

Tatsushi Shima

Research Center for Nuclear Physics, Osaka University

- Roles of neutrino-nucleus interactions in nucleosynthesis
- Formalism
- Photo-nuclear reaction experiment with monochromatic γ-rays

Neutrino-nucleus interactions play important roles in

■ matter heating due to neutrino spallation on ${ }^{4} \mathrm{He},{ }^{3} \mathrm{He},{ }^{3} \mathrm{H}, \mathrm{D}$
■ r-process in neutrino-driven wind; free neutrons supplied by neutrino spallation on light nuclei? post processing to original r-abundances?

■ p-process; rare but unreachable by neither r- nor s-processes Double (p, γ) ? Double (γ, n) ? Double (ν, l) ? Double ($\nu, \nu^{\prime} \mathrm{n}$)?

- detection of SN neutrinos ; $\mathrm{D},{ }^{71} \mathrm{Ga},{ }^{100} \mathrm{Mo}$, etc.

v-heating; energy transfer via v-A interaction

Explosion energy is satisfied with $\sim 10 \%$ increase of neutrino luminosity, or equivalently v-A reaction rates.

Isotopic composition of post-bounce supernova core

D, ${ }^{4} \mathrm{He}$

The abundance of the deuteron is $\sim \pm 2$ dex of α, and its (v, v^{\prime}) cross section is about one order of magnitude larger than that of α due to the low threshold energy.

Analogy between v-A and γ-A interactions

Weak operators ;

$$
\begin{array}{r}
T_{10 L J}^{W}=\mathcal{g}_{10 L J}^{W} \cdot \tau \cdot\left[i^{L} r^{L} Y_{L}\right] \\
T_{11 L J}^{W}=g_{11 L J}^{W} \cdot \tau \cdot\left[i^{L} r^{L} Y_{L} \times \sigma\right] \\
\tau=\left\{\begin{array}{cc}
\tau_{ \pm} & \text {(charged current) } \\
\tau_{3} \sqrt{2} & \text { (neutral current) }
\end{array}\right.
\end{array}
$$

EM operators ;

$$
\begin{aligned}
& \boldsymbol{T}_{10 L J}^{E M M}=\boldsymbol{g}_{10 L J}^{E M} \cdot \tau_{3} \sqrt{2} \cdot\left[\dot{i}^{L} r^{L} \boldsymbol{Y}_{L}\right] \\
& \boldsymbol{T}_{11 L J}^{E M}=\boldsymbol{g}_{11 L J}^{E M} \cdot \tau_{3} \sqrt{2} \cdot\left[\dot{i}^{L} \boldsymbol{r}^{L} \boldsymbol{Y}_{L} \times \sigma\right]
\end{aligned}
$$

--- Photon is a useful probe for weak nuclear responses.

Hamiltonian

$$
\begin{aligned}
& H_{W}= \begin{cases}\frac{G_{F} \cos \theta_{C}}{\sqrt{2}} \int d x\left[J_{\lambda}^{C C}(x) L^{\lambda}(x)+\text { H.c. }^{-}\right. & \text {(Charged Current) } \\
\frac{G_{F}}{\sqrt{2}} \int d x\left[J_{\lambda}^{N C}(x) L^{\lambda}(x)+\text { H.c. }\right] & \text { (Neutral Current) }\end{cases} \\
& J_{\lambda}^{C C}(x)=V_{\lambda}^{ \pm}(x)+A_{\lambda}^{ \pm}(x) \\
& J_{\lambda}^{N C}(x)=\left(1-2 \sin ^{2} \theta_{W}\right) V_{\lambda}^{3}(x)+A_{\lambda}^{3}(x)-2 \sin ^{2} \theta_{W} V_{\lambda}^{S}
\end{aligned}
$$

Hadronic currents (Impulse Approximation)

- for C.C.
$\left\langle N\left(p^{\prime}\right) \mid V_{\lambda}^{ \pm}(0) N(p)\right\rangle=\bar{u}\left(p^{\prime}\right)\left[f_{V} \gamma_{\lambda}+i \frac{f_{M}}{2 M_{N}} \sigma_{\lambda \rho} q^{\rho}\right] \tau^{ \pm} u(p)$
$\left.\left\langle N\left(p^{\prime}\right) \mid A_{\lambda}^{ \pm}(0) N(p)\right\rangle=\bar{u}\left(p^{\prime}\right)\left[f_{A} \gamma_{\lambda} \gamma^{5}+f_{P} \gamma_{5} q_{\lambda}\right]\right]^{ \pm} u(p)$
- for N.C. replace $\tau^{ \pm}$with $\tau^{3} / 2$
- for isoscaler current

$$
\left.\left.\left\langle N\left(p^{\prime}\right)\right| V_{\lambda}^{S}(0)\right) N(p)\right\rangle=\bar{u}\left(p^{\prime}\right)\left[f_{V} \gamma_{\lambda}+i \frac{f_{M}^{S}}{2 M_{N}} \sigma_{\lambda \rho} q^{\rho}\right] \frac{1}{2} u(p)
$$

Induced interactions on meson cloud

Hadronic currents (Exchange currents)

(1) Axial vector currents

- for C.C.

$$
\begin{aligned}
& \overline{A_{\Delta}^{ \pm}}(x)=4 \pi f_{A} \delta\left(x-r_{i}\right) \int \frac{d q^{\prime} e^{-i q^{\prime} \cdot r}}{(2 \pi)^{3}}\left[\frac{K_{\pi}^{2}\left(q^{\prime 2}\right)}{\omega_{\pi}^{2}}\left\{\left\{_{0} q^{\prime} \tau_{2}^{ \pm}+d_{1}\left(\sigma_{1} \times q^{\prime}\right)\left[\tau_{1} \times \tau_{2}\right]\right\} \sigma_{2} \cdot q^{\prime}\right)\right. \\
& +\frac{K_{\rho}^{2}\left(q^{\prime 2}\right)}{\omega_{\rho}^{2}}\left\{_{\rho} q^{\prime} \times\left(\sigma_{2} \times q^{\prime}\right) \tau_{2}^{ \pm}+d_{\rho} \sigma_{1} \times\left[q^{\prime} \times\left(\sigma_{2} \times q^{\prime}\right) \tau_{1} \times \tau_{2}\right]\right\}+(1 \leftrightarrow 2)
\end{aligned}
$$

- for N.C. replace $\tau_{\mathrm{i}}{ }^{ \pm}$and $\left[\tau_{1} \times \tau_{2}\right]^{ \pm}$with $\tau_{\mathrm{i}}^{3 / 2}$ and $\left[\tau_{1} \times \tau_{2}\right]^{3 / 2}$
(2) Vector currents

$$
V_{\Delta}^{ \pm, 3}(x)=-\frac{f_{V}+f_{M}}{2 M_{N} f_{A}} \cdot \nabla \times \bar{A}_{\Delta}^{ \pm, 3}
$$

$$
\square
$$

Axial exchange-current mechanisms

In addition to one-body currents, meson-exchange currents (MEX) give contributions of up to $\sim 10 \%$ to the total cross section.

Among all processes of MEX, largest correction to one-body is from the diagrams including $\pi N \Delta$ coupling, which can be calibrated by referring to $\mathbf{D}(\gamma, \mathbf{n}) \mathbf{p}$ data.

Contribution of meson-exchange currents

$$
\mathrm{d}\left(v, v^{\prime}\right) \mathrm{pn}
$$

$$
\mathrm{d}\left(\mathrm{v}, \mathrm{e}^{-}\right) \mathrm{pp}
$$

S.Nakamura, T.Sato, V.Gudkov, K.Kubodera, PRC63, 034617 (2001)

Theoretical models can be tested via comparison with experimental data of analogous $\mathbf{D}(\gamma, \mathbf{n}) \mathbf{p}$.

M1/E1 ratio in $\mathbf{D}(\gamma, \mathbf{p}) \mathbf{n}$

Calculation needs information on

- weak form factors ($f_{V}, f_{A}, f_{M}, f_{P}$)
- wave functions
\int nuclear potential
model (shell model, cluster, RPA, TDHF,...)
approximations (one-meson exchange,
long-wave approx., Siegert theorem, ...)
\checkmark EM probes --- Photonuclear reactions

p(n, γ)d; Theory v.s. Experiment

$\mathbf{D}(\gamma, \mathbf{p}) \mathrm{n}$ data

--- Good agreement with existing data as well as theoretical calculations and fittings !

Laser Compton backscattering

Relativistic electron (E_{e})

Klein-Nishina formula

$$
E_{\gamma}=\frac{4 h c}{\lambda_{L}} \cdot \frac{\gamma^{2}}{1+\gamma^{2} \theta^{2}}, \quad \gamma=\frac{E_{e}}{m_{e} c^{2}}
$$

ex. $\lambda_{L}=1.064 \mu \mathrm{~m}, E_{e}=800 \mathrm{MeV}$
$\Rightarrow E_{\gamma}=11 \mathrm{MeV}$

Energy distributions of γ-rays

Bremsstrahlung, $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation in flight

BG from low-energy component of brems.

Laser Compton-Scattered γ (PH spectra of GSO scintillator)

(almost) no BG !!

Advantages of LCS- γ

■ Quasi-monochromatic; $\Delta \mathrm{E} / \mathrm{E} \sim$ a few \%

- Little background γ-rays; tagging not necessary
- Well-collimated; $\Delta \theta<0.1$ mrad
- Highly polarized; linear or circular, P ~ 100\% \rightarrow useful to separate E1 and M1
- Continuous or pulsed; $\Delta \mathrm{t}<10 \mathrm{~ns}$
- Considerable intensity; $\Phi_{\gamma}=10^{4} \sim 10^{8} \gamma / \mathrm{s} / \mathrm{MeV}$

Lab. of Adv. Sci. and Tech. for Industry, University of Hyogo, Japan

NewSUBARU/LCS- γ source

Experiment with quasi-monochromatic γ at NewSUBARU

Laser Compton-scattered γ-ray :

$E_{\gamma}=1.6 \sim 40 \mathrm{MeV}, \Phi_{\gamma} \sim 4 \times 10^{4} / \mathrm{sec}$, FWHM=4~5\%, P~100\%
Electron Storage Ring "NewSUBARU"

Candidate of $\mathbf{D}(\gamma, \mathbf{n}) \mathbf{p}$ event

Event ID:

- Single track
- Vertex on beam axis
- Pulse height corresponding to proton $\mathrm{dE} / \mathrm{dx}$

${ }^{7} \mathrm{Li}^{11}{ }^{11} \mathrm{~B}$ production by v-spallations

Woosley et al., Woosley \& Weaver, Rauscher et al., Yoshida et al.
${ }^{4} \mathrm{He}\left(\nu, v^{\prime} p\right)^{3} \mathrm{H}(\alpha, \gamma)^{7} \mathrm{Li}(\alpha, \gamma)^{11} \mathrm{~B}$
${ }^{4} \mathrm{He}\left(\nu, \nu^{\prime} \mathrm{n}\right)^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}\left(\mathrm{e}^{-}, v_{\mathrm{e}}\right)^{7} \mathrm{Li}$

$$
\begin{aligned}
& \frac{{ }^{12} \mathrm{C}\left(v, v^{\prime} \mathrm{p}\right){ }^{11} \mathrm{~B}}{{ }^{12} \mathrm{C}\left(v_{1}, v^{\prime} n\right)^{11} \mathrm{C}\left(e^{-}, v_{e}\right){ }^{11} \mathrm{~B}}
\end{aligned}
$$

${ }^{4} \mathrm{He}\left(\gamma_{l} \mathbf{p}\right)^{\mathbf{3}} \mathbf{H},{ }^{4} \mathrm{He}(\gamma, \mathbf{n}){ }^{\mathbf{3}} \mathrm{He}$

${ }^{4} \mathrm{He}(\gamma, p)^{3} \mathrm{H}$

${ }^{4} \mathrm{He}(\gamma, \mathrm{n}){ }^{3} \mathrm{He}$

$\nu+{ }^{4} \mathrm{He}$; "ab initio" calculation

Gazit \& Barnea (2007), Lorentz-Integral Transform method

$v+{ }^{4} \mathrm{He}$; shell-model calculation

T. Suzuki et al., PR C74 034307 (2006)

(v, e^{-})

$\left(v, v^{\prime}\right)$

${ }^{4} \mathrm{He}\left(\gamma_{,} \mathbf{p}\right)^{3} \mathrm{H}$

RCNP-AIST2005 (PRC72, 044004) ; $\lambda=351 \mathrm{~nm}$ (3rd), $\mathrm{E}_{\mathrm{e}}=0.8 \mathrm{GeV}$

- RCNP-NewSUBARU; $\lambda=532 \mathrm{~nm}$ (2nd), $\mathrm{E}_{\mathrm{e}}=0.97 \mathrm{GeV}$
- RCNP-NewSUBARU; $\lambda=1064 n m$ (fund.), $\mathrm{E}_{\mathrm{e}} \leq 1.46 \mathrm{GeV}$
- RCNP-NewSUBARU; $\quad \lambda=532 \mathrm{~nm}$ (2nd), $\mathrm{E}_{\mathrm{e}}=1.06 \mathrm{GeV}$

${ }^{4} \mathrm{He}(\gamma, \mathrm{n}){ }^{\mathbf{3}} \mathrm{He}$

- O RCNP-AIST2005 (PRC72, 044004) ; $\lambda=351 \mathrm{~nm}$ (3rd), $\mathrm{E}_{\mathrm{e}}=0.8 \mathrm{GeV}$
- RCNP-NewSUBARU; $\lambda=532 \mathrm{~nm}$ (2nd), $\mathrm{E}_{\mathrm{e}}=0.97 \mathrm{MeV}$
- RCNP-NewSUBARU; $\lambda=1064 \mathrm{~nm}$ (fund.), $\mathrm{E}_{\mathrm{e}} \leq 1.46 \mathrm{GeV}$
- RCNP-NewSUBARU; $\quad \lambda=532 \mathrm{~nm}$ (2nd), $\mathrm{E}_{\mathrm{e}}=1.06 \mathrm{GeV}$
- Lund 2005-2007 (PRC75, 014007); tagged photons

${ }^{7} \mathrm{Li}^{11}{ }^{11} \mathrm{~B}$ production by v-spallations

Woosley et al., Woosley \& Weaver, Rauscher et al., Yoshida et al.
${ }^{4} \mathrm{He}\left(\nu, v^{\prime} p\right)^{3} \mathrm{H}(\alpha, \gamma)^{7} \mathrm{Li}(\alpha, \gamma)^{11} \mathrm{~B}$
${ }^{4} \mathrm{He}\left(\nu, \nu^{\prime} \mathrm{n}\right)^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}\left(\mathrm{e}^{-}, v_{\mathrm{e}}\right)^{7} \mathrm{Li}$

$$
\begin{aligned}
& \frac{{ }^{12} \mathrm{C}\left(v, v^{\prime} \mathrm{p}\right){ }^{11} \mathrm{~B}}{{ }^{12} \mathrm{C}\left(v_{1}, v^{\prime} n\right)^{11} \mathrm{C}\left(e^{-}, v_{e}\right){ }^{11} \mathrm{~B}}
\end{aligned}
$$

Continuum RPA
 A. Botrugno and G. Co',

Nucl. Phys. A761 (2005) 200

CRPA with Final State Interaction

Relative magnitude of FSI effect: $\quad T\left(\varepsilon_{i}\right)=\frac{\sigma^{C R P A}\left(\varepsilon_{i}\right)-\sigma^{C R P A+F S I}\left(\varepsilon_{i}\right)}{\sigma^{C R P A}\left(\varepsilon_{i}\right)+\sigma^{C R P A+F S I}\left(\varepsilon_{i}\right)}$

Photoabsorption

${ }^{12} \mathbf{C}\left(\gamma_{r} \mathbf{P}\right){ }^{11} \mathbf{B},{ }^{12} \mathbf{C}\left(\gamma_{r} \mathbf{n}\right){ }^{11} \mathbf{C}$

Summary

■ Since $H_{E M}$ and $H_{W}^{N C}$ have analogous forms, photon can be, in principle, used as a probe for v-A interactions.

- But the photonuclear reaction cross sections are not direct analog of those for v-A interactions.
- But they can be connected to each other through common theoretical models.
- Data of total cross sections as well as differential cross sections from threshold up to $\sim 80 \mathrm{MeV}$ are quite useful to test those models. \rightarrow LCS- γ

■ β-decay and μ-capture provide another important inputs for calculations.

Comparison with theory: ${ }^{\mathbf{4}} \mathrm{He}(\gamma, \mathbf{n}){ }^{\mathbf{3}} \mathrm{He}$

O O RCNP-AIST
$\bullet \bullet$ RCNP-NewSUBARU

- Lund 2005-2007
- Trento (Effective Interaction Hyperspherical Harmonics)
- Bonn (Faddeev-AGS)
- Londergan-Shakin (Coupled Channel Shell Model)
- - - Horiuchi, Suzuki (Cluster model)

${ }^{v}-{ }^{4} \mathrm{He}$ weak interaction operators

- Allowed transitions
- Fermi type --- no contribution to $\mathrm{T}=0$ nucleus
- Gamow-Teller type: $0^{+} 0 \rightarrow 1^{+} 1$
- First-forbidden transitions
- Dipole (E1) type: $0^{+} 0 \rightarrow 1-1$
- Spin-dipole (SD) type: $0^{+} 0 \rightarrow \lambda-1(\lambda=0,1,2)$

v-4He multipole strength Gazit \& Barnea 2004

