Charge exchange reaction(s), hadronic probe for neutrino-nucleus reactions Shinsuke OTA (Center for Nuclear Study, the University of Tokyo)

Contents

- (n,p)-type Charge Exchange Reaction
- Development of CNS Active Target

Neutrino-nucleus reaction

$\bar{\nu}_e +_Z A \rightarrow e^+ +_{Z-1} A \quad \text{GT+ (n,p)}$ $\nu_e +_Z A \rightarrow e^- +_{Z+1} A \quad \text{GT- (p,n)}$ $\nu_{+Z} A \rightarrow \nu'_{+Z} A^*$

Charged Current vN reaction => Charge Exchange Reaction

Charge Exchange Reaction

Electron Capture Rate 10¹/10² Life time and scale of Supering vage xplosion 70 80 90 100 Mass Number A

• Nucleosynthesis in Supernova explosion

 $ar{
u}_e + p
ightarrow e^+ + n;$ $n + {}^{64}\text{Ge}
ightarrow {}^{64}\text{Ga} + p;$ ${}^{64}\text{Ga} + p
ightarrow {}^{65}\text{Ge}; \dots$

- B(GT+) strengths above the electron capture threshold in Iron-group and heavier (⁵⁶Ni, ⁶⁴Ge etc.) nuclei are needed
- Gamow Teller (GT) transition
 - $\Delta T=1, \Delta S=1, \Delta L=0$

Measurement of B(GT+) strengths

- β^+ decay / Electron Capture
 - below $Q_{\beta/EC}$
 - gives the absolute value of B(GT+) from log*ft* value
- (n,p) type charge exchange (CX) reactions
 - bound and unbound excited states
 - gives a relative strength distribution
 - needs "unit cross section"

(n,p) type CE reactions

- normal kinematics
 - (n,p), (d, 2 He), (t, 3 He)
- inverse kinematics
 - (n,p), (d,²He), (t,³He), (⁷Li,⁷Be γ)
 - n/t targets are difficult
- Extraction of GT strength
 - $\Delta T = 1$, $\Delta S = 1$ are tagged by reaction selectivity
 - ΔL is extract or decomposed by using angular distribution of differential cross section

$(^{7}\text{Li}, ^{7}\text{Be}\gamma)$

A

В

⁷Be

7Li

GT

 $^{7}\mathrm{Li}$

⁷Be

- Invariant mass and/or gamma spectroscopy
 - Inv. mass for unbound states
 - Gamma for bound states
- GT Transition is tagged by 0.43 MeV gamma ray
 - Needs good S/N for gamma detection
- Angular resolution of 0.1 deg in lab. frame is required
- Resolution of excitation energy depends on mainly angular resolution

Missing mass spectroscopy in inverse kinematics

- Momentum of ²He is reconstructed by invariant mass
- Bound and unbound states are measurable at the same time
- GT Transition is tagged by ¹S₀ proton pair (called ²He)
- δEx depends on angular and energy resolution
- S/N becomes better due to vertex measurement

 $\epsilon < 0-2$ MeV ¹S₀ is dominant

Kinematics in inverse kinematics

$\circ {}^{2}H({}^{56}Ni,{}^{56}Co){}^{2}He$

- most recoils emitted around 80-90 deg. (sideway)
- $\delta\theta \sim 14 \text{ mrad for } dEx$ =1MeV @E_{lab} = 1 MeV
- $\circ \quad \delta Ex \sim 0.5 \ MeV$
- angular resolution is important
 - *multiple scattering*

Range of low energy recoiled particles

Ranges in Deuterium Gas

We need to use gas target and vertex detector

Configuration of CNS Active Target

Requirement from kinematics

Test exp. at HIIMAC

Deuterium gas with 3 GEMs

Setup photo

Typical Event

- 100kPa D₂
- 20-21kV at top plate of field cage
- 3 GEMs
- recoiled event found
- total 30-hr data
- data size is not so large since lower-intensity beam is used than expected

3 U	2550
3D	2000
2U	1700
2D	1150
1U	850
1D	300

Summary

- B(GT+) measurement w/ (n,p) type reaction
 - (d,²He) by measuring two protons which have small relative energy
- Active Target is under development
 - designed so as to detect low (>300 keV) protons
 - test experiment w/ pure D₂ target was done