Double-beta decay and charge exchange reactions

Apr 25, 2012

Double beta decay

Double beta decay (DBD):

decay process where a nucleus releases

two beta rays as a single process

example: $A = 100 (^{100}Mo)$

DBD nuclei (observed so far):

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U

Two modes

forbidden in "standard" model

CDBD

- Ov mode $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$
 - 2v mode $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu_e}$

Ov event ...

- \rightarrow v is Majorana particle.
- → absolute mass is deduced from the half life. ...mass hierarchy

 \rightarrow origin of matter / antimatter imbalance?

 \rightarrow ...

Ov labs

Nuclear Matrix Elements

...0v DBD occurs in nucleus

- second order process
- intermediate states:
 - g.s.
 - other states of various J^{π} .

NME is important!

- analysis ... absolute mass / mass limit of v
- search planning ... which nucleus is the best candidate?

Reliability of NME (2005)

Ex) ⁷⁶Ge

$0\nu\beta\beta$ Matrix Element: Decomposition in the pnQRPA

Suhonen, 2005

Shell model? QRPA?

- Each has uncertainty of ~ 30%
- SM predictions ...
 20-50% smaller than QRPA.

SM : limited model space QRPA : sufficient correlation?

FIG. 3 (color online). The neutrinoless double beta decay NME's; comparison of ISM and QRPA calculations. Tu07; QRPA results from Ref. [20]. Jy07; QRPA results from Ref. [21]. ISM $s \le 4$ and ISM; present work. The ISM results have uncertainties in the 20% range (see text).

GT transitions and 2v-DBD

$2\nu\beta\beta$ decay

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu_e}$

- second order weak process
- rarest process confirmed so far
- if thoroughly understood,
 it helps analysis of 0vββ decay rate.

Half-life and matrix element:

$$\begin{pmatrix} T_{1/2}^{2\nu} \end{pmatrix}^{-1} = G^{2\nu} |M_{DGT}^{2\nu}|^{2}$$

$$M_{DGT}^{2\nu} = \sum_{m} \frac{\langle f \| O_{GT-} \| m \rangle \langle m \| O_{GT-} \| i \rangle}{E_{m} - (M_{i} + M_{f})/2}$$

$$\text{GT operator:} \quad O_{GT\pm} = \sum_{j} \sigma_{j} t_{\pm}$$

$$\text{GT strength:} \quad B(GT^{\pm}) = \left| \langle j \| O_{GT\pm} \| i \rangle \right|^{2}$$

Half lives ... not understood well Suhonen et al., PR300(1998)123

Nucleus	Exp T _{1/2} (y)	Calc T _{1/2} (y)
⁴⁸ Ca	~ 4.3 x 10 ¹⁹	(1.3 – 6.0) x 10 ¹⁹
⁷⁶ Ge	~ 1.4 x 10 ²¹	(0.8 – 1.4) x 10 ²¹
⁸² Se	~ 0.9 x 10 ²⁰	(0.1 – 1.1) x 10 ²⁰
⁹⁶ Zr	~ 2.1 x 10 ¹⁹	(3.0 – 11) x 10 ¹⁹
¹⁰⁰ Mo	~ 8.0 x 10 ¹⁸	(1.7 – 32) x 10 ¹⁸
¹¹⁶ Cd	~ 3.3 x 10 ¹⁹	(5.1 – 10) x 10 ¹⁹
¹²⁸ Te	~ 2.5 x 10 ²⁴	(0.6 – 37) x 10 ²⁴
¹³⁰ Te	~ 0.9 x 10 ²¹	(0.3 – 2.7) x 10 ²¹
¹⁵⁰ Nd	~ 7.0 x 10 ¹⁸	(6.7 – 27) x 10 ¹⁸

B(GT) in low-lying states

GT strengths:

Low lying states ... high resolution measurements

⁴⁸Ca(³He,t) @ 140A MeV (RCNP) ⁴⁸Ti(d,²He) @ 90A MeV (KVI)

Current understanding by shell model

Same as Horoi et al. PRC75(2007)034303

Aim

- If your strategy is to check or constrain the theoretical calculations, you need the full snapshots of the B(GT) distribution.
- B(GT^{+/-}) distributions were studied up to the continuum, in the intermediate nuclei,

⁴⁸Sc, ¹¹⁶In.

- Measurement
 - $E_{\text{beam}} = 300 \text{ MeV}$ $- \theta = 0^{\circ} \sim 12^{\circ}$
 - ⁴⁸Ca(p,n)⁴⁸Sc ⁴⁸Ti(n,p)⁴⁸Sc ¹¹⁶Cd(p,n)¹¹⁶In ¹¹⁶Sn(n,p)¹¹⁶In

(p,n) & (n,p) at 300 MeV

Advatages

- Simple reaction mechanism
- 300 MeV:
 - 1. Effective interaction favors Spin-flip transitions over Non-Spin-flip ones

 (t_{τ}/t_{τ})

- $(t_{\sigma\tau}, t_{\tau}, t_{\tau})$ $\Rightarrow \text{ GT transitions are most clearly seen.} (100)$ $2. \text{ Distortion effects are smallest } (t_0).$ $\Rightarrow \text{ analysis with DWIA is reliable.}$ $3. \text{ Tensor interaction is smallest } (t_{\tau}^T).$ $\Rightarrow \text{ Proportionality relation is reliable.}$ $4 \text{ cross section } \Leftrightarrow \text{ strength}$ $H = b_{TT}$
- Multipole decomposition analysis works best.

(p,n) & (n,p) facilities at RCNP

⁴⁸Ca(p,n) measurement

• ⁴⁸Ca target

excitation energy (MeV)

(n,p) measurement

K.Y. et al., NIMA592(2008)88

⁴⁸Ti(n,p) spectra

• angular range 0 -12 deg

- energy resolution
 1.2 MeV
- statistical accuracy 1--3% / 2MeV-1deg
- systematic uncertainty 4%

Examples of angular distribution

Decomposed angular distributions [⁴⁸Ti(n,p)] Miki

B(GT^{+/-}) distribution

K.Y. et al., PRL103(2009)012503

B(GT^{+/-}) distribution ... comparison with shell model

Shell model ...

with quenched operator Spectra agree qualitatively up to ...

 $(p,n) : E_x = 15 \text{ MeV}$ (n,p) : 8 MeVStrengths beyond ... underestimated.

(n,p) channel : $\Sigma B(GT^+;exp) = 1.9 \pm 0.3...$ (w subtraction of IVSM)

 $\Sigma B(GT^+;ShellModel(Q_F=0.6)) = 0.9$

The "best" calculations fail to account for the spectra. Necessity of larger model space? Correlations?, ...

Study of Gamow-Teller transition strengths in the intermediate nucleus ¹¹⁶In of the ¹¹⁶Cd double-β decay via the ¹¹⁶Cd(p,n) and ¹¹⁶Sn(n,p) reactions at 300 MeV

Masaki Sasano (RIKEN)

QRPA calculation with a large model space

QRPA prediction (GT + IVSM) (Rodin et al., Tuebingen Univ.)

Large model space (34 levels)

- \Rightarrow Enough for 2hw excitation by Rodin et al.
 - quenching factor, 0.843 & $g_{pp} = 0.5$
 - \Rightarrow adjusted for M(2v) and β decays from the 116ln g.s.

Transition density

- + DWIA calculation (DW81) (κ. Amos, A. Faessler and V. Rodin, Phys. Rev. C 76, 014604 (2007))
 Base: H.O. b=2.23 fm NN int. : FL325MeV Global optical potential by Cooper & Hama
- ⇒ Cross sections
- ⇒ Strengths
- ⇒ Smearing with escape width & exp. res.
 (Rodin & Urin, Phys. of Atomic Nuclei, 66 (2009), 2128)

Comparison

 β - : strengths in the low energy region to be pushed up β +: extra strength of about 2 and/or strengths around 22 MeV to be pushed down

	Theo.			Exp.	
	GT	IVSM	GT+IVSM	GT+IVSM	
β+	0.4	5.4	6.8	11±1	
β-	42	4	52	45±8	
Interf. : ~15%					

Summary

- Study of beta-type transitions in DBD nuclei can guide / constrain the structure theories used in the prediction of NME.
- We measured the cross section spectra for the ⁴⁸Ca(p,n)⁴⁸Sc / ⁴⁸Ti(n,p)⁴⁸Sc reactions and the ¹¹⁶Cd(p,n)¹¹⁶In / ¹¹⁶Sn(n,p)¹¹⁶In reactions

at 300 MeV.

- MD analysis \rightarrow B(GT^{+/-}) distribution (E_x < 30 MeV)
- ${}^{48}Ca \rightarrow {}^{48}Sc \rightarrow {}^{48}Ti$ [PRL103(2009)012503]
 - $-\Sigma B(GT) = 15.3 \pm 2.2$
 - $\Sigma B(GT^{+}) = 2.8 \pm 0.3$
 - shell model predictions :
 - B(GT⁻): good agreement up to GTGR ($E_x < 15$ MeV).
 - B(GT⁺): reasonable for $E_x < 8$ MeV,

underestimation for $E_x > 8 \text{ MeV}$

• Watch out! Current predictions of 0v-NME might be a way off!