Charge exchange reaction(s), hadronic probe for neutrino-nucleus reactions

Shinsuke OTA
(Center for Nuclear Study, the University of Tokyo)

Contents

- (n,p)-type Charge Exchange Reaction
- Development of CNS Active Target

Neutrino-nucleus reaction

$$
\begin{aligned}
\bar{\nu}_{e}+{ }_{z} A & \rightarrow e^{+}+{ }_{z-1} A & \text { GT+ }(\mathrm{n}, \mathrm{p}) \\
\nu_{e}+{ }_{z} A & \rightarrow e^{-}+{ }_{z+1} A & \text { GT- }(\mathrm{p}, \mathrm{n}) \\
\nu+{ }_{z} A & \rightarrow \nu^{\prime}{ }_{Z} A^{*} &
\end{aligned}
$$

Charged Current $v \mathrm{~N}$ reaction
 => Charge Exchange Reaction

Charge Exchange Reaction

n-rich
(p,n)
(n, p)
p-rich
$\mathrm{N}=\mathrm{Z}$
(n, p)
(p,n)
In $\mathrm{N}=\mathrm{Z}$ nuclei,
$(\mathrm{n}, \mathrm{p}) /(\mathrm{p}, \mathrm{n}) \longleftarrow \mathrm{B}(\mathrm{GT}+\mathrm{+}) \sim \mathrm{B}(\mathrm{GT}-)$?

Electron Capture Rate of Iron-group Nuclei

- Life time and scale of Supernova explosion
- Nucleosynthesis in Supernova explosion

$$
\bar{\nu}_{e}+p \rightarrow e^{+}+n ; \quad n+{ }^{64} \mathrm{Ge} \rightarrow{ }^{64} \mathrm{Ga}+p ; \quad{ }^{64} \mathrm{Ga}+p \rightarrow{ }^{65} \mathrm{Ge} ; \ldots
$$

- $\mathrm{B}(\mathrm{GT}+)$ strengths above the electron capture threshold in Iron-group and heavier $\left({ }^{56} \mathrm{Ni},{ }^{64} \mathrm{Ge}\right.$ etc.) nuclei are needed
- Gamow Teller (GT) transition
- $\Delta \mathrm{T}=1, \Delta \mathrm{~S}=1, \Delta \mathrm{~L}=0$

Measurement of $\mathrm{B}(\mathrm{GT}+)$ strengths

- β^{+}decay / Electron Capture
- below $\mathrm{Q}_{\text {BEC }}$
- gives the absolute value of $\mathrm{B}(\mathrm{GT}+)$ from $\log f t$ value
- (n, p) type charge exchange (CX) reactions
- bound and unbound excited states
- gives a relative strength distribution
- needs "unit cross section"

(n, p) type CE reactions

- normal kinematics
- (n, p), $\left(\mathrm{d},{ }^{2} \mathrm{He}\right),\left(\mathrm{t},{ }^{3} \mathrm{He}\right)$
- inverse kinematics
- (n, p), ($\left.\mathrm{d},{ }^{2} \mathrm{He}\right),\left(\mathrm{t},{ }^{3} \mathrm{He}\right),\left({ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be} \mathrm{\gamma}\right)$
- n / t targets are difficult
- Extraction of GT strength

Angular distribution
${ }^{56} \mathrm{Fe}+\mathrm{d}$ (elastic) @ $250 \mathrm{MeV} / \mathrm{u}$

- $\Delta \mathrm{T}=1, \Delta \mathrm{~S}=1$ are tagged by reaction selectivity
- $\Delta \mathrm{L}$ is extract or decomposed by using angular distribution of differential cross section

$\left({ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be} \gamma\right)$

- Invariant mass and/or gamma spectroscopy
- Inv. mass for unbound states
- Gamma for bound states
- GT Transition is tagged by 0.43

MeV gamma ray

- Needs good S / N for gamma detection
- Angular resolution of 0.1 deg in lab. frame is required

- Resolution of excitation energy depends on mainly angular resolution

$\left(\mathrm{d},{ }^{2} \mathrm{He}\right)$

- Missing mass spectroscopy in inverse kinematics
- Momentum of ${ }^{2} \mathrm{He}$ is reconstructed by invariant mass
- Bound and unbound states are measurable at the same time
- GT Transition is tagged by ${ }^{1} \mathrm{~S}_{0}$ proton pair (called ${ }^{2} \mathrm{He}$)
- δ Ex depends on angular and energy resolution
- S / N becomes better due to vertex measurement

2 p

C. Bäumel et al. (2003)

2 p system

$$
\varepsilon<0-2 \mathrm{MeV}^{1} \mathrm{~S}_{0} \text { is dominant }
$$

Kinematics in inverse kinematics

- ${ }^{2} \mathrm{H}\left({ }^{56} \mathrm{Ni},{ }^{56} \mathrm{Co}\right){ }^{2} \mathrm{He}$
- most recoils emitted around 80-90 deg. (sideway)
- $\delta \theta \sim 14$ mrad for dEx $=1 \mathrm{MeV} @ E_{\text {lab }}=1 \mathrm{MeV}$
- $\delta E x \sim 0.5 \mathrm{MeV}$
- angular resolution is important
- multiple scattering

Range of low energy recoiled particles

Ranges in Deuterium Gas

We need to use gas target and vertex detector

Configuration of CNS Active Target

\qquad

400 pads

10 cm
election multiplier： 3 GEMs discharge occurs with $>300 \mathrm{kpps}$ beam

1－atm．Pure D_{2} gas

Requirement from kinematics

56FeElasticAcmElab.txt

56FeElasticAlabElab.txt

Test exp. at HIIMAC

Deuterium gas with 3 GEMs

Setup photo

Typical Event

- $100 \mathrm{kPa} \mathrm{D} 2_{2}$
- $20-21 \mathrm{kV}$ at top plate of field cage
- 3 GEMs
- recoiled event found
- total 30-hr data
- data size is not so large since lower-intensity beam is used than expected

3 U	2550
3 D	2000
2 U	1700
2 D	1150
1 U	850
1 D	300

Summary

- $\mathrm{B}(\mathrm{GT}+)$ measurement $\mathrm{w} /(\mathrm{n}, \mathrm{p})$ type reaction
- $\left(\mathrm{d},{ }^{2} \mathrm{He}\right)$ by measuring two protons which have small relative energy
- Active Target is under development
- designed so as to detect low (>300 keV) protons
- test experiment w/ pure D_{2} target was done

