake, W. Aoki (NAOJ)
- S. Yamada (Waseda Univ.)
- D. C. Ellison (NC state Univ.)
- N. Nishimura (Univ. Basel)

Outlines

- The sites of the *r*-process
- Current status of the *r*-process in magnetohydrodynamical (MHD) jets
- Observations of *r*-process elements in supernova remnants
- Multidimensional simulations of matter mixing in supernovae and supernova remnants

The *r*-process

- Rapid neutron capture (*r*-process) : explosive environment
- Slow neutron capture (*s*-process) : AGB stars, massive star

Key physical parameters for the *r*-process

- Electron fraction Y_e
- Entropy $S \propto T^3/\rho$
- Dynamical (expansion) timescale t_{exp}

Hoffman+'97 low Y_e is essential for the *r*-process

What is the site of the *r*-process ?

Main promising sites

- Neutrino-driven wind (NDW)
- Neutron star mergers (NSM)
- Magnetohydrodynamical (MHD) jets

No *r*-process in neutrino-driven winds?

Sophisticated 1D core-collapse SN (e.g., Fischer+10)
 – GR, Boltzmann eq. for neutrino transport

What is the site of the *r*-process ?

- Neutron star mergers (NSM)
 - Difficult to explain the early enrichment of

r-process elements in galaxies ?

- But we should carefully investigate (Wanajo-san's talk)
- Magnetohydrodynamical (MHD) jets
- Collapsar jet due to neutrino annihilations (Mathew-san's talk)

r-process in MHD jets

Nucleosynthesis in MHD jets including the *r*-process

- Magnetorotationally driven core-collapse supernova (MHD-CCSN)
 - Nishimura +06
 - Winteler +12 (Basel)
 - Nishimura, Takiwaki, & Thielemann (2013 in prep.)
- Collapar model (Woosley 1993)
 - Fujimoto +07, 08
 - MO+12 (in press)

Central engine of Gamma-ray bursts ?

Nucleosynthesis in the MHD jet from a collapsar including weak *s*-, *p*-, and *r*-processes

MO+12 (in press)

Abundances in ejected particles that have different Y_{e}

MO+12 (in press)

2012/10/17 - 19

Comparison with abundances of the solar and metal-poor stars

• Weak *r*-process ?

Primary synthesis Sr-Y-Zr ↓ Lighter element primary process (LEPP) ?

MO+12 (in press)

igodol

r-process in a MHD-CCSN including effects of neutrino absorptions on Y_{e}

Figure 1. 3D entropy contours spanning the coordinates planes with magnetic field lines (white lines) of the MHD-CCSN simulation \sim 31 ms after bounce. The 3D domain size is 700 × 700 × 1400 km.

Winteler+12 (Basel)

2012/10/17 - 19

r-process workshop at RIKEN

r-process in MHD-CCSN models

Nishimura, Takiwaki, and Thielemann (2013 in prep.)

SR-MHD-CCSN (Takiwaki+09, 11)

Successful *r*-process in strong explosion models

Nishimura, Takiwaki, and Thielemann (2013 in prep.)

MHD jets can be the source of the *r*-elements ... ?

- Successful *r*-process in MHD jets
 - Strong magnetic field & rapid rotation
 - Ejected mass of *r*-elements $10^{-2} 10^{-3} M_{\odot}$ > mean $10^{-4} M_{\odot}$
 - 1% of canonical CCSNe
 - Such rapidly rotating stars are 1 % of all stars above 10 M_{\odot} (Woosley & Heger 2006)
- Uncertainties
 - Magnetic field and rotation at the pre-collapse phase
 - Amplification of magnetic field (Magnetorotational Instability:MRI)
 - Input nuclear physics (Mass models, treatments fissions, ..)

Observations of *r*-process elements in SNRs

Direct evidence for the *r*-process ?

• There is no successful observation of *r*-elements in SNRs

 The detection of newly synthesized *r*elements in SNRs can be the direct evidence of the site of the *r*-process

Search for *r*-process elements in a SNR

Wallerstein et al. 1992; 1995

Vela SNR

Absorption features of *r*-elements ?

Obs.

Target

star

Detectability of newly synthesized *r*-process elements

- Criterions of the detection
 - Enough column density of *r*-process elements
 - Enhancement of
 r-elements relative to the ambient component

$$\sigma_{r, \text{ ejecta}} > \sigma_{r, \text{ ambient}}$$

Wallerstein et al. 1995

Observations of *r*-elements in Vela SNR

- Eu II, Gd II, Ra II, and Th II (Wallerstein et al. 1992)
- Yb II, Os II, Hg I (Wallerstein et al. 1995)

COLUMN DENSITIES OF INTERSTELLAR LINES IN THE VELA REMNANT							
Species	log Column Density (cm ⁻²)					MEAN OF	
	HD 72127A	HD 72127B	HD 72350	HD 72798	HD 74455	OUTSIDE VELA	ζ Орн ^ь
Мg п	14.95	14.9	15.1	14.85	•••		14.45
S n	15.45	15.45	15.6		15.6	15.5°	15.5°
Ge 11	11.55	<11.3	11.75		11.5	11.4	11.35
Kr 1	<11.9	<12.0	<11.9		<11.3	<11.2	11.5
Үb п	<11.9		<12.35	<11.95			
Os II	<10.2		<10.65	<10.25			
Hg 1	<10.65		<11.1	<10.7			

* From Hobbs et al. 1993.

^b From Cardelli, Savage, & Ebbets 1991 and Savage, Cardelli, & Sofia 1992.

^e Set arbitrarily to be equal to the mean of the S II column density of the Vela stars.

No excess of *r*-process elements

Wallerstein et al. 1995

Our plan

- Service program of Subaru Telescope
 - HDS (High Dispersion Spectrograph)
 - Eu II, Th II (Gd II, Ra II)
 (3,500 4,500 Å)
- Target SNR
 - Cassiopeia A (Cas A)
 - Prominent jet structure
 - $\text{Age} : \sim 330 \text{ yr} \quad (< \text{Vela} : 10^4 \text{ yr})$
 - Distance : 3.4 kpc (> Vela : 0.25 kpc)

HDS

http://www.subarutelescope. org/Introduction/instrument/ j_HDS.html

Cas A SNR

X-ray image : Chandra

Red : Si, Hα (1.78-2.0 keV) Blue : Fe, K (6.52-6.95 keV) Green : 4.2-6.4 keV continuum

Hwang et al. 2004

2012/10/17 - 19

Target stars

Target stars 1, 2
Jet region
Clean region

Prospects

- Excess of *r*-elements could be higher than Vela SNR
 - *r*-process in jets should be 2 orders of magnitude effective
 - Cas A is younger than Vela

But ...

- We don't know weather the target stars are in the background or foreground of Cas A
- We don't know the ionization stucture of the ejecta well

If we detect any excess of *r*-elements, which is the first observation of newly synthesized *r*-elements in a SNR

How synthesized elements are ejected?

3D structure of Cas A

To Earth

Delaney et al. 2010

Chandra 's X-rays Spitzer 's infrared Green: X-ray Fe-K Black: X-ray Si XIII Red: IR [Ar II] Blue: high [Ne II]/[Ar II] ratio Grey: IR [Si II] Yellow: optical outer ejecta

Matter mixing in core-collapse supernova

M.O. et al. (2013 prep.)

3d MHD simulation of a Type Ia SNR

MO (2013 prep.)

r-process workshop at RIKEN

Summary

- MHD jets can be one of the sites of the *r*-process, although there are still many uncertainties
- Detection of *r*-elements in a SNR has a great impact on determining the sites of the *r*process
- It is very unobvious how synthesized elements are ejected

Workshop on Supernovae and Gamma-ray busts, in Kyoto, 2013

http://www2.yukawa.kyoto-u.ac.jp/ws/2013/sngrb/SN-GRB2013.html

- Long-term workshop (5 weeks in total)
- Two one week conferences on SNe and GRBs, respectively
- Remaining three weeks are for workshops on Nuclear physics in SNe and GRBs, CC-SNe, and GRBs

r-process workshop at RIKEN

Thank you for your attention