
Multi-Messenger Studies of 
Compact Binary Merger

- コンパクト連星合体のマルチメッセンジャー研究 -

Masaomi Tanaka
(National Astronomical Observatory of Japan)

田中 雅臣
in collaboration with

Kenta Hotokezaka, Yuichiro Sekiguchi, Kenta Kiuchi, 
Masaru Shibata, Koutaro Kyutoku, Shinya Wanajo





Interstellar	
  medium

low	
  mass	
  star

asympto2c	
  
giant	
  branch

planetary	
  nebula

white	
  dwarf

H,	
  C,	
  N
Ba,	
  Pb

(s-­‐process)

H

supernova

Si,	
  Fe

binary

high	
  mass	
  star

red	
  supergiant

supernova

H

H

O,	
  Mg,	
  Ca

Images:	
  NASA,	
  ESA,	
  JPL-­‐Caltech,	
  CXC

neutron	
  star
binary

black	
  hole
neutron	
  star	
  merger

Au,	
  Ag?
(r-­‐process)

Au,	
  Ag?
(r-­‐process)



Multi-Messenger Studies of 
Compact Binary Merger

•Mass ejection and nucleosynthesis

• Electromagnetic wave signals

•Toward multi-messenger astronomy



New astronomy with gravitational waves

2017 - 
- Advanced LIGO (US)
- Advanced Virgo (Europe)
- KAGRA (Japan)
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Figure 1: Comparing the typical gravitational-wave strain for various binary systems to the sensitivity of
interferometric detectors. The current generation of ground-based detectors, which are sensitive above
10 Hz, (GEO600, Virgo and LIGO) is compared to the second generation of detectors, like Advanced
LIGO (AdLIGO). Third generation detectors (like the Einstein Telescope, ET) would improve the
sensitivity by another order of magnitude across a similar broad frequency range. The figure also
shows the space-based detector LISA, which will be a supreme instrument for detecting signals from
supermassive black holes. It is worth noting that the dimensionless strain sensitivity of the ground-
and space-based detectors is quite similar. To see this, simply multiply the shown curves (showing the
strain per root Hz) by the square root of the frequency.

our understanding of the development of large-scale structures in the Universe.
Another key problem for LISA concerns the capture of smaller bodies by large black holes [12].

The space-based detector should be able to detect many such events. Their detailed signature provides
information about the nature of the spacetime in the vicinity of the black hole, and could therefore be
used to map the geometry, test black-hole uniqueness theorems etcetera. To model these systems is,
however, far from trivial. In particular since the orbits may be highly eccentric. The main challenge
concerns the calculation of the effects of radiation reaction on the smaller body. In addition to accounting
for the gravitational self-force and the radiation reaction, one must develop a computationally efficient
scheme for modelling actual orbits. This is not easy, but at least we know what the key issues are.

4.2 Supernovae

Our expectations are not always brought out by more detailed modelling. Sometimes the devil is in
the detail and our intuition falters. For example, one might expect apparently powerful events like
supernova explosions and the ensuing gravitational collapse to lead to very strong gravitational-wave
signals. However, the outcome depends entirely on the asymmetry of the collapse process. This is
clear from (11). The difference between the initial and the final state does not matter. It is the route
that the system takes, how it evolves, that determines the strength of the gravitational-wave signal.
Unfortunately, current numerical simulations suggest that the level of radiation from core collapse
events is rather low. Typical results suggest that an energy equivalent to ∼ 10−7M⊙c2 (or less!) will be
radiated [13].
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EM signature from NS merger

• On-axis short GRB

• Extended emission
(~25% of short GRB)

• Off-axis radio/optical 
afterglow

• Radioactive emission 
(kilonova, macronova)
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with specific stellar populations). Because merger counterparts
are predicted to be faint, obtaining a spectroscopic redshift
is challenging (cf. Rowlinson et al. 2010), in which case
spectroscopy of the host galaxy is the most promising means
of obtaining the event redshift.

It is important to distinguish two general strategies for con-
necting EM and GW events. One approach is to search for a
GW signal following an EM trigger, either in real time or at
a post-processing stage (e.g., Finn et al. 1999; Mohanty et al.
2004). This is particularly promising for counterparts predicted
to occur in temporal coincidence with the GW chirp, such as
short-duration gamma-ray bursts (SGRBs). Unfortunately, most
other promising counterparts (none of which have yet been
independently identified) occur hours to months after coales-
cence.6 Thus, the predicted arrival time of the GW signal will
remain uncertain, in which case the additional sensitivity gained
from this information is significantly reduced. For instance, if
the time of merger is known only to within an uncertainty of
∼ hours (weeks), as we will show is the case for optical (radio)
counterparts, then the number of trial GW templates that must
be searched is larger by a factor ∼104–106 than if the merger
time is known to within seconds, as in the case of SGRBs.

A second approach, which is the primary focus of this paper,
is EM follow-up of GW triggers. A potential advantage in this
case is that counterpart searches are restricted to the nearby
universe, as determined by the ALIGO/Virgo sensitivity range
(redshift z ! 0.05–0.1). On the other hand, the large error
regions are a significant challenge, which are estimated to be
tens of square degrees even for optimistic configurations of GW
detectors (e.g., Gürsel & Tinto 1989; Fairhurst 2009; Wen &
Chen 2010; Nissanke et al. 2011). Although it has been argued
that this difficulty may be alleviated if the search is restricted
to galaxies within 200 Mpc (Nuttall & Sutton 2010), we stress
that the number of galaxies with L " 0.1 L∗ (typical of SGRB
host galaxies; Berger 2009, 2011) within an expected GW error
region is ∼400, large enough to negate this advantage for most
search strategies. In principle the number of candidate galaxies
could be reduced if the distance can be constrained from the
GW signal; however, distance estimates for individual events
are rather uncertain, especially at that low of S/Ns that will
characterize most detections (Nissanke et al. 2010). Moreover,
current galaxy catalogs are incomplete within the ALIGO/Virgo
volume, especially at lower luminosities. Finally, some mergers
may also occur outside of their host galaxies (Berger 2010;
Kelley et al. 2010). Although restricting counterpart searches to
nearby galaxies is unlikely to reduce the number of telescope
pointings necessary in follow-up searches, it nevertheless can
substantially reduce the effective sky region to be searched,
thereby allowing for more effective vetoes of false positive
events (Kulkarni & Kasliwal 2009).

At the present there are no optical or radio facilities that can
provide all-sky coverage at a cadence and depth matched to
the expected light curves of EM counterparts. As we show in
this paper, even the Large Synoptic Survey Telescope (LSST),
with a planned all-sky cadence of four days and a depth of
r ≈ 24.7 mag, is unlikely to effectively capture the range of
expected EM counterparts. Thus, targeted follow-up of GW

6 Predicted EM counterparts that may instead precede the GW signal include
emission powered by the magnetosphere of the NS (e.g., Hansen & Lyutikov
2001; McWilliams & Levin 2011; Lyutikov 2011a, 2011b), or cracking of the
NS crust due to tidal interactions (e.g., Troja et al. 2010; Tsang et al. 2011),
during the final inspiral. However, given the current uncertainties in these
models, we do not discuss them further.
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Figure 1. Summary of potential electromagnetic counterparts of NS–NS/
NS–BH mergers discussed in this paper, as a function of the observer angle,
θobs. Following the merger a centrifugally supported disk (blue) remains around
the central compact object (usually a BH). Rapid accretion lasting !1 s
powers a collimated relativistic jet, which produces a short-duration gamma-
ray burst (Section 2). Due to relativistic beaming, the gamma-ray emission
is restricted to observers with θobs ! θj , the half-opening angle of the jet.
Non-thermal afterglow emission results from the interaction of the jet with
the surrounding circumburst medium (pink). Optical afterglow emission is
observable on timescales up to ∼ days–weeks by observers with viewing angles
of θobs ! 2θj (Section 3.1). Radio afterglow emission is observable from all
viewing angles (isotropic) once the jet decelerates to mildly relativistic speeds
on a timescale of weeks–months, and can also be produced on timescales of
years from sub-relativistic ejecta (Section 3.2). Short-lived isotropic optical
emission lasting ∼few days (kilonova; yellow) can also accompany the merger,
powered by the radioactive decay of heavy elements synthesized in the ejecta
(Section 4).
(A color version of this figure is available in the online journal.)

error regions is required, whether the aim is to detect optical
or radio counterparts. Even with this approach, the follow-
up observations will still require large field-of-view (FOV)
telescopes to cover tens of square degrees; targeted observations
of galaxies are unlikely to substantially reduce the large amount
of time to scan the full error region.

Our investigation of EM counterparts is organized as follows.
We begin by comparing various types of EM counterparts, each
illustrated by the schematic diagram in Figure 1. The first is an
SGRB, powered by accretion following the merger (Section 2).
Even if no SGRB is produced or detected, the merger may still
be accompanied by relativistic ejecta, which will power non-
thermal afterglow emission as it interacts with the surrounding
medium. In Section 3 we explore the properties of such “or-
phan afterglows” from bursts with jets nearly aligned toward
Earth (optical afterglows; Section 3.1) and for larger viewing
angles (late radio afterglows; Section 3.2). We constrain our
models using the existing observations of SGRB afterglows,
coupled with off-axis afterglow models. We also provide a re-
alistic assessment of the required observing time and achiev-
able depths in the optical and radio bands. In Section 4 we
consider isotropic optical transients powered by the radioac-
tive decay of heavy elements synthesized in the ejecta (referred
to here as “kilonovae,” since their peak luminosities are pre-
dicted to be roughly one thousand times brighter than those
of standard novae). In Section 5 we compare and contrast the
potential counterparts in the context of our four Cardinal Virtues.
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Nucleosynthesis in NS merger
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Figure 3. Time evolution of the total radioactive heating rate per unit mass, ⟨Q⟩, mass number ⟨A⟩, and temperature ⟨T ⟩ (all mass-averaged over the ejecta) for the
1.35–1.35 M⊙ (solid lines) and 1.2–1.5 M⊙ (dotted lines) NS mergers.
(A color version of this figure is available in the online journal.)

Figure 4. Final nuclear abundance distributions of the ejecta from 1.35–1.35 M⊙ (squares) and 1.2–1.5 M⊙ (diamonds) NS mergers as functions of atomic mass. The
distributions are normalized to the solar r-abundance distribution (dotted circles).
(A color version of this figure is available in the online journal.)

the neutrons are exhausted, as shown in Figure 3 by the time
evolution of the mass number ⟨A⟩ mass-averaged over all the
ejecta. After several hundred ms, when neutrons get exhausted
by captures (Nn ∼ 1020 cm−3), n-captures and β-decays compete
on similar timescales and fashion the final abundance pattern
before the nuclear flow becomes dominated by β-decays (as
well as fission and α-decays for the heaviest species) back to
the stability line. The average temperature remains rather low
during the late neutron irradiation, around 0.5 GK (Figure 3),
so that photoreactions do not play a major role.

The final mass-integrated ejecta composition is shown in
Figure 4. The A = 195 abundance peak related to the N = 126
shell closure is produced in solar distribution and found to be
almost insensitive to all input parameters such as the initial
abundances, the expansion timescales, and the adopted nuclear
models. In contrast, the peak around A = 140 originates
exclusively from the fission recycling, which takes place in

the A ≃ 280–290 region at the time all neutrons have been
captured. These nuclei are predicted to fission symmetrically
as visible in Figure 4 by the A ≃ 140 peak corresponding
to the mass-symmetric fragment distribution. It is emphasized
that significant uncertainties still affect the prediction of fission
probabilities and fragment distributions so that the exact strength
and location of the A ≃ 140 fission peak (as well as the possible
A = 165 bump observed in the solar distribution) depend on
the adopted nuclear model.

While most of the matter trajectories are subject to a den-
sity and temperature history leading to the nuclear flow and
abundance distribution described above, some mass elements
can be shock-heated at relatively low densities. Typically at
ρ > 1010 g cm−3, the Coulomb effects shift the NSE abun-
dance distribution toward the high-mass region (Goriely et al.
2011), but at lower densities, the high temperatures lead to the
photodissociation of all the medium-mass seed nuclei into
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Figure 1. Histograms of fractional mass distribution of the ejecta for the 1.35–1.35 M⊙ NS merger (upper row) and the 1.2–1.5 M⊙ binary (lower row) as functions
of density ρ (relative to the saturation density ρS ≃ 2.6 × 1014 g cm−3; left) and of electron fraction Ye (middle) that the ejected matter had at its initial NS location
prior to merging. The right panels show the fractional mass distributions as functions of the final entropy S per nucleon when the matter starts its free expansion. In the
inset on the left panels the dots mark positions of mass elements that get ejected later. The locations are given in the projection on the orbital plane at the time when
the stellar collision begins.
(A color version of this figure is available in the online journal.)

Figure 2. Representation of dominant fission regions in the (N, Z) plane. Nuclei for which spontaneous fission is estimated to be faster than β-decays are shown by
full squares, those for which β-delayed fission is faster than β-decays by open squares, and those for which neutron-induced fission is faster than radiative neutron
capture at T = 109 K by diamonds.
(A color version of this figure is available in the online journal.)

et al. 2009). The main fission region is illustrated in Figure 2.
The fission fragment distribution is taken from Kodoma &
Takahashi (1975), and the fragment mass and charge asymmetry
are derived from the HFB-14 prediction of the left–right asym-
metry at the outer saddle point. Due to the specific initial condi-
tions of high neutron densities (typically Nn ≃ 1033–1035 cm−3

at the drip density), the nuclear flow during most of the neutron

irradiation will follow the neutron-drip line. For these nuclei at
T ! 2–3 × 109 K, (n, 2n) and (2n, n) reactions are faster than
(γ ,n) and (n,γ ) reactions and must be included in the reaction
network. The (n, 2n) rates are estimated with the TALYS code
and the reverse rates from detailed balance expressions.

For drip-line nuclei with Z " 103, fission becomes efficient
(Figure 2) and recycling takes place two to three times before

3
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Figure 1. Histograms of fractional mass distribution of the ejecta for the 1.35–1.35 M⊙ NS merger (upper row) and the 1.2–1.5 M⊙ binary (lower row) as functions
of density ρ (relative to the saturation density ρS ≃ 2.6 × 1014 g cm−3; left) and of electron fraction Ye (middle) that the ejected matter had at its initial NS location
prior to merging. The right panels show the fractional mass distributions as functions of the final entropy S per nucleon when the matter starts its free expansion. In the
inset on the left panels the dots mark positions of mass elements that get ejected later. The locations are given in the projection on the orbital plane at the time when
the stellar collision begins.
(A color version of this figure is available in the online journal.)

Figure 2. Representation of dominant fission regions in the (N, Z) plane. Nuclei for which spontaneous fission is estimated to be faster than β-decays are shown by
full squares, those for which β-delayed fission is faster than β-decays by open squares, and those for which neutron-induced fission is faster than radiative neutron
capture at T = 109 K by diamonds.
(A color version of this figure is available in the online journal.)

et al. 2009). The main fission region is illustrated in Figure 2.
The fission fragment distribution is taken from Kodoma &
Takahashi (1975), and the fragment mass and charge asymmetry
are derived from the HFB-14 prediction of the left–right asym-
metry at the outer saddle point. Due to the specific initial condi-
tions of high neutron densities (typically Nn ≃ 1033–1035 cm−3

at the drip density), the nuclear flow during most of the neutron

irradiation will follow the neutron-drip line. For these nuclei at
T ! 2–3 × 109 K, (n, 2n) and (2n, n) reactions are faster than
(γ ,n) and (n,γ ) reactions and must be included in the reaction
network. The (n, 2n) rates are estimated with the TALYS code
and the reverse rates from detailed balance expressions.

For drip-line nuclei with Z " 103, fission becomes efficient
(Figure 2) and recycling takes place two to three times before
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Figure 10
Comparison of CS 22892-052 Z ≥ 56 abundances with Solar-system s- ( purple dashed line) and
r-process-only (solid blue line) elemental abundance distributions. The CS 22892-052 data are from Sneden
et al. (1996) with revised values for Nd (Den Hartog et al. 2003), Ho (Lawler, Sneden & Cowan 2004), Gd
(Den Hartog et al. 2006), Sm (Lawler et al. 2006), and Hf (Lawler et al. 2007). The Solar-system curves are
from Simmerer et al. (2004), as updated by Cowan et al. (2006). These curves have been normalized as
follows: the s-process-only curve ( purple dashed line) to the CS 22892-052 Ba abundance and the
r-process-only (blue solid line) to the CS 22892-052 Eu abundance.

relative Solar-system r-element abundance distribution scaled to the overall rare-earth abundance
level in this star. More recent work (Sneden et al. 2003), utilizing updated experimental atomic
data to determine more accurate abundances, has confirmed this agreement. We illustrate this in
Figure 10, where we compare the observed abundances for Ba and heavier elements in CS 22892-
052 with s-process-only and r-process-only Solar-system elemental abundances. In both cases,
these elemental curves have been obtained as described above, based upon elemental and isotopic
abundance data in the classical model (Simmerer et al. 2004, Cowan et al. 2006). The s-process
curve clearly does not fit the rest of the abundance data. It is obvious that the Solar-system r-process
curve provides an excellent fit to all of the abundance data for the heaviest stable elements.

Although CS 22892-052 is very strongly enriched in r-process material, it was not clear at
first whether this star might be somehow anomalous. But extensive observations of other r-rich
stars have confirmed the same scaled Solar-system abundance pattern for elements with Z ≥ 56
(see, e.g., Westin et al. 2000, Cowan et al. 2002, Hill et al. 2002, Johnson 2002, Johnson & Bolte
2002b, Honda et al. 2004, Barklem et al. 2005, Ivans et al. 2006, Frebel et al. 2007). We present
an updated compilation of the abundance data for these six r-rich stars in Table 2. In several cases
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Fig. 4.— Final nuclear abundances for selected trajectories (top;
Ye = 0.09, 0.14, 0.19, 0.24, 0.34, and 0.44) and that mass-averaged
(bottom; compared with the solar r-process abundances).

abundances by weighting the final yields for the repre-
sentative trajectories with their Ye mass fractions (Fig-
ure 3). We find a remarkable agreement of our result
with the solar r-process abundance distribution over the
full-A range of ∼ 90–240. This striking result, differ-
ing from the previous works exhibiting production of
A > 130 nuclei only, is a consequence of the wide Ye
distribution predicted from our full-GR merger simula-
tion with neutrino effects taken into account. Note also
that fission plays only a subdominant role for the fi-
nal nucleosynthetic abundances. The second (A ∼ 130)
and rare-earth-element (A ∼ 160) peak abundances are
dominated by direct production from the trajectories of
Ye ∼ 0.2. Our result reasonably reproduces the solar-like
abundance ratio between the second (A ∼ 130) and third
(A ∼ 195) peaks as well, which is difficult to explain by
fission recycling.
Given that the model is representative of NS-NS merg-

ers, our result gives an important implication; the dy-
namical component of NS-NS merger ejecta can be the
dominant origin of the Galactic r-process nuclei. Other
contributions from, e.g., the BH-torus wind after col-
lapse of HMNSs (Surman et al. 2008; Wanajo & Janka
2012; Fernández & Metzger 2013), as invoked in the pre-
vious studies to account for the (solar-like) r-process uni-
versality, may not be needed. The amount of the en-
tirely r-processed ejecta, Mej ≈ 0.01M⊙, with present
estimates of the Galactic event rate, a few 10−5 yr−1

(e.g., Dominik et al. 2012), is also compatible with

the mass of the Galactic r-process abundances (e.g.,
Wanajo & Janka 2012).

4. RADIOACTIVE HEATING

The r-processing ends a few 100 ms after the onset
of merger. The subsequent abundance changes by β-
decay, fission, and α-decay are followed up to 100 days
after the merging; the resulting radioactive heating is rel-
evant for kilonova emission. Figure 5 displays the tempo-
ral evolutions of the heating rates for selected trajecto-
ries (top-left) and those mass-averaged (top-right). For
a comparison purpose, the heating rate for the nuclear
abundances with the solar r-process pattern (q̇solar-r), β-
decaying back from the initial composition at neutron-
separation energies of 2 MeV (A ≥ 90, the same as that
used in Hotokezaka et al. 2013a; Tanaka et al. 2014), is
also shown by a black-solid line in each panel. The short-
dashed line indicates an analytical approximation defined
by q̇analytic ≡ 2× 1010 t−1.3 (in units of erg g−1 s−1; t is
time in day, see, e.g., Metzger et al. 2010). Lower panels
are the same as the upper panels, but for those relative
to q̇analytic.
Overall, each curve reasonably follows q̇analytic by ∼

1 day. After this time, the heating is dominated by
a few radioactivities and becomes highly dependent on
Ye. Contributions from the ejecta of Ye > 0.3 are gen-
erally unimportant after ∼ 1 day. We find that the
heating for Ye = 0.34 turns to be significant after a few
10 days because of the β-decays from 85Kr (half-life of
T1/2 = 10.8 yr; see Figure 4, bottom, for its large abun-
dance), 89Sr (T1/2 = 50.5 d), and 103Ru (T1/2 = 39.2 d).
Heating rates for Ye = 0.19 and 0.24, whose abun-
dances are dominated by the second peak nuclei, are
found to be in good agreement with q̇solar-r. This is due
to a predominance of β-decay heating from the second
peak abundances, e.g., 123Sn (T1/2 = 129 d) and 125Sn
(T1/2 = 9.64 d) around a few 10 days.
Our result shows that the heating rate for the lowest Ye

( = 0.09) is the greatest after 1 day (Figure 5, left panels).
The values are larger than the previous results (with Ye ∼

0.02–0.04 in Goriely et al. 2011; Rosswog et al. 2014) by
a factor of a few. In our case, the radioactive heating is
dominated by the spontaneous fissions of 254Cf, 259Fm
and 262Fm. It should be noted, however, the heating
from spontaneous fission is highly uncertain because of
the many unknown half-lives and decay modes of nuclides
reaching to this quasi-stable region (A ∼ 250–260 with
T1/2 of days to years). In fact, tests with another set
of theoretical estimates show a few times smaller rates
after ∼ 1 day (as a result of diminishing contributions
from 259Fm and 262Fm), being similar to the previous
works. It appears, therefore, difficult to obtain reliable
heating rates with currently available nuclear data when
fission plays a dominant role.
In our result the total heating rate is dominated by

β-decays all the times (Figure 5, right panels) because
of the small ejecta amount of Ye < 0.15 (in which fis-
sion becomes important). The radioactive heating after
∼ 1 day is mostly due to the β-decays from a small num-
ber of species with precisely measured half-lives. Uncer-
tainties in nuclear data are thus irrelevant. The mass-
averaged heating rate for t ∼ 1–10 days is smaller than
q̇analytic and q̇solar-r because of the overabundances near

General relativity with 
neutrino transfer

See Sekiguchi-san’s poster
(No 37)

higher Ye
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Fig. 3.— Ejecta mass fractions vs. Ye (top) and S/kB (bottom)
at the end of simulation. The widths of Ye and S/kB are chosen
to be ∆Ye = 0.01 and ∆S/kB = 1, respectively.

phase, neutrinos coming from the HMNS surface play
a crucial role and the Ye’s become ∼ 0.2–0.4. Bipolar
structures as found in Hotokezaka et al. (2013b), with
Ye ∼ 0.4, can also be seen in Figure 1 (top and middle
panels).
To make clear the role of neutrinos, the Ye evolution is

re-computed by the reaction network (Ye,network) for a se-
lected Lagrangian mass-element particle (an open circle
in Figure 1, bottom) traced from our grid-based simula-
tion. The computation is initiated at t = 6.39 ms with
the simulation value of Ye = 0.134 when the temperature
is still high (∼ 50 GK). The Ye,network from this time to
t = 13.7 ms (the end of simulation; ∼ 6 GK) is followed
by the network with the thermodynamic quantities of the
tracer particle. The temporal neutrino luminosities and
mean energies are adopted as those angle averaged from
the simulation result. Figure 2 displays the resulting
Ye,network evolutions with (red) and without (blue) the
neutrino captures on free nucleons. We find that, with-
out the neutrino captures, the Ye,network still increases by
positron capture but only to 0.19 at t = 13.7 ms. With
the neutrino captures, in contrast, the Ye,network reaches
0.37 at t = 13.7 ms (which is in agreement with the sim-
ulation Ye).
The ejecta mass fractions of Ye’s (top) and entropies

(per nucleon; S/kB, kB is Boltzmann’s constant, bottom)
at the end of simulation evaluated on the orbital plane
are displayed in Figure 3 with the widths of ∆Ye = 0.01
and ∆S/kB = 1, respectively. We find that the Ye’s
widely distribute between 0.09 and 0.45 with greater

amounts for higher Ye, in which the initial β-equilibrium
values (≪ 0.1) have gone. Strong shock heating and also
(to lesser extent) neutrino heating result in S/kB = 8–26
(with generally higher values for higher Ye), being sizably
greater than those in the previous studies (S/kB ∼ 1–3,
Goriely et al. 2011).

3. THE r-PROCESS

The nucleosynthesis analysis makes use of the thermo-
dynamic trajectories of the ejecta particles traced on the
orbital plane. A representative particle is chosen from
each Ye-bin (from Ye = 0.09 to 0.44 with the interval of
∆Ye = 0.01) shown in Figure 3 (top). For simplicity,
we do not analyze the non-orbital components because
of the dominance of the ejecta masses close to the or-
bital plane. Each nucleosynthesis calculation is initiated
when the temperature decreases to 10 GK, where the ini-
tial composition is given by Ye and 1 − Ye for the mass
fractions of free protons and neutrons, respectively.
The reaction network consists of 6300 species, all

the way from single neutrons and protons to the Z =
110 isotopes relevant for the r-process. Experimen-
tal rates, when available, are taken from the latest
versions of REACLIB5 (Cyburt et al. 2010) and Nu-
clear Wallet Cards 6. Otherwise, the theoretical es-
timates of fusion rates7 (TALYS, Goriely et al. 2008)
and β-decay half-lives (GT2, Tachibana et al. 1990) are
adopted, where both are based on the same nuclear
mass model (HFB-21, Goriely et al. 2010). Theoreti-
cal fission properties adopted are those estimated on
the basis of the HFB-14 mass model (Goriely et al.
2009). For fission fragments, a Gaussian-type distribu-
tion (Kodama & Takahashi 1975) is assumed with emis-
sion of four prompt neutrons per event (Goriely et al.
2013). Neutrino captures are not included, which make
only slight shifts of Ye (typically an increase of ∼ 0.01
from 10 GK to 5 GK; see Figure 2).
The hydrodynamical trajectories end with the temper-

atures of ∼ 5 GK. Further temporal evolutions are fol-
lowed by the density drop like t−3 and with the tem-
peratures computed with the EOS of Timmes & Swesty
(2000) by adding the entropies generated by β-decay, fis-
sion, and α-decay. This entropy generation slows the
temperature drop around 1 GK (see, e.g., Korobkin et al.
2012). The effect is, however, less dramatic than those
found in the previous works because of the higher ejecta
entropies in our result.
Figure 4 (top) displays the final nuclear abundances for

selected trajectories. We find a variety of nucleosynthetic
outcomes: iron-peak and A ∼ 90 abundances made in
nuclear quasi-equilibrium for Ye ! 0.4, light r-process
abundances for Ye ∼ 0.2–0.4, and heavy r-process abun-
dances for Ye " 0.2. Different from the previous works,
we find no fission recycling; the nuclear flow for the low-
est Ye (= 0.09) trajectory reaches A ∼ 280, the fissile
point by neutron-induced fission, only at the freezeout
of r-processing. Spontaneous fission plays an important
role for forming the A ∼ 130 abundance peak, but only
for Ye < 0.15.
Figure 4 (bottom) shows the mass-averaged nuclear

5 https://groups.nscl.msu.edu/jina/reaclib/db/index.php.
6 http://www.nndc.bnl.gov/wallet/
7 http://www.astro.ulb.ac.be/pmwiki/Brusslib/Brusslib.
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Amount of r-process elements

Event rate
RNSM ~ 100 event/Myr/Galaxy
         = 10-4 event/yr/Galaxy

NS-NS merger rate
Within 200 Mpc
~ 30 events/yr

(~0.3-300)

GW

Mej(r-process) ~ 10-2 Msun

M(Galaxy, r-process) ~ Mej(r) x  (RNSM x tG)
                                      ~ 10-2 x 10-4 x 1010 ~ 104 Msun

Ejection per event



r-process elements in the early Universe

see Hirai-san’s poster (No 65)
(e.g., Argast+04, Matteucci+14, Tsujimoto & Shigayema 2014)

figure courtesy of Yutaka Hirai
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Multi-Messenger Studies of 
Compact Binary Merger

•Mass ejection and nucleosynthesis

• Electromagnetic wave signals

•Toward multi-messenger astronomy



EM signature from NS merger

• On-axis short GRB

• Extended emission
(~25% of short GRB)

• Off-axis radio/optical 
afterglow

• Radioactive emission 
(kilonova, macronova)
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with specific stellar populations). Because merger counterparts
are predicted to be faint, obtaining a spectroscopic redshift
is challenging (cf. Rowlinson et al. 2010), in which case
spectroscopy of the host galaxy is the most promising means
of obtaining the event redshift.

It is important to distinguish two general strategies for con-
necting EM and GW events. One approach is to search for a
GW signal following an EM trigger, either in real time or at
a post-processing stage (e.g., Finn et al. 1999; Mohanty et al.
2004). This is particularly promising for counterparts predicted
to occur in temporal coincidence with the GW chirp, such as
short-duration gamma-ray bursts (SGRBs). Unfortunately, most
other promising counterparts (none of which have yet been
independently identified) occur hours to months after coales-
cence.6 Thus, the predicted arrival time of the GW signal will
remain uncertain, in which case the additional sensitivity gained
from this information is significantly reduced. For instance, if
the time of merger is known only to within an uncertainty of
∼ hours (weeks), as we will show is the case for optical (radio)
counterparts, then the number of trial GW templates that must
be searched is larger by a factor ∼104–106 than if the merger
time is known to within seconds, as in the case of SGRBs.

A second approach, which is the primary focus of this paper,
is EM follow-up of GW triggers. A potential advantage in this
case is that counterpart searches are restricted to the nearby
universe, as determined by the ALIGO/Virgo sensitivity range
(redshift z ! 0.05–0.1). On the other hand, the large error
regions are a significant challenge, which are estimated to be
tens of square degrees even for optimistic configurations of GW
detectors (e.g., Gürsel & Tinto 1989; Fairhurst 2009; Wen &
Chen 2010; Nissanke et al. 2011). Although it has been argued
that this difficulty may be alleviated if the search is restricted
to galaxies within 200 Mpc (Nuttall & Sutton 2010), we stress
that the number of galaxies with L " 0.1 L∗ (typical of SGRB
host galaxies; Berger 2009, 2011) within an expected GW error
region is ∼400, large enough to negate this advantage for most
search strategies. In principle the number of candidate galaxies
could be reduced if the distance can be constrained from the
GW signal; however, distance estimates for individual events
are rather uncertain, especially at that low of S/Ns that will
characterize most detections (Nissanke et al. 2010). Moreover,
current galaxy catalogs are incomplete within the ALIGO/Virgo
volume, especially at lower luminosities. Finally, some mergers
may also occur outside of their host galaxies (Berger 2010;
Kelley et al. 2010). Although restricting counterpart searches to
nearby galaxies is unlikely to reduce the number of telescope
pointings necessary in follow-up searches, it nevertheless can
substantially reduce the effective sky region to be searched,
thereby allowing for more effective vetoes of false positive
events (Kulkarni & Kasliwal 2009).

At the present there are no optical or radio facilities that can
provide all-sky coverage at a cadence and depth matched to
the expected light curves of EM counterparts. As we show in
this paper, even the Large Synoptic Survey Telescope (LSST),
with a planned all-sky cadence of four days and a depth of
r ≈ 24.7 mag, is unlikely to effectively capture the range of
expected EM counterparts. Thus, targeted follow-up of GW

6 Predicted EM counterparts that may instead precede the GW signal include
emission powered by the magnetosphere of the NS (e.g., Hansen & Lyutikov
2001; McWilliams & Levin 2011; Lyutikov 2011a, 2011b), or cracking of the
NS crust due to tidal interactions (e.g., Troja et al. 2010; Tsang et al. 2011),
during the final inspiral. However, given the current uncertainties in these
models, we do not discuss them further.
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Figure 1. Summary of potential electromagnetic counterparts of NS–NS/
NS–BH mergers discussed in this paper, as a function of the observer angle,
θobs. Following the merger a centrifugally supported disk (blue) remains around
the central compact object (usually a BH). Rapid accretion lasting !1 s
powers a collimated relativistic jet, which produces a short-duration gamma-
ray burst (Section 2). Due to relativistic beaming, the gamma-ray emission
is restricted to observers with θobs ! θj , the half-opening angle of the jet.
Non-thermal afterglow emission results from the interaction of the jet with
the surrounding circumburst medium (pink). Optical afterglow emission is
observable on timescales up to ∼ days–weeks by observers with viewing angles
of θobs ! 2θj (Section 3.1). Radio afterglow emission is observable from all
viewing angles (isotropic) once the jet decelerates to mildly relativistic speeds
on a timescale of weeks–months, and can also be produced on timescales of
years from sub-relativistic ejecta (Section 3.2). Short-lived isotropic optical
emission lasting ∼few days (kilonova; yellow) can also accompany the merger,
powered by the radioactive decay of heavy elements synthesized in the ejecta
(Section 4).
(A color version of this figure is available in the online journal.)

error regions is required, whether the aim is to detect optical
or radio counterparts. Even with this approach, the follow-
up observations will still require large field-of-view (FOV)
telescopes to cover tens of square degrees; targeted observations
of galaxies are unlikely to substantially reduce the large amount
of time to scan the full error region.

Our investigation of EM counterparts is organized as follows.
We begin by comparing various types of EM counterparts, each
illustrated by the schematic diagram in Figure 1. The first is an
SGRB, powered by accretion following the merger (Section 2).
Even if no SGRB is produced or detected, the merger may still
be accompanied by relativistic ejecta, which will power non-
thermal afterglow emission as it interacts with the surrounding
medium. In Section 3 we explore the properties of such “or-
phan afterglows” from bursts with jets nearly aligned toward
Earth (optical afterglows; Section 3.1) and for larger viewing
angles (late radio afterglows; Section 3.2). We constrain our
models using the existing observations of SGRB afterglows,
coupled with off-axis afterglow models. We also provide a re-
alistic assessment of the required observing time and achiev-
able depths in the optical and radio bands. In Section 4 we
consider isotropic optical transients powered by the radioac-
tive decay of heavy elements synthesized in the ejecta (referred
to here as “kilonovae,” since their peak luminosities are pre-
dicted to be roughly one thousand times brighter than those
of standard novae). In Section 5 we compare and contrast the
potential counterparts in the context of our four Cardinal Virtues.

2
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3 R A D I OAC T I V E H E AT I N G

3.1 Network calculations

In this section we present calculations of the radioactive heating of
the ejecta. We use a dynamical r-process network (Martı́nez-Pinedo
2008; Petermann et al. 2008) that includes neutron captures, pho-
todissociations, β-decays, α-decays and fission reactions. The latter
includes contributions from neutron-induced fission, β delayed fis-
sion and spontaneous fission. The neutron capture rates for nuclei
with Z ≤ 83 are obtained from the work of Rauscher & Thielemann
(2000) and are based on two different nuclear mass models: the
Finite Range Droplet Model (FRDM; Möller et al. 1995) and the
Quenched version of the Extended Thomas–Fermi with Strutinsky
Integral (ETFSI-Q) model (Pearson, Nayak & Goriely 1996). For
nuclei with Z > 83 the neutron capture rates and neutron-induced
fission rates are obtained from Panov et al. (2010). β-decay rates
including emission of up to three neutrons after β-decay are from
Möller, Pfeiffer & Kratz (2003). β-delayed fission and spontaneous
fission rates are determined as explained by Martı́nez-Pinedo et al.
(2007). Experimental rates for α and β decay have been obtained
from the NUDAT data base.1 Fission yields for all fission processes
are determined using the statistical code ABLA (Gaimard & Schmidt
1991; Benlliure et al. 1998). All heating is self-consistently added
to the entropy of the fluid following the procedure of Freiburghaus
et al. (1999). The change of temperature during the initial expan-
sion is determined using the Timmes equation of state (Timmes &
Arnett 1999), which is valid below the density ρ ∼ 3 × 1011 g cm−3

at which our calculation begins.
As in the r-process calculations performed by Freiburghaus et al.

(1999), we use a Lagrangian density ρ(t) taken from the NS–NS
merger simulations of Rosswog et al. (1999). In addition to ρ(t), the
initial temperature T , electron fraction Ye and seed nuclei properties
(Ā, Z̄) are specified for a given calculation. We assume an initial
temperature T = 6 × 109 K, although the subsequent r-process heat-
ing is not particularly sensitive to this choice because any initial ther-
mal energy is rapidly lost to P dV work during the initial expansion
before the r-process begins (Meyer 1989; Freiburghaus et al. 1999).
For our fiducial model we also assume Ye = 0.1, Z̄ ≃ 36, Ā ≃ 118
(e.g. Freiburghaus et al. 1999).

Our results for the total radioactive power Ė with time are shown
in Fig. 1. On time-scales of interest the radioactive power can be
divided into two contributions: fission and β-decays, which are
denoted by dashed and dotted lines, respectively. The large heating
rate at very early times is due to the r-process, which ends when
neutrons are exhausted at t ∼ 1 s ∼10−5 d. The heating on longer
time-scales results from the synthesized isotopes decaying back to
stability. On the time-scales of interest for powering EM emission
(tpeak ∼ hours–days; equations3), most of the fission results from
the spontaneous fission of nuclei with A ∼ 230–280. This releases
energy in the form of the kinetic energy of the daughter nuclei and
fast neutrons, with a modest contribution from γ -rays. The other
source of radioactive heating is β-decays of r-process product nuclei
and fission daughters (see Table 1 for examples corresponding to
our fiducial model). In Fig. 1 we also show for comparison the
radioactive power resulting from an identical mass of 56Ni and its
daughter 56Co. Note that (coincidentally) the radioactive power of
the r-process ejecta and 56Ni/56Co are comparable on time-scales
∼1 d.

1http://www.nndc.bnl.gov/nudat2/

Figure 1. Radioactive heating rate per unit mass Ė in NS merger ejecta
due to the decay of r-process material, calculated for the Ye = 0.1 ejecta
trajectory from Rosswog et al. (1999) and Freiburghaus et al. (1999). The
total heating rate is shown with a solid line and is divided into contributions
from β-decays (dotted line) and fission (dashed line). For comparison we
also show the heating rate per unit mass produced by the decay chain
56Ni → 56Co → 56Fe (dot–dashed line). Note that on the ∼day time-scales
of interest for merger transients (t ∼ tpeak; equation 3) fission and β-decays
make similar contributions to the total r-process heating, and that the r-
process and 56Ni heating rates are similar.

Table 1. Properties of the dominant β-decay nuclei at t ∼ 1 d.

Isotope t1/2 Qa ϵb
e ϵc

ν ϵd
γ Eavg e

γ

(h) (MeV) (MeV)

135I 6.57 2.65 0.18 0.18 0.64 1.17
129Sb 4.4 2.38 0.22 0.22 0.55 0.86
128Sb 9.0 4.39 0.14 0.14 0.73 0.66
129Te 1.16 1.47 0.48 0.48 0.04 0.22
132I 2.30 3.58 0.19 0.19 0.62 0.77
135Xe 9.14 1.15 0.38 0.40 0.22 0.26
127Sn 2.1 3.2 0.24 0.23 0.53 0.92
134I 0.88 4.2 0.20 0.19 0.61 0.86
56Nif 146 2.14 0.10 0.10 0.80 0.53

aTotal energy released in the decay.
b,c,dFraction of the decay energy released in electrons, neutrinos and γ -rays.
eAverage photon energy produced in the decay.
f Note: 56Ni is not produced by the r-process and is only shown for compar-
ison [although a small abundance of 56Ni may be produced in accretion disc
outflows from NS–NS/NS–BH mergers (Metzger et al. 2008b)].

In Fig. 2 we show the final abundance distribution from our
fiducial model, which shows the expected strong second and third
r-process peaks at A ∼ 130 and ∼195, respectively. For comparison,
we show the measured Solar system r-process abundances with
points. The computed abundances are rather different to the one
obtained by Freiburghaus et al. (1999) due to an improved treatment
of fission yields and freeze-out effects.

Although we assume Ye = 0.1 in our fiducial model, the ejecta
from NS mergers will possess a range of electron fractions (see
Section 2.1). To explore the sensitivity of our results to the ejecta
composition we have run identical calculations of the radioactive
heating, but varying the electron fraction in the range Ye = 0.05–
0.35. Although in reality portions of the ejecta with different compo-
sitions will undergo different expansion histories, in order to make
a direct comparison we use the same density trajectory ρ(t) as was
described earlier for the Ye = 0.1 case. Fig. 3 shows the heating rate

C⃝ 2010 The Authors. Journal compilation C⃝ 2010 RAS, MNRAS 406, 2650–2662
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Figure 2. Bolometric light curve of the model NSM-all (black, multi-frequency
simulations). This light curve is compared with the light curves for the same
model but with the gray approximation of UVOIR transfer (κ = 0.1, 1, and
10 cm2 g−1 for the blue, purple, and red lines, respectively). The result of
multi-frequency transfer is most similar to that of gray transfer with
κ = 10 cm2 g−1.
(A color version of this figure is available in the online journal.)

compared with the light curves for the same model but with the
gray approximation of the UVOIR transfer. The blue, purple, and
red lines show the cases with gray mass absorption coefficients
of κ = 0.1, 1.0, and 10 cm2 g−1, respectively. The result of
multi-frequency transfer closely follows the light curve with
the gray opacity of κ = 10 cm2 g−1. This result indicates that
r-process element-rich NS merger ejecta are more opaque than
previously assumed (κ ≃ 0.1 cm2 g−1; e.g., Li & Paczyński
1998; Metzger et al. 2010), by a factor of about 100. As a result,
the bolometric light curve becomes fainter and the timescale

becomes longer.7 This result is consistent with the findings of
Kasen et al. (2013) and Barnes & Kasen (2013).

Figure 3 shows the mass absorption coefficient as a function
of wavelength at t = 3 days in the model NSM-all at v = 0.1c.
The mass absorption coefficient is as high as 1–100 cm2 g−1 at
optical wavelengths. The resulting Planck mean mass absorption
coefficient is about κ = 10 cm2 g−1 (Figure 15). As a result,
the bolometric light curve of multi-frequency transfer most
closely follows that of gray opacity of κ = 10 cm2 g−1 in
Figure 2.

The high opacity in r-process element-rich ejecta is also
confirmed by a comparison with other simple models. Figure 4
shows the comparison of the bolometric light curve from the
models NSM-all, NSM-dynamical, NSM-wind, and NSM-Fe.
Compared with the NSM-Fe model, the other models show
fainter light curves. This finding indicates that elements heavier
than Fe contribute to the high opacity. The opacity in the model
NSM-Fe is also shown in Figure 3. The opacity in the NSM-all
model is higher than that in the NSM-Fe model by a factor of
about 100 at the center of optical wavelengths (∼5000 Å).

As inferred from Figure 4, the NSM-dynamical model (55 !
Z ! 92) has a higher opacity than that of the NSM-wind
model (31 ! Z ! 54). This finding arises because lanthanoid
elements (57 ! Z ! 71) make the largest contribution to the
bound–bound opacity, as demonstrated by Kasen et al. (2013).
Note, however, that even with the elements with 31 ! Z ! 54,
the opacity is higher than that of Fe.

Figure 5 shows the multi-color light curves of the model
NSM-all. In general, the emission from NS merger ejecta is red
because of (1) a lower temperature than SNe and (2) a higher
optical opacity than in SNe. In particular, the optical light curves

7 We show the results of our multi-frequency transfer simulations at t ! 1
day. Because of the lack of bound–bound transition data for triply ionized ions
in our line list (Figure 1), the opacities at earlier epochs are not correctly
evaluated. We hereafter show the results when the temperature at the
characteristic velocity is below 10,000 K, when the dominant ionization states
are no longer triply ionized ions. A detailed discussion is presented in
Appendix B.
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Figure 3. Mass absorption coefficient κ at v = 0.1c in the models NSM-all and NSM-Fe as a function of wavelength (t = 3 days after the merger). In r-process
element-rich ejecta, the opacity is higher than in Fe-rich ejecta by a factor of about 100 around the center of optical wavelengths (∼5000 Å).
(A color version of this figure is available in the online journal.)
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Fig. 7.— Bolometric light curves for realistic models (Table 1).
The expected emission of models with a soft EOS APR4 (red) is
brighter than that with a stiff EOS H4 (blue). For the soft EOS
APR4, the light curve does not depend on the mass ratio, while for
a stiff EOS H4, a higher mass ratio (1.2M⊙ + 1.5M⊙, solid line)
results in a large ejecta mass, and thus, brighter emission than a
lower mass ratio (1.3M⊙ + 1.4M⊙, dashed line).

with different survey projects. Horizontal lines show 5σ
limiting magnitudes for different sizes of telescopes with
10 min exposure time.

After the detection of GW signal, EM follow up ob-
servations should discover a new transient object from
a ∼ 10-100 deg2 area. Thus, the use of wide-field tele-
scope/camera is a natural choice (e.g., Nissanke et al.
2013). For optical wavelengths, there are several projects
using 1 m-class telescopes that can cover ∼> 4 deg2 area,
such as Palomar transient factory (PTF, Law et al. 2009;
Rau et al. 2009), La Silla-QUEST Variability Survey
(Hadjiyska et al. 2012), and Catalina Real-Time Tran-
sient Survey (Drake et al. 2009). In Figure 8, we show the
limiting magnitudes deduced from Law et al. (2009). Be-
cause of the red color, the detection in blue wavelengths

(ug bands) seems difficult. Even for the bright cases,
deep observations with > 10 min exposure in red wave-
lengths (i or z bands) are needed. The faint models are
far below the limit of 1m-class telescopes.

For larger optical telescopes, the field of view tends to
be smaller. Among 4m-class telescopes, Canada-France-
Hawaii Telescope (CFHT)/Megacam and the Blanco 4m
telescope/DECAM for the Dark Energy Survey 6 have
3.6 deg2 and 4.0 deg2 field of view. In Figure 8, we show
the limiting magnitudes from CFHT/Megacam 7. The
bright models (red and black lines) are above the limits
at the first 5-10 days. Similar to 1m-class telescopes, ob-
servations in redder wavelengths are more efficient. The
faint model (model H4-1314, blue dashed line) is still
below the limit of 4m-class telescopes (with 10 min ex-
posure).

To cover all the possibilities, we definitely need 8m-
class telescopes. Among such large telescopes, only Sub-
aru/Hyper Suprime Cam (HSC, Miyazaki et al. 2006)
and Large Synoptic Survey Telescope (LSST, Ivezic et al.
2008; LSST Science Collaborations et al. 2009) have a
wide field of view (1.77 deg2 and 9.6 deg2, respectively).
We show the expected limit with Subaru/HSC. In red
optical wavelengths (i or z bands), 8m-class telescope
can detect even the faintest case.

In Figure 9, we show a r−i vs i−z color-color diagram
for model NSM-all compared with that of Type Ia, IIP,
and Ibc SNe (Nugent et al. 2002). As clearly seen, the NS
merger is significantly redder than SNe. Thus, confusion
with SNe will not be problematic.

Because of the extremely red color, follow up obser-
vations in NIR wavelengths are also useful. In NIR
wavelengths, however, a field of view is usually smaller
than in optical. We plot the limit of 4.1m VISTA tele-
scope/VIRCAM (∼0.6 deg2 Dalton et al. 2006) 8. In
J band, ground-based observations with 4m-class tele-
scopes will be able to detect a bright event in NIR wave-
lengths.

Observations from space seem a more promising strat-

6 https://www.darkenergysurvey.org
7 http://www.cfht.hawaii.edu/Instruments/Imaging/Megacam/generalinformation.h
8 http://www.eso.org/sci/facilities/paranal/instruments/vircam/

toy model

Softer EOS (smaller NS radius) => brighter emission

Soft EOS
Stiff EOS

Radius of
1.35 Msun NS

R = 11.1 km
R = 13.6 km10-2 Msun

10-3 Msun
MT & Hotokezaka 2013

Equation of state => EM emission
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Figure 2. Ejecta masses as a function of the compactness of the neutron star, which is defined by GMtot/2R1.35c
2 and GMNS/R1.35c

2 for NS–NS and BH–NS models,
respectively. Left panel: NS–NS models. Each point shows the ejecta mass for the equal mass cases. Error bars denote the dispersion of the ejecta masses due to
the various Q. Right panel: BH–NS models. The filled and open symbols correspond to the models with (Q, χ ) = (3–7, 0.75) and (7, 0.5), respectively. The blue
shaded region in each panel shows the ejecta masses allowed in order to reproduce the observed near-infrared excess of GRB 130603B, 0.02 ! Mej/M⊙ ! 0.07 and
0.02 ! Mej/M⊙ ! 0.1 for the NS–NS and BH–NS models, respectively. The lower and upper bounds are imposed by hypothetical high- and low-heating models,
respectively.
(A color version of this figure is available in the online journal.)

as a hypermassive neutron star with a lifetime of !10 ms is
formed after the merger. More massive NS–NS mergers result
in hypermassive neutron stars with a lifetime of "10 ms or in
black holes. For such a case, the ejecta mass decreases with
increasing Mtot because of the shorter duration of mass ejection.

BH–NS ejecta. Tidal disruption of a neutron star results in
anisotropic mass ejection for a BH–NS merger (Kyutoku et al.
2013). As a result, the ejecta is concentrated near the binary
orbital plane as shown in Figure 1, and it is shaped like a disk
or crescent.

The amount of ejecta for the BH–NS models is smaller for
more compact neutron star models with fixed values of χ and Q
as shown in Figure 2. This is because tidal disruption occurs in
a less significant manner. This dependence of the BH–NS ejecta
on the compactness of neutron stars is opposite to the case of
the NS–NS ejecta.

More specifically, the amount of ejecta is

5 × 10−4 " Mej/M⊙ " 10−2 (soft EOSs),

4 × 10−2 " Mej/M⊙ " 7 × 10−2 (stiff EOSs), (2)

for χ = 0.75 and 3 # Q # 7. For χ = 0.5, the ejecta mass is
smaller than that for χ = 0.75. Only the stiff EOS models can
produce large amounts of ejecta more than 0.01 M⊙ for χ = 0.5
and Q = 7.

For both NS–NS and BH–NS merger models, winds driven
by neutrino/viscous/nuclear-recombination heating or the mag-
netic field from the central object might provide ejecta in addi-
tion to the dynamical ejecta (Dessart et al. 2009; Wanajo & Janka
2012; Kiuchi et al. 2012; Fernández & Metzger 2013). However,
it is not easy to estimate the amount of wind ejecta, because it
depends strongly on the condition of the remnant formed after
the merger. In this Letter, we focus only on the dynamical ejecta.

3. RADIATIVE TRANSFER SIMULATIONS
FOR THE EJECTA

For the NS–NS and BH–NS merger models described in
Section 2, we perform radiative transfer simulations to obtain

the light curves of the radioactively powered emission from
the ejecta using the three-dimensional, time-dependent, multi-
frequency Monte Carlo radiative transfer code (Tanaka &
Hotokezaka 2013). For a given density structure of the ejecta
and elemental abundances, this code computes the emission
in the ultraviolet, optical, and near-infrared wavelength ranges
by taking into account the detailed r-process opacities. In this
Letter, we include r-process elements with Z $ 40 assuming the
solar abundance ratios by Simmerer et al. (2004). More details
of the radiation transfer simulations are described in Tanaka &
Hotokezaka (2013); Tanaka et al. (2013).

The heating rate from the radioactive decay of r-process
elements is one of the important ingredients of radiative transfer
simulations. As a fiducial-heating model, we employ the heating
rate computed with the abundance distribution that reproduces
the solar r-process pattern (see Tanaka et al. 2013 for more
detail). Heating is due to β-decays only, which increase atomic
numbers from the neutron-rich region toward the β-stability
line without changing the mass number A. This heating rate is in
reasonable agreement with those from previous nucleosynthesis
calculations (Metzger et al. 2010; Goriely et al. 2011; Grossman
et al. 2013) except for the first several seconds.

We note that quantitative uncertainties could exist in the
heating rate as well as in the opacities. As an example, the
heating rate would be about a factor 2 higher if the r-process
abundances of A ∼ 130 (or those produced with the electron
fraction of Ye ∼ 0.2) were dominant in the ejecta (Metzger
et al. 2010; Grossman et al. 2013). To take into account such
uncertainties, we also consider the cases in which the light
curves of mergers are twice and half as luminous (high- and low-
heating models; only explicitly shown for the NS–NS models
in Figure 3) as those computed with the fiducial-heating model.

4. LIGHT CURVES AND POSSIBLE
PROGENITOR MODELS

The computed light curves and observed data in r and
H-band are compared in Figure 3. The left panel of Figure 3
shows the light curves of the NS–NS merger models SLy
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of some EOSs (see a discussion in the last paragraph of this
section), and thus, for these particular cases, the character-
istic frequency may be determined with a small dispersion.
However, in general, the broadening value is !10% of the
peak frequencies which is !2–3:5 kHz. Therefore, it will
not be easy to strictly determine the peak frequencies from
the Fourier spectrum. This situation will bring a serious
problem in the real data analysis, in which the noise level is
by several 10% as large as the signal amplitude; the peak
will not be determined strictly due to the presence of many
fake peaks and spurious broadening.

To estimate the possible magnitude of the broadening,
we also determine the average frequency from the results
of the frequency f by [12]

fave :¼
R
fjhjdtR jhjdt ; (11)

where we used jhj ¼ ðh2þ þ h2%Þ1=2 as the weight factor.
Then, we define the physical deviation of the major
frequency by

!2
f
:¼

Rðf' faveÞ2jhjdtR jhjdt : (12)

Here, the time integration is performed for 5, 10, and 20 ms
after the formation of the MNSs, because for each time
segment, the frequencies are changed. Table III lists the
average frequency and the deviation determined for 5, 10,
and 20 ms integration.

Table III as well as Fig. 12 shows that the values of fave
agree approximately with the peak frequency of the Fourier
spectrum irrespective of the integration time. However, as
expected, the value of fave changes with time. It is also
found that the magnitude of the deviation !f is not negli-

gible. For APR4 and SLy, for which the neutron star radius
is rather small and the amplitude of a quasiradial oscilla-
tion induced at the formation of the MNSs is rather large,
the magnitude of the deviation is 0.3–0.4 kHz. This indi-
cates that for determining the peak frequency from the
Fourier spectrum, the uncertainty of this magnitude has
to be kept in mind. For other EOSs, the deviation is
relatively small. However, it is still 0.1–0.2 kHz. To sum-
marize, we conclude that the characteristic frequency of
gravitational waves emitted by the MNSs changes with
time in general, and such time variation is the major source
of the broadening of the peak frequency found in Fig. 13.
There is also an uncertainty due to the grid resolution of

the simulation. The averaged value of the frequency con-
verges within !0:1 kHz error. This error causes an uncer-
tainty of the correlations between the Fourier peak and the
radius of a neutron stars with an error about 0.1 km.
However, the half width of Fourier peaks, which is about
!f, is larger than the uncertainty due to the grid resolution.
Thus we consider that an uncertainty!0:1 kHz is not quite
significant.
Before closing this section, we summarize several inter-

esting properties found in the Fourier spectrum. The first
one is that the peak frequencies vary with the mass ratio
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FIG. 13 (color online). The frequency of the Fourier spectrum peak as a function of the neutron star radius of M ¼ 1:8M( (upper
panels) and M ¼ 1:6M( (lower panels) with a given EOS for m ¼ 2:7M( (left panels) and 2:6M( (right panels). In the right panels,
we plotted all the data (equal-mass and unequal-mass data) using the same symbol. In the left panels, the cross symbols denote the
data of [23].
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Kilonova candidate in GRB 130603B
this field. The redshifts of the afterglow21 and the host galaxy22 were
both found to be z 5 0.356.

Another proposed signature of the merger of two neutron stars or a
neutron star and a black hole is the production of a kilonova (some-
times also termed a ‘macronova’ or an ‘r-process supernova’) due to
the decay of radioactive species produced and initially ejected during
the merger process—in other words, an event similar to a faint, short-
lived supernova6–8. Detailed calculations suggest that the spectra of
such kilonova sources will be determined by the heavy r-process ions
created in the neutron-rich material. Although these models10–13 are
still far from being fully realistic, a robust conclusion is that the optical
flux will be greatly diminished by line blanketing in the rapidly expan-
ding ejecta, with the radiation emerging instead in the near-infrared
(NIR) and being produced over a longer timescale than would other-
wise be the case. This makes previous limits on early optical kilonova
emission unsurprising23. Specifically, the NIR light curves are expected
to have a broad peak, rising after a few days and lasting a week or more
in the rest frame. The relatively modest redshift and intensive study of
GRB 130603B made it a prime candidate for searching for such a kilonova.

We imaged of the location of the burst with the NASA/ESA Hubble
Space Telescope (HST) at two epochs, the first ,9 d after the burst
(epoch 1) and the second ,30 d after the burst (epoch 2). On each occa-
sion, a single orbit integration was obtained in both the optical F606W
filter (0.6mm) and the NIR F160W filter (1.6mm) (full details of the imag-
ing and photometric analysis discussed here are given in Supplemen-
tary Information). The HST images are shown in Fig. 1; the key result is
seen in the difference frames (right-hand panels), which provide clear
evidence for a compact transient source in the NIR in epoch 1 (we note
that this source was also identified24 as a candidate kilonova in indepen-
dent analysis of our data on epoch 1) that seems to have disappeared by
epoch 2 and is absent to the depth of the data in the optical.

At the position of the SGRB in the difference images, our photo-
metric analysis gives a magnitude limit in the F606W filter of
R606,AB . 28.25 mag (2s upper limit) and a magnitude in the F160W
filter of H160,AB 5 25.73 6 0.20 mag. In both cases, we fitted a model
point-spread function and estimated the errors from the variance of
the flux at a large number of locations chosen to have a similar back-
ground to that at the position of the SGRB. We note that some tran-
sient emission may remain in the second NIR epoch; experimenting
with adding synthetic stars to the image leads us to conclude that any
such late-time emission is likely to be less than ,25% of the level in
epoch 1 if it is not to appear visually as a faint point source in epoch 2,
however, that would still allow the NIR magnitude in epoch 1 to be up
to ,0.3 mag brighter.

To assess the significance of this result, it is important to establish
whether any emission seen in the first HST epoch could have a con-
tribution from the SGRB afterglow. A compilation of optical and NIR
photometry, gathered by a variety of ground-based telescopes in the
few days following the burst, is plotted in Fig. 2 along with our HST
results. Although initially bright, the optical afterglow light curve dec-
lines steeply after about ,10 h, requiring a late-time power-law decay
rate of a < 2.7 (where F / t2a describes the flux). The NIR flux, on the
other hand, is significantly in excess of the same extrapolated power
law. This point is made most forcibly by considering the colour evolu-
tion of the transient, defined as the difference between the magnitudes
in each filter, which evolves from R606 2 H160 < 1.7 6 0.15 mag at about
14 h to greater than R606 2 H160 < 2.5 mag at about 9 d. It would be
very unusual, and in conflict with predictions of the standard external-
shock theory25, for such a large colour change to be a consequence of
late-time afterglow behaviour. The most natural explanation is there-
fore that the HST transient source is largely due to kilonova emission,
and the brightness is in fact well within the range of recent models
plotted in Fig. 2, thus supporting the proposition that kilonovae are
likely to be important sites of r-process element production. We note
that this phenomenon is strikingly reminiscent, in a qualitative sense,
of the humps in the optical light curves of long-duration c-ray bursts

produced by underlying type Ic supernovae, although here the lumino-
sity is considerably fainter and the emission is redder. The ubiquity and
range of properties of the late-time red transient emission in SGRBs
will undoubtedly be tested by future observations.

The next generation of gravitational-wave detectors (Advanced LIGO
and Advanced VIRGO) is expected ultimately to reach sensitivity levels
allowing them to detect neutron-star/neutron-star and neutron-star/
black-hole inspirals out to distances of a few hundred megaparsecs26

(z < 0.05–0.1). However, no SGRB has been definitively found at any
redshift less than z 5 0.12 over the 8.5 yr of the Swift mission to date27.
This suggests either that the rate of compact binary mergers is low,
implying a correspondingly low expected rate of gravitational-wave
transient detections, or that most such mergers are not observed as
bright SGRBs. The latter case could be understood if the beaming of
SGRBs was rather narrow, for example, and the intrinsic event rate was,
as a result, two or three orders of magnitude higher than that observed
by Swift. Although the evidence constraining SGRB jet opening angles
is limited at present28 (indeed, the light-curve break seen in GRB 130603B
may be further evidence for such beaming), it is clear that an alterna-
tive electromagnetic signature, particularly if approximately isotropic,
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Figure 2 | Optical, NIR and X-ray light curves of GRB 130603B. Left axis,
optical and NIR; right axis, X-ray. Upper limits are 2s and error bars are 1s. The
optical data (g, r and i bands) have been interpolated to the F606W band and
the NIR data have been interpolated to the F160W band using an average
spectral energy distribution at ,0.6 d (Supplementary Information). HST
epoch-1 points are given by bold symbols. The optical afterglow decays steeply
after the first ,0.3 d and is modelled here as a smoothly broken power law
(dashed blue line). We note that the complete absence of late-time optical
emission also places a limit on any separate 56Ni-driven decay component. The
0.3–10-keV X-ray data29 are also consistent with breaking to a similarly steep
decay (the dashed black line shows the optical light curve simply rescaled to
match the X-ray points in this time frame), although the source had dropped
below Swift sensitivity by ,48 h after the burst. The key conclusion from this
plot is that the source seen in the NIR requires an additional component above
the extrapolation of the afterglow (red dashed line), assuming that it also decays
at the same rate. This excess NIR flux corresponds to a source with absolute
magnitude M(J)AB < 215.35 mag at ,7 d after the burst in the rest frame. This
is consistent with the favoured range of kilonova behaviour from recent
calculations (despite their known significant uncertainties11–13), as illustrated by
the model11 lines (orange curves correspond to ejected masses of 1022 solar
masses (lower curve) and 1021 solar masses (upper curve), and these are added
to the afterglow decay curves to produce predictions for the total NIR emission,
shown as solid red curves). The cyan curve shows that even the brightest
predicted r-process kilonova optical emission is negligible.
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NIR source

Mej ~ 0.02 Msun => soft EOS (if NS merger)
Hotokezaka, Kyutoku, MT+2013

see also Takami, Nozawa, Ioka 2014
Kisaka, Ioka, Takami 2014 (Kisaka-san’s poster No 23)



Amount of r-process elements

Event rate
RNSM ~ 100 event/Myr/Galaxy
         = 10-4 event/yr/Galaxy

NS-NS merger rate
Within 200 Mpc
~ 30 events/yr

(~0.3-300)

GW

EM

“Testable” scenario for r-process nucleosynthesis

Mej(r-process) ~ 10-2 Msun

M(Galaxy, r-process) ~ Mej(r) x  (RNSM x tG)
                                      ~ 10-2 x 10-4 x 1010 ~ 104 Msun

Ejection per event



Multi-Messenger Studies of 
Compact Binary Merger

•Mass ejection and nucleosynthesis

• Electromagnetic wave signals

•Toward multi-messenger astronomy



1. Numerical simulations

Effect of neutrino
=> EM emission can be 

brighter/bluer
(e.g., Just+14, Metzger+14, 

Kasen+14)

 Wanajo+14

higher Ye
=> lower A

Numerical relativity + radiative transfer (ν+EM)
Figure 2 plots the magnetic-field energy as a function

of time for H4B15 runs, H4B14d70, and H4B16d70. Soon
after the onset of the merger, the magnetic-field energy is
steeply amplified because the KH vortices develop in

the shear layer. The growth rate is higher for the higher-
resolution runs, because the growth rate of the KH
instability is proportional to the wave number and hence
the smaller-scale vortices have the larger growth rate. We
analyze the maximum magnetic-field strength and plot the
amplification factor in the merger as a function of Δx7 in
the lower panel of Fig. 2. This clearly shows that the
amplification factor depends on the grid resolution but not
on the initial magnetic-field strength. This is consistent
with the amplification mechanism due to the KH vortices
and qualitatively consistent with the local shearing-box
simulation in Ref. [22]. The magnetic-field energy at
t − tmrg ≈ 5 ms in the high-resolution run is 40–50 times
as large as that of the low-resolution run.
In the HMNS stage, the magnetic-field strength grows

significantly in the high- and middle-resolution runs but not
in the low-resolution run. We analyze the field amplifica-
tion by foliating the HMNS in terms of the rest-mass
density, i.e., calculating the magnetic-field energy for ρ1 ≤
ρ ≤ ρ2 varying ρ1 and ρ2. The left panel of Fig. 3 plots
magnetic-field energy of a radial component for H4B15
runs with ρ1 ¼ 1011 g=cm3 and ρ2 ¼ 1012 g=cm3. We find
that it grows in the middle- and high-resolution runs but
not significantly in the low-resolution run. We also find
the high- and middle-resolution runs satisfy the criterion
λφMRI=Δx7 ≥ 10 where λφMRI is the MRI wavelength of the
fastest growing mode for the toroidal magnetic field,
whereas the low-resolution run does not satisfy this
criterion.
We fit the growth rate of the magnetic-field energy by

∝ e2σðt−tmrgÞ for 8≲ t − tmrg ≲ 14ms for the high-resolution
run and find that σ ≈ 140 Hz (for the middle-resolution run,
it is ≈130 Hz for 8≲ t − tmrg ≲ 16 ms) which is several
percents of the rotational frequency. This frequency agrees
approximately with that of the nonaxisymmetric MRI [23].
The right panel of Fig. 3 plots the magnetic-field energy

FIG. 1 (color online). Snapshots of the density, magnetic-field strength and magnetic-field lines for H4B15d70 at t − tmrg ≈ 0.0 ms
(left panel), at t − tmrg ≈ 5.5 ms (middle panel), and at t − tmrg ≈ 38.8 ms (right panel). tmrg is a time when the amplitude of the
gravitational waves becomes maximum. The left, middle, and right panels show the configuration just after the onset of the merger, for
the HMNS phase, and for a BH surrounded by an accretion torus, respectively. In each panel, the white curves are the magnetic-field
lines. In the left panel, the cyan represents the magnetic fields stronger than 1015.6 G. In the middle panel, the yellow, green, and dark
blue represent the density iso-surface of 1014, 1012, and 1010 g=cm3, respectively. In the right panel, the light and dark blue are the
density iso-surface of 1010.5 and 1010 g=cm3, respectively.
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FIG. 2 (color online). (Top) The total magnetic-field energies as
a function of time for H4B15 runs with three grid resolutions
(B15-70m, B15-110m, B15-150m), for H4B14d70 (B14-70m),
and for H4B16d70 (B16-70m). The thin vertical lines denote the
formation time of the BH. EB is calculated by a volume integral
only outside the BH horizon. (Bottom) The dependence of the
amplification factor of the maximum toroidal magnetic field in
the merger on the grid resolution for all the models.
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Magnetized NS
=> Additional mass 

ejection?
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2. Nuclear physics

see Shibagaki-san’s poster (No 31)
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Fig. 1.— Final abundances of the integrated ejecta around the second and third peak for a NSM

(Rosswog et al. 2013; Korobkin et al. 2012) at a simulation time t = 106 s, employing the FRDM

mass model combined with four different fission fragment distribution models (see text). For rea-

sons of clarity the results are presented in two graphs. The abundances for Th and U are indicated

by crosses. In the left-hand panel the lower crosses belong to the Panov et al. (2008) model

(dashed line), while the lower crosses in the right-hand panel belong to the ABLA07 distribution

model (dashed line). The dots represent the solar r-process abundance pattern (Sneden et al. 2008).

model, in contrast, shows an overproduction of these nuclei and fails to produce a distinct second

peak. The ABLA07 model (dashed line in Fig. 1b) shows the best overall agreement with the

solar r-process abundance pattern, leading only to an underproduction of A = 140 − 170 nuclei by

a factor of about 3. In Fig. 2 we show the importance of fission in our calculations, indicating the

fission rates from two fission modes (neutron-induced and β-delayed fission). It is obvious that the

mass region with Z= 93 − 95 and N= 180 − 186 dominates. In Fig. 2c we show the corresponding

(combined) fragment production rates for ABLA07 in the nuclear chart. In Fig. 3 (and the related

caption) we also provide the fission fragment distributions as a function of A as well as the

number of released neutrons, for 274Pu (Z= 94), indicating that the model by Kodama & Takahashi

Eichler+2014

Same NS merger model 
with different fission fragment distribution

solar
 abundance



Kiso 1.05m Schmidt telescope
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3. EM counterpart search
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Current Status of Conceptual Design Study

The 1st generation wide-field CMOS camera 

x 84 chips

190 Mpixels
760 MB/exposure

Total sky coverage 20 deg2

sensor / package area = 0.3

480 mm

530 m
m

ĭ500 mm = ĭ8.7 deg
vignetting 0.44mag

ĭ225 mm = ĭ3.9 deg
vignetting free area

35mm Full HD CMOS sensor

KWFC-CCD

Photo plate

Toward wider field of view
- Tomo-e camera -

(PI: Shigeyuki Sako)

• Large FOV Ω (20 deg2)

• Efficient observation f
KWFC

Survey power = fAΩ

http://www.ioa.s.u-tokyo.ac.jp/tomoe/index.html

http://www.ioa.s.u-tokyo.ac.jp/tomoe/index.html
http://www.ioa.s.u-tokyo.ac.jp/tomoe/index.html


GW alert error box
e.g. 6 deg x 6 deg

Kiso/Tomo-e
9 deg

179 186 193 201 208 215 223 230 237 244 251

Kiso/CCD
2 deg



104 CCDs 
~ 900 Megapixel

2 GB/image
~300 GB/night

3m
3t !

8.2m 

Subaru/ Hyper Suprime-Cam



GW alert error box
e.g. 6 deg x 6 deg

Kiso/Tomo-e
9 deg

179 186 193 201 208 215 223 230 237 244 251

Kiso/CCD
2 deg

50-100 Mpc

1.5 deg
Subaru/HSC

400 Mpc
8m-class
telescope



+Nuclear physics

Origin of r-process elements
Neutron star radius (High-density EOS)

Numerical simulation

C: Sekiguchi,Shibata+

GW astronomy
KAGRA

EM astronomy
Subaru

“Multi-messenger”
astronomy

+Galaxy evolution


