Cosmic-Ray Neutrinos from the Decay of Long-Lived Particle – Implication to the IceCube Results – Takeo Moroi (Tokyo) (向こう側からきました、お手柔らかにお願いします)

Refs:

Ema, Jinno & TM, PLB 733 ('14) 120 [arXiv:1312.3501] Ema, Jinno & TM, JHEP 1410 ('14) 150 [arXiv:1408.1745]

Rironkon, Mitaka (Christmas Eve, 2014)

1. Introduction

Recent big news in particle physics: Discovery of Higgs boson

• Higgs: the last piece of standard-model particles

The biggest issue: What's next?

- There is no sign of new physics at colliders so far
- What can we do?

Our (or my) motto:

• Use whatever information available!

High-energy cosmic rays seem interesting

- Many particle-physics models predict "signals" in cosmic rays
- There are many on-going projects which have provided interesting results (i.e., "anomalies")
 - PAMELA
 - Fermi-LAT

- IceCube

Today, I concentrate on the recent IceCube result:

First observation of sub-PeV – PeV neutrinos

[IceCube 3 years result (May, '14); Talk by Yoshida-san]

IceCube found 37 high energy neutrino events

- The observed flux is well-above the expected background
 - 8.4 ± 4.2 from cosmic-ray muons
 - $-6.6^{+5.9}_{-1.6}$ from atmospheric neutrinos
- The flux is consistent with E^{-2} power-law with a cut-off
 - \Rightarrow 3.1 events above $E_{obs} > 2$ PeV, if no cut-off

 \Rightarrow Cut-off at \sim PeV (or softer spectrum)?

We need a new source of high-energy cosmic-ray neutrinos

- ~ E^{-2} power-law @ $E \lesssim \text{PeV}$
- Cut-off @ $E \sim \text{PeV}$
- Isotropic

What is the origin of high-energy cosmic-ray neutrinos?

• Astrophysical origin

[Kalashev, Kusenko & W. Essey; Stecker; Cholis & Hooper; Murase & Ioka; Razzaque; Winter; Fox, Kashiyama & Mszars; Liu et al.; Murase, Ahlers & Lacki; N. Gupta; Gonzalez-Garcia et al.; Ahlers & Murase; Gao et al.; Roulet et al.; Laha et al.; Anchordoqui et al.; He et al.]

• Particle-physics origin

[Feldstein, Kusenko, Matsumoto & Yanagida; Esmaili & Serpico; Ema, Jinno & TM; Bai, Lu & Salvado; Bhattacharya, Reno & Sarcevic; Zavala; Chen & Nomura; Higaki, Kitano & Sato; Rott, Kohri & Park]

I consider one of the possibilities of particle-physics origin

 \Rightarrow PeV neutrinos from the decay of long-lived particle

Today, I will talk about:

- Possibility to explain IceCube results with the neutrino production via the decay of long-lived particle
- "The early-decay scenario," which explains the IceCube events with a particle X with $\tau_X \ll t_{now}$ and $m_X \gg \text{PeV}$

<u>Outline</u>

- 1. Introduction
- 2. Scenario
- 3. Case with Dark-Matter Decay
- 4. The Early Decay Scenario
- 5. Summary

2. The Scenario

Assumption: There exists a long-lived particle \boldsymbol{X}

- X is somehow produced in the early universe
- \bullet Neutrinos are produced by the decay of X

What is the parent particle X?

- Dark matter
 - $\Rightarrow \tau_X \gg t_{\text{now}} \& m_X \sim O(\text{PeV})$
- Something else ("early-decay scenario")

 $\Rightarrow \tau_X \ll t_{now} \& m_X \gg O(\text{PeV})$ is possible

BTW, why particle-physics explanation?

- I am particle physicist
- No convincing explanation so far, so we should be openminded
- The observed neutrino events do not have any correlation with known sources (like AGN, γ -ray burst, \cdots)

3. Case with Dark-Matter Decay

Neutrino flux can be classified into:

- Galactic contribution $\Phi_{\nu}^{(\text{Galaxy})}$
- \bullet Cosmological contribution $\Phi_{\nu}^{(\mathrm{Cosmo})}$

 $\Phi_{\nu}^{(\rm Galaxy)}$ depends on direction

$$\Phi_{\nu}^{(\text{Galaxy})}(E,\hat{l}) = \frac{1}{4\pi} \frac{1}{\tau_X} \frac{dN_{\nu}^{(X)}}{dE} \int_{\text{l.o.s.}} d\vec{l} \; \frac{\rho_X(\vec{l})}{m_X}$$

Boltzmann equation for $\Phi_{\nu}^{(\mathrm{Cosmo})}$

$$\dot{\Phi}_{\nu}^{(\text{Cosmo})}(t,E) = -2H\Phi_{\nu}^{(\text{Cosmo})}(t,E) + HE\frac{\partial}{\partial E}\Phi_{\nu}^{(\text{Cosmo})}(t,E) + \frac{1}{4\pi}\frac{1}{\tau_{X}}\frac{\rho_{X}(t)}{m_{X}}\frac{dN_{\nu}^{(X)}}{dE}$$

The present neutrino flux depends on the primary spectrum

 \Rightarrow Hereafter, I consider two examples

<u>Case 1</u>: Monochromatic neutrino injection

• X as a neutral component of $SU(2)_L$ triplet

$$X \to \nu \nu \quad \Rightarrow \quad \frac{dN_{\nu}^{(X)}}{dE} = 2\delta(E - m_X/2)$$

<u>Case 2</u>: Vector-like $SU(2)_L$ doublet L, mixed with leptons

- $\mathcal{L} = M_L \bar{L}L + \epsilon \bar{L}\ell + y_l \bar{e}\ell H + \cdots$
- L^0 can play the role of X

 $X \to \nu Z^0, \ e^{\pm}W^{\mp}$

Neutrino distribution for $SU(2)_L$ doublet model

Neutrino flux for $\tau_X \gg t_{\text{now}}$ (with $m_X = 3 \text{ PeV}$)

• $ho_X =
ho_{\mathsf{DM}}$ with $au_X \simeq 3 imes 10^{28}$ sec

• NFW dark matter density is used

Cut-off scale of the neutrino spectrum: $E_{\rm cut} \sim m_X$

 \Rightarrow Mass of DM is required to be O(PeV)

Dark-matter density is enhanced at the Galactic center

 \Rightarrow Flux from the direction of galactic center is enhanced

$$\frac{\Phi_{\nu}^{(\text{Galaxy})}(\theta < 90^{\circ})}{\Phi_{\nu}^{(\text{Galaxy})}(\theta > 90^{\circ})} \sim 2$$

Neutrino flux is proportional to τ_X^{-1}

 \Rightarrow In order to explain the IceCube result, $\tau_X \sim O(10^{28} \text{ sec})$

4. The Early-Decay Scenario [Ema, Jinno & TM]

The early-decay scenario: $\tau_X \ll t_{now}$

• X decays into neutrinos before the present epoch \Rightarrow The energy is redshifted: $E = (1 + z_{prod.})^{-1} E_{prod.}$

• PeV neutrino at present is realized due to the redshift \Rightarrow Mass of X can be much higher than PeV scale

Important quantities:

• Mass: m_X

• Lifetime: $\tau_X \Rightarrow z_* = z(t = \tau_X) \equiv \frac{a_{\text{now}}}{a(t = \tau_X)} - 1$

• Abundance:
$$Y_X \equiv \left[\frac{n_X}{s}\right]_{t \ll \tau_X}$$

• Neutrino distribution from the decay of $X \colon \frac{dN_{\nu}^{(X)}}{dE}$

The case of decaying dark matter (for comparison):

• $m_X \sim O(1 \text{ PeV})$

• Neutrino flux from the galactic center is enhanced

In the early-decay scenario:

• Neutrino with higher energy is produced at later epoch

$$\Rightarrow$$
 (Number density of X) $\propto e^{-t/\tau_X}$

 \Rightarrow For $E \gtrsim (1 + z_*)^{-1} m_X$, flux is exponentially suppressed

• Scattering processes of neutrinos may be important

$$-\nu + \bar{\nu}_{\mathsf{BG}} \to \nu + \bar{\nu}', \ \ell + \bar{\ell}', \ q + \bar{q}$$

$$-\nu + \bar{\nu}'_{\mathsf{BG}} \rightarrow \nu + \bar{\nu}', \ \ell + \bar{\ell}'$$

$$-\nu + \nu_{BG} \rightarrow \nu + \nu$$

$$-\nu + \nu'_{\rm BG} \rightarrow \nu + \nu'$$

Neutrinos from cosmological distance: $\Phi_{\nu}^{(\text{Cosmo})}$

$$\begin{split} \dot{\Phi}_{\nu}^{(\mathsf{Cosmo})}(t,E) &= -2H\Phi_{\nu}^{(\mathsf{Cosmo})}(t,E) + HE\frac{\partial}{\partial E}\Phi_{\nu}^{(\mathsf{Cosmo})}(t,E) \\ &-\gamma_{\nu}(t;E)\Phi_{\nu}^{(\mathsf{Cosmo})}(t,E) \\ &+\int dE'\Phi_{\nu}^{(\mathsf{Cosmo})}(t,E')\frac{d\gamma_{\nu}^{(\mathsf{eff})}(t;E',E)}{dE} \\ &+(\mathsf{Source Term}) \end{split}$$

 γ_{ν} : Scattering rate

Optical depth:
$$\tau_{\nu}(z) \equiv \int_{t(z)}^{t_{\text{now}}} dt' \gamma_{\nu}(t'; (1+z(t'))^{-1} \overline{E}_{\nu})$$

- "Survival probability" $\sim e^{-\tau_{\nu}}$
- If $\tau_{\nu} \gtrsim 1$, the scattering processes become important

Optical depth: $\tau_{\nu}(z) \equiv \int_{t(z)}^{t_{\text{now}}} dt' \gamma_{\nu}(t'; (1+z(t'))^{-1}\bar{E}_{\nu})$

 \Rightarrow To explain IceCube result, $1 + z_* \lesssim O(10^4)$ is necessary

Neutrino spectrum: (1) Relatively long lifetime

• Monochromatic neutrino injection: $\bar{E}_{\nu} = 1 \text{ PeV} \times (1 + z_*)$

•
$$Y_X = [n_X/s]_{t \ll \tau_X} = 10^{-26}$$

 \Rightarrow If $z_* \stackrel{<}{_\sim}$ (a few) $\times 10^3$, spectrum is (almost) unaffected by the scatterings

Neutrino spectrum: (2) Short lifetime

• Monochromatic neutrino injection: $\bar{E}_{\nu} = 1 \text{ PeV} \times (1 + z_*)$

•
$$Y_X = [n_X/s]_{t \ll \tau_X} = 10^{-26}$$

 \Rightarrow If $z_* \stackrel{>}{_\sim} ({\rm a~few}) \times 10^3 {\rm ,~effect~of~the~scattering~becomes~im-portant}$

Can we realize E^{-2} power-law flux with a cut-off?

 \Rightarrow Case with monochromatic neutrino injection

 \Rightarrow With monochromatic injection, E^{-2} power-law flux requires $1+z_*\sim(1-1.5)\times10^4$

Non-monochromatic neutrino injection (preliminary)

 \Rightarrow Neutrino flux at $E \ll E_{cut}$ is enhanced

 \Rightarrow Neutrino flux with $\sim E^{-2}$ behavior with cut-off is possible

One interesting check point: CMB distortion

- In the early decay scenario, sizable amount of EM energy may be injected due to the scattering process
- CMB spectrum may deviate from black-body
- $\mu\text{-}$ or $y\text{-}\mathrm{distortion}$ may occur, if $\tau_{\nu}\sim 1$
 - $\Rightarrow y \sim {\cal O}(10^{-9})$, $\mu \sim {\cal O}(10^{-9})$

Current constraint from COBE-FIRAS

 $|y| < 1.5 \times 10^{-5}$, $|\mu| < 9 \times 10^{-5}$

In the future, distortion of $O(10^{-9})$ may be within the reach

- PRISM
- PIXIE

Early-decay scenario vs. dark-matter-decay scenario

	Early-decay scenario	Dark-matter decay
$z_* = z(\tau_X)$	$\lesssim 10^4$	
m_X	$\lesssim 10^{10}~{ m GeV}$	$\sim 1~{\rm PeV}$
$ au_X$	$\gtrsim 10^{11}~{ m sec}$	$\sim 10^{28}~{ m sec}$
$Y_X = [n_X/s]_{t \ll \tau_X}$	$\sim 10^{-26}$	$\sim 10^{-16}$
Direction	Isotropic	\sim Galactic center

 $1 + z_* \lesssim 10^4$ is required to avoid:

- Too much deformation of the spectrum via scatterings
- BBN constraints & CMB distortion

5. Summary

I discussed "early-decay scenario" for IceCube events

- $z_* \gtrsim O(10^4)$, which corresponds to $\tau_X \gtrsim 10^{10}$ sec
- $m_X \sim (1+z_*) \times 1 \text{ PeV} \lesssim O(10^{10} \text{ GeV})$
- The neutrino spectrum is isotropic
- The scenario may be tested by future observations of CMB distortion (like PIXIE / PRISM)
- \bullet The direct-detection constraints on X are irrelevant

Issues:

- Primordial abundance of X: non-thermal production
- Models (PQ model, messengers in GMSB, ···)

