
原始惑星系円盤の 
自己重力的分裂の条件

高橋実道（京都大学） 
塚本裕介、犬塚修一郎（名古屋大学）



円盤の分裂による天体形成

原始惑星系円盤が分裂する条件は？

(Carson et. al. 2013)

○系外惑星の直接撮像
中心星からはなれた位置に	


巨大惑星（M~10MJ, >20AU）

原始惑星系円盤の重力不安定性に
よる分裂

○原始惑星系円盤形成の数値計算
初期に重い円盤が形成

巨大惑星形成？
連星系、褐色矮星形成にも関連。

標準モデルで説明困難



円盤の自己重力不安定性

Toomre’s Q parameter

⇒渦状腕が形成

安定化

渦状腕による安定化に打ち勝ち分裂する条件は？

自己重力不安定性

⇒不安定 (local instability, Toomre 1969)
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Shock 加熱
重力トルクによる角運動量輸送 
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Q < 1

(global instability Takahara 1976, 1978, Iye 1978)



(Gammie 2001, Rice et al.  2005, 2014, Meru and Bate2012 等)

で分裂

t
cool
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円盤の分裂条件
先行研究:冷却率に注目

dE

dt
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t
cool

分裂するための冷却率の条件
� < �crit ⇠ 30 (Meru and Bate 2012)

他の数値計算の結果と矛盾

Tsukamoto et al. 2015 :  β < βcrit・分裂しない
Machida et al. 2010 : 断熱・分裂する

冷却率に対する分裂条件では不十分	


現実的な円盤分裂の条件を明らかにするために	



数値計算を行い、分裂過程を解析

例）

,

Cooling time ∝ Kepler time として冷却過程をモデル化

数値計算
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ii Chapter 1 Condition for the fragmentation of disks

1.1.1 Basic equations

We solve the two-dimensional hydrodynamic equations including self-gravity:

∂Σ

∂t
+∇ · (Σv) = 0, (1.1)

Σ

(
∂v

∂t
+ v ·∇v

)
= −∇P − Σ∇Φ, (1.2)

∂E

∂t
+∇ · (Ev) = −P∇ · v − ΛC, (1.3)

where Σ is surface density, v is velocity, E is internal energy per unit area, P is the vertically

integrated pressure, Φ is the gravitational potential, ΛC is the cooling rate per unit area. We

calculate Φ from the thin disk approximation. We assume an ideal gas equation of state,

P = (γ − 1)E, (1.4)

where γ is the ratio of specific heat. We adopt γ = 5/3 in this calculation. The temperature

is given by

T =
µmH

kB

P

Σ
, (1.5)

where µ is the mean molecular weight, kB is the Boltzmann constant and mH is hydrogen

mass. Here we adopt µ = 2.34. The cooling rate ΛC is modeled as follows (Hubeny, 1990;

Menou & Goodman, 2004);

ΛC =
8

3
σ(T 4 − T 4

ext)
τ

1
4τ

2 + 1√
3
τ + 2

3

(1.6)

where σ is the Stefan-Boltzmann constant, Text is the equilibrium temperature due to the

irradiation from the central star, and τ = κRΣ is the optical depth of the disk. The Rosseland

mean opacity κR is given by

κR = κ10

(
T

10[K]

)2

[cm2g−1] (1.7)

This modeling approximates to the result of Semenov et al. (2003) in T ! 200 K, and almost

all temperature of the disk is smaller than 200 K. We assume Text as follows (cf. Chiang &

Goldreich, 1997);

Text = max

[
T100[K]

(
r

100[AU]

)−3/7

, 10[K]

]
. (1.8)

1.1.2 Numerical procedure and Initial conditions

We use two-dimensional polar grid (r,φ). The inner and outer boundary is given by r =

Rin, 1000[AU], respectively. Open boundary conditions are used at the inner and outer

boundary. The grid is covered with 512 and 1024 cells along the radial and azimuthal

directions, respectively. We perform our calculations with a logarithmic radial spacing. A

central star mass is M∗ = 0.5M⊙ and we take into account the gravity of the central star.

-

(Hubeny 1990)
Optical depth
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結果：分裂しない場合

大局的不安定による	


渦状腕形成

分裂せずに	


準定常な構造

Mdisk = 0.28M�0.34

先行研究の分裂条件
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渦状腕の冷却時間
t=6285 yr
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4.2.2 The structures of the spiral arms

We perform the detail analysis of spiral arms to investigate the condition for the fragmenta-

tion of the spiral arms. Figure 4.5 shows the structure of the spiral arm at 4285 yr for model

1. This spiral arm collapses and a fragment is formed at ∼ 5× 103 yr (Figure 4.2). The left

top panel of Figure 4.5 shows the spiral arm that we focus on. The color scale shows the

surface density. The large green squares show the centers of the spiral arm and the small

green squares show the edge of the spiral arm. The centers of the spiral arm are given to

follow the peak of the surface density. The separation between the large green points is 0.1r.

The edge of the spiral is defined as the region where the surface density is 0.3 times the

central surface density. The other panels in Figure 4.5 shows the distribution of the physical

values along the spiral arm. The horizontal axis s is the distance along the spiral arm. The

origin of the s is the large green point whose radius is smallest. The right panel of the top

row shows the distributions of the surface density and the velocity along the spiral at the

center of the spiral. The left panel of the second row shows the width of the spiral arm

and the scale height cs/Ω evaluated at the center of the spiral. The width of the spiral is

comparable to the scale height. The right panel of the second row shows the line mass of

the spiral arm. The line mass of the spiral arm is approximately given by c2s/G. Since the

line mass is smaller than the critical line mass 2c2s/G, the spiral is supported by the pressure

against the self-gravity in the direction perpendicular to the spiral arm. The left panel of

the third row shows the pitch angle of the spiral arm and the velocity along the spiral arm

subtracted the azimuthal averaged rotation velocity. The right panel of the third row shows

the distribution of the Toomre’s Q parameter at the center of the spiral arm. The minimum

value of Q is about 0.5. The left panel of the bottom row shows the normalized net cooling

time βnet, the normalized cooling time βcooling and the optical depth τ . the normalized net

cooling time βnet and the normalized cooling time βcooling are defined as follows;

βnet =
E

ΛC
Ω, (4.13)

βcooling = EΩ
3
(

1
4τ

2 + 1√
3
τ + 2

3

)

8σT 4τ
. (4.14)

The right panel of the bottom row shows the epicycle frequency, angular frequency, and the

Kepler frequency estimated from the central star mass
√
GM∗/r3.

4.2.3 Condition of the fragmentation of the spiral arms

Figure 4.6 shows the radial distribution of the azimuthal averaged surface density, tempera-

ture, angular frequency and Toomre’s Q parameter. In the model 5, no fragment is formed.

Thus the structures are smooth compered with the model 1.

Figure 4.7 shows the structure of the spiral arm in the model 5. The width of the spiral

arm is larger than the scale height. The line mass is comparable to the c2s/G. The minimum

value of Q is ∼ 0.8.
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結果：分裂する場合

大局的不安定による	


渦状腕形成

渦状腕が分裂

分裂しない場合との違いは？
渦状腕中のQに注目

Mdisk = 0.28M�0.38
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of the model 1 because the disk mass of the model 14 (∼ M∗) is larger than the disk mass

of the model 1 (∼ 0.5).

Figure 1.9 show the spiral structure of the model 14 at t=12427 years. The structure is

different from the spiral structure of the model1. The width of the spiral arm is large and

the amplitude of surface density of the spiral is small. Thus we define the edge of the spiral

as the region where the surface density is 0.85 times peak surface density. The width of the

spiral arm is larger than 20 AU since the temperature is high and the scale height is large.

The line mass of the spiral arm is comparable to c2s/G and the Q value at the center of the

spiral is larger than 0.75. Thus the result that this spiral does not fragment is consistent

our criterion for the fragmentation Q ! 0.6. Since the temperature of the spiral is large, the

cooling rate is also large. As the result, βcooling ∼ βnet ! 3 in satisfied in the spiral arm. This

result also suggests that the normalized cooling time itself is not related to the condition of

the fragmentation.

1.2.6 Inner radius

In the simulations performed in this chapter, the surface density of the inner region decreases

quickly after the calculations start. Thus results of our simulations are affected by the

artificial inner boundary. The fragmentation does not occur if the inner radius is large

(model 6). In this case, the spiral arms in model 6 do not satisfy the condition of the

fragmentation. Figure 1.10 shows the structures of the spiral arm for model 6. Our condition

for the fragmentation is not affected by the inner radius and inner boundary condition.

1.2.7 Softening length

Since we use the tow-dimensional numerical simulation code, we do not calculate the thick-

ness of the disk. The thickness of the disk affects the self-gravity of the disk. We model the

effect of the thickness of the disk by using the softening length of the self-gravity. The effect

of the self-gravity decreases with increasing the softening length. In the case that we adopt

the softening length 0.012r, the critical Q value for the fragmentation is ∼ 0.6, as discussed

so far. To investigate the dependence on the softening length, we perform the calculations

for the softening length 0.03r (model 15, 16). The results of these calculations indicate that

the spirals are difficult to fragment in the case where the softening length is large. Figure

1.11 shows the structures of the spiral arm that does not fragment. Although the minimum

value of Q is less than 0.6, the spiral does not fragment. Figure 1.12 shows the structures of

the spiral arm that does not fragment. In this case, the minimum value of Q is about 0.2.

The critical Q value for the fragmentation decreases with increasing the softening length.

In this section, we investigate the effect of the thickness of the disks on the conditions for the

fragmentation by using the softening length. The softening length, however, cannot mimic

the effect of the thickness of the disk. Thus we need the three-dimensional simulation to

evaluate the exact value of the critical Q for the fragmentation.

xxiv Appendix A Filament fragmentation

Figure A.2: Dispersion relation of the flattened ring with f = l = 1. The ring is unstable in

the case ω̃2 < 0.

where L0, L−1 are modified Struve functions. In this case, we obtain the dispersion relation

as follows;

ω2 = c2sk
2 − πGML[K0(kR)L−1(kR) +K1(kR)L0(kR)]k2 + Ω2

epi (A.28)

We define the normalized frequency and wavenumber as follows;

ω̃ =
2R

cs
ω, (A.29)

k̃ = 2Rk. (A.30)

Then, normalized dispersion relation is given by

ω̃2 = k̃2 − πGML

c2s
[K0(k̃/2)L−1(k̃/2) +K1(k̃/2)L0(k̃/2)]k̃

2 +
4R2Ω2

epi

c2s
(A.31)

We define two parameters

f ≡ GML

c2s
, (A.32)

l ≡ 2RΩepi

cs
. (A.33)

Then, we can rewrite normalized dispersion relation

ω̃2 = k̃2 − πf [K0(k̃/2)L−1(k̃/2) +K1(k̃/2)L0(k̃/2)]k̃
2 + l2. (A.34)

We assume that the structure of the surface density of the ring as Gaussian whose stander

deviation is 0.5R. Then Toomre’s Q parameter is

Q =
csΩ

πGΣ
=

l√
8πf

. (A.35)

Figure A.2 shows the dispersion relation with f = l = 1. The flattened ring is unstable in

the case ω̃2 < 0. In the case where minimum value of ω̃2 is zero, we obtain the relation
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fragmentation. Figure 1.10 shows the structures of the spiral arm for model 6. Our condition

for the fragmentation is not affected by the inner radius and inner boundary condition.

1.2.7 Softening length

Since we use the tow-dimensional numerical simulation code, we do not calculate the thick-

ness of the disk. The thickness of the disk affects the self-gravity of the disk. We model the

effect of the thickness of the disk by using the softening length of the self-gravity. The effect

of the self-gravity decreases with increasing the softening length. In the case that we adopt

the softening length 0.012r, the critical Q value for the fragmentation is ∼ 0.6, as discussed

so far. To investigate the dependence on the softening length, we perform the calculations

for the softening length 0.03r (model 15, 16). The results of these calculations indicate that

the spirals are difficult to fragment in the case where the softening length is large. Figure

1.11 shows the structures of the spiral arm that does not fragment. Although the minimum

value of Q is less than 0.6, the spiral does not fragment. Figure 1.12 shows the structures of

the spiral arm that does not fragment. In this case, the minimum value of Q is about 0.2.

The critical Q value for the fragmentation decreases with increasing the softening length.

In this section, we investigate the effect of the thickness of the disks on the conditions for the

fragmentation by using the softening length. The softening length, however, cannot mimic

the effect of the thickness of the disk. Thus we need the three-dimensional simulation to

evaluate the exact value of the critical Q for the fragmentation.
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Figure A.2: Dispersion relation of the flattened ring with f = l = 1. The ring is unstable in

the case ω̃2 < 0.

where L0, L−1 are modified Struve functions. In this case, we obtain the dispersion relation

as follows;

ω2 = c2sk
2 − πGML[K0(kR)L−1(kR) +K1(kR)L0(kR)]k2 + Ω2

epi (A.28)

We define the normalized frequency and wavenumber as follows;

ω̃ =
2R

cs
ω, (A.29)

k̃ = 2Rk. (A.30)

Then, normalized dispersion relation is given by

ω̃2 = k̃2 − πGML

c2s
[K0(k̃/2)L−1(k̃/2) +K1(k̃/2)L0(k̃/2)]k̃

2 +
4R2Ω2

epi

c2s
(A.31)

We define two parameters

f ≡ GML

c2s
, (A.32)

l ≡ 2RΩepi

cs
. (A.33)

Then, we can rewrite normalized dispersion relation

ω̃2 = k̃2 − πf [K0(k̃/2)L−1(k̃/2) +K1(k̃/2)L0(k̃/2)]k̃
2 + l2. (A.34)

We assume that the structure of the surface density of the ring as Gaussian whose stander

deviation is 0.5R. Then Toomre’s Q parameter is

Q =
csΩ

πGΣ
=

l√
8πf

. (A.35)

Figure A.2 shows the dispersion relation with f = l = 1. The flattened ring is unstable in

the case ω̃2 < 0. In the case where minimum value of ω̃2 is zero, we obtain the relation
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x Chapter 1 Condition for the fragmentation of disks

1. However, the fragments are formed in the spiral arm of the model 1, but are not formed

in this spiral arm.

Since the shortest unstable wavelength of the gravitational instability derived from the

local, axisymmetric linear stability analysis 2π(cs/Ω)Q/(1 + (1−Q2)1/2) is longer than the

width of the spiral arms. Therefore, the axisymmetric mode cannot grow in the spiral arms.

On the other hand, non-axisymmetric mode may grow in the spiral arms. Since the pitch

angles of the spiral arms are small (! 0.2), we adopt the conditions for the instability of the

ring structures. The critical Q value is roughly estimated about ! 0.6 and the most unstable

wavelength is about three times the width of the ring by analogy with filament (Inutsuka &

Miyama, 1992) (see Appendix A). The spiral arm in model 1 satisfies the condition, and the

spiral arm in model 5 does not satisfy the condition. We test the condition by using other

spiral arms, some of them fragment and the others do not fragment. Then we find that the

condition for the fragmentation of the spiral arms is valid for the all spiral arms.

In Figure 1.5 and Figure 1.7, the normalized cooling times βcool is smaller than ∼ 5.

Thus both spiral arms satisfy the condition for the cooling time suggested by Meru & Bate

(2012). This result suggests that the condition for the Q parameter in the spiral arms is

more essential than the condition for the cooling time.

1.2.4 Dependence on the opacity

The cooling rate of the disks depends on the opacity. Since the most of the region of the

disks are optically thick, the cooling rate is proportional to κ−1. Thus the radiation cooling

is efficient when κ is small. The result of the model 1, 8, 9, 10, and 12 suggest that the

fragmentation occurs in the case where the opacity is small and the radiation cooling is

efficient if the other parameters are not changed. Figure 1.8 shows the structures of the

spiral arm in the model 8, which dose not fragment. In the spiral arm, Q > 0.6 is satisfied.

Thus the result that this spiral arm is not fragment is consistent with our criterion. In this

case, the opacity is larger than the opacity of the model 1 by a degree of magnitude, and

the normalized cooling time βcool ∼ βnet " 10. In the case where the opacity is large, the

spiral arms cannot shrink enough to satisfy the Q < 0.6 in the region a few times larger than

the width. In this sense the efficient cooling is important for the fragmentation of the spiral

arms, and our criterion is consistent with the previous works.

1.2.5 Temperature of the spiral arms

Since the temperature structures of the disks are roughly equal to the Text. Thus we can

control the temperature of the spiral arms by Text. In model 14, the external temperature is

larger by a factor of 4 than that of the model 1.

Figure ?? shows the radial distribution of the azimuthal averaged value. The averaged

Q parameter is about ∼ 2 since initial surface density is larger than that of the model 1.

The temperature is almost equal to the Text, and the deviation is smaller than that of the

model 1. The deviation of the angular velocity from the Kepler rotation is larger than that
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数値計算の結果と一致
円盤の分裂条件 ⇔ 渦状腕の自己重力不安定条件
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Figure 4.13: Classification of the simulation results on the κ10−Σ100 plane. Filled circles and

crosses denote fragmentation and no-fragmentation respectively. We also plot the results of

the adiabatic calculations in the square.

amplitude of the surface density of the spiral arms is too small to fragment independent of

the opacity. In the case where Σ100 ! 33.1 [g cm−2], Q ∼ 1 is satisfied.

4.3 Discussion

4.3.1 Comparison with the previous works

So far, the normalized cooling timescale is adopted as a criterion for the fragmentation of

the protoplanetary disks (Gammie, 2001). As discussed in the previous section, however,

the cooling timescale itself is not suitable the condition. These results are consistent with

the results of the three-dimensional numerical simulations preformed in previous works on

the formation and evolution of the protoplanetary disks. Tsukamoto et al. (2015) indicate

that the disks do not fragment even when the disks satisfy the condition for the cooling rate

β " 30. Moreover, the fragmentation occurs even in the case where the adiabatic equation

of state is adopted (cf. Machida et al., 2010, 2011). Thus the condition that the cooling

timescale is smaller than the critical value is neither sufficient nor necessary conditions for

the fragmentation of the disk. If the opacity is small and the radiative cooling is efficient,

the spiral arms easily satisfy the condition for the fragmentation proposed in this work. In

this sense, our results are consistent with the results of the previous works.

Paardekooper (2012) performed the two-dimensional, local numerical simulations similar

to the simulation performed by Gammie (2001), but the integration time is longer than

Gammie (2001). They found that there is no sharp boundary in the cooling time between
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断熱まで含めた広いパラメータ領域で
分裂条件は

T ∼ Text (1)

Q̄ =
cs(Text)Ωepi

πGΣini
(2)

Q̄ ! 1 (3)

Q̄ " 2 (4)

Q ! 0.6 (5)

1

で与えられる。



まとめ
• 原始惑星系円盤の自己重力不安定性による分裂は、連星系、
褐色矮星、ガス惑星形成メカニズムの候補として重要。	



• これまで、円盤が分裂する条件として円盤の冷却率が重要だ
と考えられてきが、この条件は他の数値計算結果と矛盾す
る。	



• 自己重力円盤の数値計算を行い円盤の分裂過程を詳細に解析
した。円盤が分裂する条件は円盤に形成された渦状腕中で 

Q<0.6で与られることがわかった。この結果はリングの線形解
析の結果と一致する。	



• Opacity が大きく冷却しにくい円盤ほど分裂に必要な質量は大
きい。断熱まで含めた広いパラメータで分裂条件はQ<0.6で与
られる。


