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I Formation of Neutron Stars and Proto-Neutron Stars
I Neutrino Cooling Processes

I Direct Urca Process
I Modified Urca Process
I Cooper Pair Formation and Breaking

I Observations of Cooling Neutron Stars

I Cas A: A Direct Detection of Core Superfluidity?
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Proto-Neutron Stars
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The Urca Processes

Gamow & Schönberg proposed the
direct Urca process: nucleons at the
top of the Fermi sea beta decay.
n→ p + e− + νe ,
p → n + e+ + ν̄e

Energy conservation guaranteed by
beta equilibrium
µn − µp = µe

Momentum conservation requires
|kFn| ≤ |kFp|+ |kFe |.

Charge neutrality requires kFp = kFe ,
therefore |kFp| ≥ 2|kFn|.

Degeneracy implies ni ∝ k3
Fi , thus

x ≥ xDU = 1/9.

With muons
(n > 2ns), xDU = 2

2+(1+21/3)3
' 0.148

If x < xDU , bystander nucleons
needed: modified Urca process.
(n, p) + n→ (n, p) + p + e− + νe ,
(n, p) + p → (n, p) + n + e+ + ν̄e

Neutrino emissivities:
ε̇MU ' (T/µn)2 ε̇DU ∼ 10−6ε̇DU .

Beta equilibrium composition:
xβ ' (3π2n)−1 (4Esym/~c)3

' 0.04 (n/ns)0.5−2
.
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Direct Urca Threshold

Klähn et al., Phys. Rev. C74 (2006) 035802
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Neutrino Emissivities
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Neutron Star Cooling Basics

dEth

dt
= Cv

dT

dt
= −Lν−Lγ+H

CV =
∑

i

∫
cV ,idV .

For normal (unpaired)
degenerate matter

cV ,i =
m∗

i pFi
3~3

k2
BT .

Lγ = 4πR2σT 4
e

Te ' 106

(
Tint

108 K

)0.5+α

α << 1.

Page et al. (2004)
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Schematic Cooling Model

CV = C9T9

C9 ' 1039 erg/K

Lν = N9T
8
9

N9 ' 1040erg/s

Lγ = S9T
2+4α
9

S9 ' 1033erg/s

Neutrino cooling (t < 104 yr)

T9 '
(τMU

t

)1/6
τMU ' 109

(
C9

6N9

)
s ∼ 1 yr

Photon cooling

T9 '
(τγ
t

)1/4α
τγ ' 109

(
C9

4αS9

)
s ∼ 108 yr
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Slow Vs. Fast Cooling

1. t < 30− 50 yr, crust
retains initial heat

2. t > 30− 50 yr, star
becomes isothermal

3. In ν cooling era,

d lnT

d ln t
∼ − 1

12

4. In γ cooling era,

d lnT

d ln t
∼ − 1

8α Page & Applegate (1992)
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Pairing

Comparison of
quasi-particle
spectra for
normal and
superfluid
matter.

Bohr, Mottleson & Pines (1958)
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Superfluid Gaps
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Cooper Pair PBF Process
I Formation of fermionic pair condensate triggers the pair breaking

and formation (PBF) process.
I Phase transition (second order) begins when T = Tc and pairs begin

to form.
I Thermal agitation breaks pairs so there is a continuous breaking and

formation of pairs with ν emission.
I Discovered by Flowers, Ruderman & Sutherland (1976).
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The Impact of the PBF Process

I Modifications made to both ν emissivities and specific heat.
I Modified URCA and bremmstrahlung are suppressed when T < Tc ,

leading to faster cooling in γ era.
I Suppression of specific heat not as significant.
I PBF leads to significant cooling during ν era.
I 1S0 n pairing in crust reduces thermal relaxation time due to CV

reduction.
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Transitory Episode of Rapid Cooling

MU emissivity: ε̇MU ∝ T 8

PBF emissivity (f ∼ 10):
ε̇PBF ∝ F (T ) T 7 ∝ T 8 ' f ε̇MU

Specific heat: CV ∝ T

Neutrino dominated cooling:
CV dT/dt = −Lν

=⇒ T ∝ (t/τ)−1/6

τPBF = τMU/f

Slope: (d lnT/d ln t)transitory
' (1− 10)(d lnT/d ln t)MU

' (1− 25)(d lnT/d ln t)MU in the

Slope sensitive to n 3P2 critical
temperature (TC ) and existence
of 1S0 proton superconductivity

co
re

te
m

p
er

at
ur

e

time =⇒

No p superconductivity With p superconductivity

case of proton superconductivity
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Neutron Star Cooling – Models Versus Observations

Page, Steiner, Prakash & Lattimer (2004)

e
Cas A m

J1119-6127
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Cas A

Remnant of Type IIb
(gravitational collapse,
no H envelope) SN in
1680 (Flamsteed).

3.4 kpc distance

3.1 pc diameter

Strongest radio source
outside solar system,
discovered in 1947.

X-ray source detected
(Aerobee flight, 1965)

X-ray point source
detected
(Chandra, 1999)

1 of 2 known CO-rich
SNR (massive
progenitor and neutron star?) Spitzer, Hubble, Chandra
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Cas A Superfluidity

X-ray spectrum
indicates thin C
atmosphere,
Te ∼ 1.7× 108 K
(Ho & Heinke 2009)

10 years of X-ray
data show cooling
at the rate
d lnTe

d ln t
= −1.23± 0.14

(Heinke & Ho 2010)

Modified Urca:(
d lnTe

d ln t

)
MU
' −0.08

We infer that
TC ' 5± 1× 108 K
TC ∝ (tCL/CV )−1/6

Page et al. 2010
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Conclusions

I Cas A provides the first direct evidence of superfluuidity
and superconductivity in a neutron star’s core

I The n 3P2 critical temperature is 5× 108 K to within 20%.

I The p 1S0 critical temperature is larger than 109 K

I These results are consistent with the Minimal Cooling
Paradigm (Page et al. 2004)

I Possible caveats:
I Chandra sensitivity might be degrading with time

(Rutledge, INT, 2011)
I Thermal conductivity of neutron star matter might be

grossly overestimated (Blatschke et al. 2011)
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