Evolution of Neutron Stars and Observational Constraints

J.M. Lattimer

Department of Physics & Astronomy Stony Brook University

18 November 2011

Collaborators: D. Page (UNAM), M. Prakash (Ohio U.), A. Steiner (INT)

5th Meeting of OMEG Institute NAOJ, Mitaka, Japan

- ▶ Formation of Neutron Stars and Proto-Neutron Stars
- Neutrino Cooling Processes
 - Direct Urca Process
 - Modified Urca Process
 - Cooper Pair Formation and Breaking
- Observations of Cooling Neutron Stars
- Cas A: A Direct Detection of Core Superfluidity?

Proto-Neutron Stars

J.M. Lattimer Evolution of Neutron Stars and Observational Constraints

The Urca Processes

Gamow & Schönberg proposed the direct Urca process: nucleons at the top of the Fermi sea beta decay.

 $egin{aligned} n &
ightarrow p + e^- +
u_e \,, \ p &
ightarrow n + e^+ + ar
u_e \ \end{aligned}$

Energy conservation guaranteed by beta equilibrium

 $\mu_n - \mu_p = \mu_e$

Momentum conservation requires $|k_{Fn}| \le |k_{Fp}| + |k_{Fe}|.$

Charge neutrality requires $k_{Fp} = k_{Fe}$, therefore $|k_{Fp}| \ge 2|k_{Fn}|$.

Degeneracy implies $n_i \propto k_{Fi}^3$, thus $x \ge x_{DU} = 1/9$.

With muons

 $(n > 2n_s), x_{DU} = \frac{2}{2 + (1 + 2^{1/3})^3} \simeq 0.148$

J.M. Lattimer

If $x < x_{DU}$, bystander nucleons needed: modified Urca process. $(n, p) + n \rightarrow (n, p) + p + e^- + \nu_e$, $(n, p) + p \rightarrow (n, p) + n + e^+ + \overline{\nu}_e$

Neutrino emissivities: $\dot{\epsilon}_{MU} \simeq \left(T/\mu_n\right)^2 \dot{\epsilon}_{DU} \sim 10^{-6} \dot{\epsilon}_{DU} \,.$

Beta equilibrium composition: $x_{\beta} \simeq (3\pi^2 n)^{-1} (4E_{sym}/\hbar c)^3$ $\simeq 0.04 (n/n_s)^{0.5-2}$.

Evolution of Neutron Stars and Observational Constraints

Direct Urca Threshold

Neutrino Emissivities

Name	Process	Emissivity (erg cm ⁻³ s ⁻¹)	
Modified Urca	$n+n \rightarrow n+p+e^-+\overline{v_e}$	$\sim 2 \times 10^{21} R T_9^8$	Slow
(neutron branch)	$n + p + e^- \rightarrow n + n + v_e$		
Aodified Urca	$p+n \rightarrow p+p+e^-+\overline{v}_e$	1021 p.78	Class
(proton branch)	$p + p + e^- \rightarrow p + n + v_e$	~ 10 K Ig	310W
	$n+n \rightarrow n+n+v+\overline{v}$	CONTRACTOR OF THE OWNER	
Bremsstrahlungs	$n+p \rightarrow n+p+v+\overline{v}$	$\sim 10^{19} R T_9^8$	Slow
	$p + p \rightarrow p + p + v + \overline{v}$	21 (22)	
Cooper pair	$n+n \rightarrow [nn] + v + \overline{v}$	$\sim 5 \times 10^{21} R T_9^7$ $\sim 5 \times 10^{19} R T_9^7$	Medium
	$p + p \rightarrow [pp] + v + v$		
Direct Urca	$n \rightarrow p + e^- + v_e$	$\sim 10^{27} R T_9^6$	Fast
(nucleons)	$p + e^- \rightarrow n + v_e$		
Direct Urca	$\Lambda \rightarrow p + e^- + v_e$	$\sim 10^{27} R T_9^6$	Fast
(A hyperons)	$p + e^- \rightarrow \Lambda + v_e$		
Direct Urca	$\Sigma^- \rightarrow n + e^- + \overline{v_e}$	$\sim 10^{27} R T_9^6$	Fast
$(\Sigma^{-} hyperons)$	$n + e^- \rightarrow \Sigma^- + v_e$		
π^- condensate	$n+<\pi^->\rightarrow n+e^-+\overline{v}_e$	$\sim 10^{26} R T_9^6$	Fast
K^- condensate	$n+\rightarrow n+e^-+\overline{\nu}_e$	$\sim 10^{25} R T_9^6$	Fast
Direct Urca cycle	$d \rightarrow u + e^- + v_e$	$\sim 10^{27} R T_9^6$	Fast
(u-d quarks)	$u + e^- \rightarrow d + v_e$		
Direct Urca cycle	$s \rightarrow u + e^- + \overline{v_e}$	$\sim 10^{27} R T_9^6$	Fast
(u-s quarks)	$u + e^- \rightarrow s + v_e$		

J.M. Lattimer

Evolution of Neutron Stars and Observational Constraints

Neutron Star Cooling Basics

Neutrino cooling ($t < 10^4$ yr) $T_9 \simeq \left(\frac{\tau_{MU}}{t}\right)^{1/6}$ $\tau_{MU} \simeq 10^9 \left(\frac{C_9}{6N_9}\right) \, \mathrm{s} \sim 1 \, \mathrm{yr}$

$$L_
u = N_9 \, T_9^8$$
 $N_9 \simeq 10^{40} {
m erg/s}$

 $C_V = C_9 T_9$

 $C_9 \simeq 10^{39} \mathrm{~erg/K}$

Photon cooling

 $L_{\gamma} = S_9 T_9^{2+4lpha}$ $S_9 \simeq 10^{33} {
m erg/s}$

$$T_9 \simeq \left(rac{ au_\gamma}{t}
ight)^{1/4lpha}$$

 $au_\gamma \simeq 10^9 \left(rac{C_9}{4lpha S_9}
ight) \, \mathrm{s} \sim 10^8 \ \mathrm{yr}$

1 / 4

Slow Vs. Fast Cooling

- 1. t < 30 50 yr, crust retains initial heat
- 2. t > 30 50 yr, star becomes isothermal
- 3. In ν cooling era,

 $\frac{d\ln T}{d\ln t} \sim -\frac{1}{12}$

4. In γ cooling era,

 $\frac{d\ln T}{d\ln t} \sim -\frac{1}{8\alpha}$

Pairing

J.M. Lattimer Evolution of Neutron Stars and Observational Constraints

э

Cooper Pair PBF Process

- Formation of fermionic pair condensate triggers the pair breaking and formation (PBF) process.
- Phase transition (second order) begins when $T = T_c$ and pairs begin to form.
- Thermal agitation breaks pairs so there is a continuous breaking and formation of pairs with ν emission.
- Discovered by Flowers, Ruderman & Sutherland (1976).

The Impact of the PBF Process

- Modifications made to both ν emissivities and specific heat.
- Modified URCA and bremmstrahlung are suppressed when T < T_c, leading to faster cooling in γ era.
- Suppression of specific heat not as significant.
- PBF leads to significant cooling during ν era.
- ▶ ${}^{1}S_{0}$ n pairing in crust reduces thermal relaxation time due to C_{V} reduction.

Transitory Episode of Rapid Cooling

 $\simeq (1-25)(d \ln T/d \ln t)_{MU}$ in the case of proton superconductivity

Slope sensitive to n ${}^{3}P_{2}$ critical temperature (T_{C}) and existence of ${}^{1}S_{0}$ proton superconductivity

Neutron Star Cooling – Models Versus Observations

J.M. Lattimer Evolution of Neutron Stars and Observational Constraints

Cas A

Remnant of Type IIb (gravitational collapse, no H envelope) SN in 1680 (Flamsteed).

- 3.4 kpc distance
- 3.1 pc diameter

Strongest radio source outside solar system, discovered in 1947.

X-ray source detected (Aerobee flight, 1965)

X-ray point source detected (Chandra, 1999)

1 of 2 known CO-rich SNR (massive progenitor and neutron star?)

Spitzer, Hubble, Chandra

Evolution of Neutron Stars and Observational Constraints

Cas A Superfluidity

X-ray spectrum indicates thin C atmosphere, $T_e \sim 1.7 imes 10^8$ K (Ho & Heinke 2009) 10 years of X-ray data show cooling at the rate $\frac{d \ln T_e}{d \ln t} = -1.23 \pm 0.14$ (Heinke & Ho 2010) Modified Urca:

 $\begin{array}{l} \left(\frac{d \ln T_e}{d \ln t}\right)_{MU} \simeq -0.08 \\ \text{We infer that} \\ T_C \simeq 5 \pm 1 \times 10^8 \text{ K} \\ T_C \propto (t_C L/C_V)^{-1/6} \end{array}$

- Cas A provides the first direct evidence of superfluuidity and superconductivity in a neutron star's core
- The n ${}^{3}P_{2}$ critical temperature is 5×10^{8} K to within 20%.
- \blacktriangleright The p 1S_0 critical temperature is larger than 10^9 K
- These results are consistent with the Minimal Cooling Paradigm (Page et al. 2004)
- Possible caveats:
 - Chandra sensitivity might be degrading with time (Rutledge, INT, 2011)
 - Thermal conductivity of neutron star matter might be grossly overestimated (Blatschke et al. 2011)