京を用いた連星磁場中性子星合体の数値相対論シミュレーション

木内建太 (YITP)

Ref.) PRD 90, 041502(R) (2014)

久徳浩太郎 (UWM), 関口雄一郎 (YITP), 柴田大 (YITP), 和田智秀 (筑波技術大)

Motivation

- 1. Gravitational waves = ripples of the space-time
- ▶ Verification of GR
- ▶ The EOS of neutron star matter
- ▶ The central engine of SGRB
- ▶~10 events / yr for KAGRA

GW detectors

- 2. A possible site of the r-process synthesis
- A significant amount of neutron star matter could be ejected from BNS mergers $(M_{\rm eje} \approx 10^{-4}\text{--}10^{-2} \mathrm{M}_{\odot}, \text{Hotokezaka et al. 13})$
- ⇒Nuclear synthesis in the éjecta (Lattimer & Schramm 76)
- ▶ Radio active decay of the r-process elements
- ► Electromagnetic counterpart = kilonova (Li-Paczynski 98, Kulkarni 05, Metzger et al. 10, Kasen et al. 13, Barnes-Kasen 13, Tanaka-Hotokezaka 13, Hotokezaka et al. 13, Takami-Nozawa-loka 14)
- ▶ NIR excess in afterglow of GRB130603B (Berger et al.13, Tanvir et al. 13)

A step toward physically reliable model of BNS mergers Kyoto NR group approaches from two directions;

Period (s)

Japanese supercomputer K@AICS

▶ Total peak efficiency is 10.6 PFLOPS (663,552 cores)

This study is one of the main subject of the HPCI strategic program field 5.

Numerical Relativity simulation of magnetized BNS mergers

- ► High resolution $\Delta x=70$ m (16,384 cores on K)
- ► Medium resolution $\Delta x=110$ m (10,976 cores on K)
- ▶Low resolution $\Delta x=150m$ (XC30, FX10 etc.)
- c.f. Radii of NS~10km, the highest resolution of the previous work is ∆x≈180m (Liu et al. 08, Giacomazzo et al. 11, Anderson et al. 08)

Nested grid \Rightarrow Finest box=70km³, Coaserest grid =4480km³ (N \sim 10⁹) , a long term simulation of about 100 ms

Magnetic field lines of NS

Fiducial model

EOS: H4 (Gledenning and Moszkoski 91) (M_{max}≈2.03M_☉)

Mass: 1.4-1.4 M_o

B-field: 10¹⁵G

Evolution of the magnetic field energy

Amplification via KH vortices @ the merger (Rasio and Shapiro 99)

Local box simulation (Zrake and MacFadyen 13, Obergaulinger et al. 10)

Time evolution of

Can really the KH vortices amplify the B-fields?

Yes!

Field lines and strength @ merger Amplification factor vs resolution

- ▶ The smaller $\triangle x$ is, the higher growth rate is.
- ► The amplification factor does not depend on the initial magnetic field strength
- ▶ It is consistent with the amplification mechanism due to the KH instability. (Obergaulinger et al. 10, Zrake and MacFadyen 13)

Field lines and density iso-contour inside HMNS

- ► Turbulent state inside HMNS
- ► HMNS is differentially rotating ⇒ Unstable against the Magneto Rotational Instability (Balbus-Hawley 92)
- ► Magnetic winding works as well

B-field amplification inside HMNS

Density contour of HMNS (Meridional

Magnetic field energy inside

BG1e9d\$€Aerg\$ ir0109d£€c ≤ p
≤ 10a+1g/cc Bb=BD-B4 for highres. run

- ▶ The condition $\lambda_{MRI,\phi}/\Delta x \gtrsim 10$ is satisfied for the high and medium run, but not in low run. B = Toroidal magnetic field
- ► Growth rate of B-fields for 8 14 ms \approx 130-140Hz \sim O(0.01) Ω
- ▶B-field amplification is cause by the non-axisymmetric MRI (Balbus Hawley 92)

Black hole—accretion torus

- ▶ We have not found a jet launch.
- ▶ Ram pressure due to the fall back motion \sim 10²⁸ dyn/cm²(Need 10¹⁴⁻¹⁵G in the vicinity of the torus surface)
- ▶ Necessity of the poloidal motion to build a global poloidal field

- ►KH instability at the merger and MRI inside the HMNS \Rightarrow Significant amplification of B-fields
- ►Low res. run cannot follow this picture ⇒ Amplification inside the BH-torus (picture drawn by the previous works)

Caveats

- ► Observation of the BNS; $B_{dip} = 10^{12.2}G$
- ▶ We assume that B_{max} is 10^{15} G

Criticism; The magnetic fields chosen correspond to the highest magnetic fields observed for some magnetars. Therefore the present work is still a little academic. Question; What's the final value of the amplified magnetic fields?

- ►We are not interested in the magnetar's merger.
- ▶If you start a "realistic" value of the magnetic fields, say 10¹³ G, you need more grid resolution. Otherwise, such a simulation will be nonsense.

What's the "realistic" value of the amplified B-fields? We are doing higher resolution simulations with "realistic" value of the B-fields.

Bridge between global and local simulation

Idea: Just before the merger, we increase the FMR box. The simulation time is about 5 ms.

cf. The size of the shear-layer is \sim 20km.

Bridge between global and local simulation

Idea: Just before the merger, we increase the FMR box. The simulation time is about 5 ms.

cf. The size of the shear-layer is \sim 20km.

B-fields amplification via Kelvin-Helmholtz

Model

- ▶ 1.4-1.4M_o and H4
- ► Start from a quasi equilibrium of a non-magnetized BNS and stop at α_{min} ≈ 0.638.
- ▶ Add the B-fields by hand and increase refinement boxes. The "realistic value" of $B_{max} \approx 10^{13} G$.
- ▶ 9 models
- (ia) $\Delta x = 150$ m; no increase the FMR box
- (ib) $\Delta x=150m \Rightarrow 75m$; one FMR box is added
- (ic) $\Delta x=150m \Rightarrow 75m \Rightarrow 37.5m$; two FMR boxes are added
- (iia) $\Delta x = 110$ m; no increase the FMR box
- (iib) $\Delta x=110m \Rightarrow 55m$; one FMR box is added
- (iic) $\Delta x=110m \Rightarrow 55m \Rightarrow 27.5m$; two FMR boxes are added
- (iiia) $\Delta x = 70$ m; no increase the FMR box
- (iiib) $\Delta x=70 \text{m} \Rightarrow 35 \text{m}$; one FMR box is added
- (iiic) $\Delta x=70 \text{m} \Rightarrow 35 \text{m} \Rightarrow 17.5 \text{m}$; two FMR boxes are added

In all the models, the finest box size before the merger is about 70 km.

Density and vel. field on the orbital plane ($\Delta x=150$ m)

Density and vel. field on the orbital plane $(\Delta x=150m\rightarrow75m)$

Density and vel. field on the orbital plane $(\Delta x=150m\rightarrow75m\rightarrow37.5m)$

Density and vel. field on the orbital plane $(\Delta x=70m\rightarrow 35m\rightarrow 17.5m)$

Density and vel. field on the orbital plane

Real

Result (Preliminary)

Magnetic field energy evolution

Maximum field evolution

- ▶ Still, the amplification is determined by the resolution.
- Maximum field is almost virial value, which is comparable to the kinetic energy; i.e., $\sim 10^{17}$ G.
- ▶ The magnetic field energy is amplified 10⁶ times at least.; The averaged value of the B-fields is amplified by 10³ times.

Question?

- Angular momentum transport by Reynolds / Maxwell stress?
- What happens if the B-fields are dissipated?

Summary

We have performed a highest resolution simulation of magnetized binary neutron star merger simulation in the framework of Numerical Relativity.

► Kelvin-Helmhc'

► Non-axisymme are key ingredier

The accretion to ⇒ Qualitatively c

Caveats

If you start more you need more go be nonsense.

massive neutron star

netic fields, say 10¹¹ G, such a simulation will

▶ Necessity to launch an outflow to build a global poloidal magnetic field.