The 6th OMEG Institute@RIBF April 25th, 2012

Photon Probe for Neutrino-Nucleus Interactions

Tatsushi Shima

Research Center for Nuclear Physics, Osaka University

- Roles of neutrino-nucleus interactions in nucleosynthesis
- Formalism
- Photo-nuclear reaction experiment with monochromatic γ-rays

Neutrino-nucleus interactions play important roles in

■ matter heating due to neutrino spallation on ⁴He, ³He, ³H, D

- r-process in neutrino-driven wind; free neutrons supplied by neutrino spallation on light nuclei? post processing to original r-abundances?
- p-process; rare but unreachable by neither r- nor s-processes Double (p,γ)? Double (γ,n)? Double (v,l)? Double (v,v'n)?
- detection of SN neutrinos ; D, ⁷¹Ga, ¹⁰⁰Mo, etc.

v-heating; energy transfer via v-A interaction

Explosion energy is satisfied with ~10% increase of neutrino luminosity, or equivalently v-A reaction rates.

Isotopic composition of post-bounce supernova core

The abundance of the deuteron is $\sim \pm 2 \text{ dex of } \alpha$, and its (v,v') cross section is about one order of magnitude larger than that of α due to the low threshold energy.

Analogy between v-A and γ -A interactions

Weak operators ;

$$T_{10LJ}^{W} = g_{10LJ}^{W} \cdot \tau \cdot \left[\underline{i}^{L} r^{L} Y_{L} \right]$$
$$T_{11LJ}^{W} = g_{11LJ}^{W} \cdot \tau \cdot \left[\underline{i}^{L} r^{L} Y_{L} \times \sigma \right]$$
$$\tau = \begin{cases} \tau_{\pm} & \text{(charged current)} \\ \tau_{3}\sqrt{2} & \text{(neutral current)} \end{cases}$$

EM operators ;

$$T_{10LJ}^{EM} = g_{10LJ}^{EM} \cdot \tau_3 \sqrt{2} \cdot \left[i^L r^L Y_L \right]$$
$$T_{11LJ}^{EM} = g_{11LJ}^{EM} \cdot \tau_3 \sqrt{2} \cdot \left[i^L r^L Y_L \times \sigma \right]$$

--- Photon is a useful probe for weak nuclear responses.

$$H_{W} = \begin{cases} \frac{G_{F} \cos \theta_{C}}{\sqrt{2}} \int dx \left[J_{\lambda}^{CC}(x) L^{\lambda}(x) + H.c. \right] & \text{(Charged Current)} \\ \frac{G_{F}}{\sqrt{2}} \int dx \left[J_{\lambda}^{NC}(x) L^{\lambda}(x) + H.c. \right] & \text{(Neutral Current)} \end{cases}$$

$$J_{\lambda}^{CC}(x) = V_{\lambda}^{\pm}(x) + A_{\lambda}^{\pm}(x)$$
$$J_{\lambda}^{NC}(x) = (1 - 2\sin^2\theta_W)V_{\lambda}^3(x) + A_{\lambda}^3(x) - 2\sin^2\theta_W V_{\lambda}^S$$

Hadronic currents (Impulse Approximation)

• for C.C.

$$\langle N(p') | V_{\lambda}^{\pm}(0) N(p) \rangle = \overline{u}(p') \left[f_{V} \gamma_{\lambda} + i \frac{f_{M}}{2M_{N}} \sigma_{\lambda\rho} q^{\rho} \tau^{\pm} u(p) \right]$$

$$\langle N(p') | A_{\lambda}^{\pm}(0) N(p) \rangle = \overline{u}(p') \left[f_{A} \gamma_{\lambda} \gamma^{5} + f_{P} \gamma_{5} q_{\lambda} \right]^{\pm} u(p)$$

- for N.C. replace τ^{\pm} with $\tau^{3}/2$
- for isoscaler current

$$\left\langle N(p') \middle| V_{\lambda}^{S}(0) N(p) \right\rangle = \overline{u}(p') \left[f_{V} \gamma_{\lambda} + i \frac{f_{M}^{S}}{2M_{N}} \sigma_{\lambda \rho} q^{\rho} \right] \frac{1}{2} u(p)$$

Induced interactions on meson cloud

Hadronic currents (Exchange currents)

(1) Axial vector currents

• for C.C.

$$\overline{A_{\Delta}^{\pm}}(x) = 4\pi f_{A}\delta(x-r_{i})\int \frac{dq'e^{-iq'\cdot r}}{(2\pi)^{3}} \left[\frac{K_{\pi}^{2}(q'^{2})}{\omega_{\pi}^{2}} \left\{c_{0}q'\tau_{2}^{\pm} + d_{1}(\sigma_{1}\times q')[\tau_{1}\times\tau_{2}]^{\pm}\right\}\sigma_{2}\cdot q'\right) + \frac{K_{\rho}^{2}(q'^{2})}{\omega_{\rho}^{2}} \left\{c_{\rho}q'\times(\sigma_{2}\times q')\tau_{2}^{\pm} + d_{\rho}\sigma_{1}\times[q'\times(\sigma_{2}\times q')][\tau_{1}\times\tau_{2}]^{\pm}\right\} + (1 \Leftrightarrow 2)$$

• for N.C. replace τ_i^{\pm} and $[\tau_1 \times \tau_2]^{\pm}$ with $\tau_i^3/2$ and $[\tau_1 \times \tau_2]^3/2$

(2) Vector currents

$$V_{\Delta}^{\pm,3}(x) = -\frac{f_V + f_M}{2M_N f_A} \cdot \nabla \times \overline{A}_{\Delta}^{\pm,3}$$

Axial exchange-current mechanisms

In addition to one-body currents, meson-exchange currents (MEX) give contributions of up to $\sim 10\%$ to the total cross section.

Among all processes of MEX, largest correction to one-body is from the diagrams including $\pi N\Delta$ coupling, which can be calibrated by referring to $D(\gamma, n)p$ data.

Contribution of meson-exchange currents

S.Nakamura, T.Sato, V.Gudkov, K.Kubodera, PRC63, 034617 (2001)

Theoretical models can be tested via comparison with experimental data of analogous $D(\gamma,n)p$.

M1/E1 ratio in D(y,p)n

Calculation needs information on

• weak form factors (f_V, f_A, f_M, f_P)

nuclear β-decay, μ -capture

wave functions

nuclear potential

model (shell model, cluster, RPA, TDHF,...) approximations (one-meson exchange,

long-wave approx., Siegert theorem, ...)

EM probes --- Photonuclear reactions

p(n,γ)d; Theory v.s. Experiment

D(y,p)n data

--- Good agreement with existing data as well as theoretical calculations and fittings !

Laser Compton backscattering

Energy distributions of γ **-rays**

Bremsstrahlung, Laser Compton-Scattered γ e⁺e⁻ annihilation in flight (PH spectra of GSO scintillator) $\lambda_{laser} = 1064$ nm, E_e = 0.976GeV, I_e = 83mA Count [arb. unit] 200 e+ P_{laser}=3.53W P_{laser}=0W 100 0 5 10 15 20 Pulse Height [MeV]

BG from low-energy component of brems.

8.0

1.0

1.2

0.6

(almost) no BG !!

Advantages of LCS- γ

- Quasi-monochromatic; $\Delta E/E \sim a$ few %
- Little background γ-rays; tagging not necessary
- Well-collimated; $\Delta \theta < 0.1 \text{ mrad}$
- Highly polarized; linear or circular, P ~ 100%

 \rightarrow useful to separate E1 and M1

- Continuous or pulsed; $\Delta t < 10$ ns
- Considerable intensity; $\Phi_{\gamma} = 10^4 \sim 10^8 \gamma/s/MeV$

NewSUBARU

Lab. of Adv. Sci. and Tech. for Industry, University of Hyogo, Japan

Experiment with quasi-monochromatic γ **at NewSUBARU**

Laser Compton-scattered γ**-ray** :

 $E_{\gamma} = 1.6 \sim 40 \text{MeV}, \Phi_{\gamma} \sim 4 \times 10^4 \text{ /sec}, FWHM = 4 \sim 5\%, P \sim 100\%$

Candidate of D(y,n)p event

Event ID:

- Single track
- Vertex on beam axis
- Pulse height corresponding to proton dE/dx

⁷Li, ¹¹B production by v-spallations

Woosley et al., Woosley & Weaver, Rauscher et al., Yoshida et al.

 $\frac{{}^{4}\text{He}(v,v'p){}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}(\alpha,\gamma){}^{11}\text{B}}{{}^{4}\text{He}(v,v'n){}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}(e^{-},v_{e}){}^{7}\text{Li}}{{}^{12}\text{C}(v,v'p){}^{11}\text{B}}$ $\frac{{}^{12}\text{C}(v,v'p){}^{11}\text{C}(e^{-},v_{e}){}^{11}\text{B}}{{}^{12}\text{C}(v,v'n){}^{11}\text{C}(e^{-},v_{e}){}^{11}\text{B}}$

⁴He(γ,p)³H, ⁴He(γ,n)³He

v+4He; "ab initio" calculation

Gazit & Barnea (2007), Lorentz-Integral Transform method

v + 4He; shell-model calculation

T. Suzuki et al., PR C74 034307 (2006)

⁴He(γ,p)³H

•O RCNP-AIST2005 (PRC72, 044004) ; λ=351nm (3rd), E_e=0.8GeV

- RCNP-NewSUBARU; λ =532nm (2nd), E_e=0.97GeV
- RCNP-NewSUBARU; λ =1064nm (fund.), E_e≤1.46GeV
- RCNP-NewSUBARU;
- λ =532nm (2nd), E_e=1.06GeV

⁴He(γ,n)³He

• O RCNP-AIST2005 (PRC72, 044004) ; λ =351nm (3rd), E_e=0.8GeV

- RCNP-NewSUBARU; λ =532nm (2nd), E_e=0.97MeV
- RCNP-NewSUBARU; λ =1064nm (fund.), E_e≤1.46GeV
- RCNP-NewSUBARU; λ =532nm (2nd), E_e=1.06GeV
- Lund 2005-2007 (PRC75, 014007); tagged photons

⁷Li, ¹¹B production by v-spallations

Woosley et al., Woosley & Weaver, Rauscher et al., Yoshida et al.

 $\frac{{}^{4}\text{He}(v,v'p){}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}(\alpha,\gamma){}^{11}\text{B}}{{}^{4}\text{He}(v,v'n){}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}(e^{-},v_{e}){}^{7}\text{Li}}{{}^{12}\text{C}(v,v'p){}^{11}\text{B}}$ $\frac{{}^{12}\text{C}(v,v'p){}^{11}\text{C}(e^{-},v_{e}){}^{11}\text{B}}{{}^{12}\text{C}(v,v'n){}^{11}\text{C}(e^{-},v_{e}){}^{11}\text{B}}$

CRPA with Final State Interaction

Relative magnitude of FSI effect: T

$$T(\varepsilon_{i}) = \frac{\sigma^{CRPA}(\varepsilon_{i}) - \sigma^{CRPA + FSI}(\varepsilon_{i})}{\sigma^{CRPA}(\varepsilon_{i}) + \sigma^{CRPA + FSI}(\varepsilon_{i})}$$

¹²C(γ,p)¹¹B, ¹²C(γ,n)¹¹C

X

40

Summary

- Since H_{EM} and H_W^{NC} have analogous forms, photon can be, in principle, used as a probe for v-A interactions.
- But the photonuclear reaction cross sections are not direct analog of those for v-A interactions.
- But they can be connected to each other through common theoretical models.
- Data of total cross sections as well as differential cross sections from threshold up to ~80MeV are quite useful to test those models. → LCS-γ
- β-decay and μ-capture provide another important inputs for calculations.

Comparison with theory : ${}^{4}\text{He}(\gamma,n){}^{3}\text{He}$

- Trento (Effective Interaction Hyperspherical Harmonics)
- Bonn (Faddeev-AGS)
- Londergan-Shakin (Coupled Channel Shell Model)
- – Horiuchi, Suzuki (Cluster model)

v^{-4} He weak interaction operators

- Allowed transitions
 - Fermi type --- no contribution to T=0 nucleus
 - Gamow-Teller type: $0^+0 \rightarrow 1^+1$
- First-forbidden transitions
 - Dipole (E1) type: $0^+0 \rightarrow 1^-1$
 - Spin-dipole (SD) type: $0^+0 \rightarrow \lambda^-1$ ($\lambda = 0, 1, 2$)

v^{-4} He multipole strength Gazit & Barnea 2004

