低光度活動銀河核の降着流からの 高エネルギー粒子放射

SSK, Murase, & Toma, 2014 arXiv:1411.3588

木村成生 (大阪大学D3)

共同研究者 當真賢二(東北大学) 村瀬孔太(プリンストン高等研究所)

- 低光度活動銀河核
- Collisionless FlowとRIAF 中での粒子加速
- ・ダイナミクスへの影響
- IceCube neutrino
- ·研究目的

低光度活動銀河核(LLAGN)

 $L_{H\alpha} \leq 3 \times 10^{41} \text{ erg/s}$

(Mahadevan+'97

Blue Bump がない → 標準降着円盤がない

ーー>降着流はRadiation Inefficient Accretion Flow (RIAF)

乱れた磁場のリコネクション → 非熱的粒子生成

降着流中の高エネルギー粒子

- ・ 降着流内の高エネルギー陽子は降着流内の
 - 陽子や光子と反応
- ・パイオン生成反応
 - $p + p \longrightarrow p + p + A(\pi^{+} + \pi^{-}) + B\pi^{0}$ $p + \gamma \longrightarrow n + \pi^{+} \text{ or } p + \pi^{0}$ $\pi^{\pm} \longrightarrow e^{\pm} + 3\nu$
- ・陽子の拡散による逃走
- ・trelax >> tdissより、加速陽子の注入率は高くなりうる

陽子によるエネルギー損失あり ダイナミクスへの影響は?

SSK, Toma, & Takahara '14

・加熱率の一部faccelが非熱的粒子の加速に使われると仮定して

降着流の構造を解いた (I次元, α粘性, mono-E_p CR)

I. 力学構造への影響はほとんどない (Lloss << 0.1 Mc²)

ニュートリノやガンマ線の光度~10⁻⁵-10⁻³ Mc² (~ Lx of LLAGN)
 無理矢理エネルギーを抜けばケプラー円盤 (Lloss ~ 0.1 Mc²)

地球外ニュートリノの観測

Aartsen et al. '13

Aartsen et al. '14

Ice Cube が IOTeVから PeVの Neutrinoを検出 観測された ν スペクトルの特徴
1. 強度はUHECRと同程度
2. スペクトル指数 ~ 2.3 - 2.5

・起源天体は不明

galaxy mergers, GRBs, Starburst Galaxy, AGN(Blazars, Quasars, Seyferts) などが考えられてきた 低光度活動銀河核(LLAGN)の 降着流(RIAF)は?

研究目的

・降着流内で粒子加速がおこる

→乱流加速で実現するスペクトルは?

- ・拡散や反応によりp, v(, y)が降着流から逃走
 逃走粒子のスペクトルの特徴は?
- LLAGN は数が多い

Ho '08

N_{LLAGN} ~ 0.01Mpc⁻³ >> N_{Seyfert} ~ 10⁻⁴ Mpc⁻³ →個々は暗くても背景放射に寄与する可能性あり

→ LLAGNは 天体ニュートリノの起源になり得るか?

RIAFからの p, v(, y)放射

- ・モデル、背景場
- ・タイムスケール
- ・逃走粒子のスペクトル

MODEL

- One Zone model
- Physical Quantities in RIAF $(H \sim R)$

 $v_r = \alpha v_K \qquad n_p = \frac{M}{2\pi R^2 v_r m_p} \qquad P_{th} = n_p k_B T_{vir} = n_p \frac{GM_{BH}}{3R} m_p \qquad B = \sqrt{\frac{8\pi P_{th}}{\beta}}$

Parameters : $\alpha, \beta, r = R/Rs, \dot{m} = \dot{M}/\dot{M}_{Edd}, M_{BH}$ Fixed parameters : $\alpha = 0.1, \beta = 3, r = 10$ $R = 2.95 \times 10^{13} r_1 M_{BH,7} \text{ cm},$ $v_r = 6.7 \times 10^8 r_1^{-1/2} \alpha_{-1} \text{ cm s}^{-1},$ $n_p = 1.1 \times 10^9 r_1^{-3/2} \alpha_{-1}^{-1} M_{BH,7}^{-1} \dot{m}_{-2} \text{ cm}^{-3},$ $B = 4.9 \times 10^2 r_1^{-5/4} \alpha_{-1}^{-1/2} \beta_3^{-1/2} M_{BH,7}^{-1/2} \dot{m}_{-2}^{1/2}$ Gauss

TARGET PHOTONS

Synchrotron & Bremsstrahlung : Fitting Formula (Narayan & Yi '95)

Inverse Compton: 種光子はSynch. + Brems cf.) Coppi & Blandford '90, Kino+ '00

rems.^v

6

└ log(v[Hz])

8

パラメータ $\theta_{e} = kT_{e}/(m_{e}c^{2})$ (I $\leq \theta_{e} \leq 4$) Sharma+, 07

Stochastic Acceleration

・ 相対論的陽子はFokker-Plank方程式に従うとする

$$\frac{\partial}{\partial t}f = \frac{1}{p^2}\frac{\partial}{\partial p}\left[p^2\left(D_p\frac{\partial}{\partial p}f + \frac{f}{t_{cool}/p}\right)\right] - \frac{f}{t_{esc}} + \dot{f}_{inj}$$
e.g. St

e.g. Stawarz & Petrosian '08

We get steady state solution by solving time evolution Chang & Cooper '70

加速:運動量空間での拡散 逃走:落下+拡散 冷却:pp+p**y**+synchrotron

乱流のパラメータ
spectrum index :**q**
$$P(k) \propto k^{-q}$$

turbulent strength: **ζ**
 $\zeta = 8\pi \int P(k) dk / B_0^2$

タイムスケールの比較

- ・最高エネルギーはescape limit
- · m大→低Epでpp、高Epでpγ

 $\alpha = 0.1, \beta = 3, r = 10, \theta_e = 2$ $M_{BH} = 10^7 M_{sun}, q = 5/3, \zeta = 0.1$

· m小→低Epでpp、高Epで proton synchrotron

逃走陽子スペクトル

逃走ニュートリノスペクトル

- ・Ev小ではppが支配的 EvLEv ~ η crMBH m²,
- E_v大でpγが効く
- ・生成効率は良くない fm ~ 0.001 0.1

 $\alpha = 0.1, \beta = 3, r = 10,$ $\theta_e = 2, q = 5/3, \eta_{cr} = 0.01$ $\dot{m} = 0.01, M_{BH} = 10^7$

母銀河に閉じ込められた場合

 $f_{\pi,\text{gal}} \simeq K_{pp} n_{p,\text{gal}} \sigma_{pp} c t_{\text{trap}} \sim 4 \times 10^{-4} \left(\frac{E_p}{100 \text{ PeV}}\right)^{-0.3}$

・銀河団に閉じ込められた場合

 $f_{\pi,IGM} \sim 0.76 \times 10^{-2}$ ($E_p \sim 100 \text{PeV}$, $n_{IGM} \sim 10^{-4} \text{ cm}^{-3}$)

母銀河の閉じ込めはPeV neutrino には効かない 加速が非効率ならγ線放射には効く可能性有り

背景ニュートリノと宇宙線陽子

LLAGNの光度関数

・背景ニュートリノスペクトル

・宇宙線陽子スペクトル

X-ray背景放射には効かない

Diffuse Neutrino Flux from LLAGN

 $L = L \times (\dot{\mathbf{m}}, \theta_{e}, \mathbf{M}_{BH})$

fixed θ_e , MBH

ṁ⇔Lx

Diffuse Neutrino Flux from LLAGN

$$\Phi_{\nu} = \frac{c}{4\pi H_0} \int_0^{z_{max}} \frac{dz}{\sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda}} \int_{L_{min}}^{L_{max}} dL_X \phi(L_X) \frac{L_{E_{\nu}'}(L_X)}{E_{\nu'}'}$$

model	$M_{\rm BH}[M_{\odot}]$	$ heta_e$	ζ	$\eta_{ m cr}$
B1	10^{7}	2.0	0.18	6×10^{-3}
B2	10^{8}	3.0	0.13	9×10^{-3}
B3	10^{7}	1.5	0.06	2.5×10^{-2}
B4	10^{8}	2.0	0.05	1.5×10^{-2}

まとめ

・高エネルギーニュートリノの起源について低光度活動銀
 河核の降着流を検証した

- ・典型的には最高エネルギーは加速=逃走で決まる 乱流場の特性ζやqが重要なパラメータ
- ・典型的には $E_pL_{Ep} \sim 3 \times 10^{40}$ erg/s, $E_{p,peak} \sim 2 PeV$

E_vL_{Ev} ~ 3x10³⁸ erg/s, E_{v,peak} ~ 100 TeV ・E_vが小さいとpp が卓越、E_v が大きいとpγ が効率的

・ニュートリノ生成効率は低い fm ~ 0.001 - 0.1

・LLAGNの光度関数を使ってニュートリノ背景放射を計算 →無理のないパラメータでIceCube 天体ニュートリノに寄与