Multi-Messenger Studies of Compact Binary Merger - コンパクト連星合体のマルチメッセンジャー研究 -

Masaomi Tanaka (National Astronomical Observatory of Japan) 田中 雅臣

in collaboration with Kenta Hotokezaka, Yuichiro Sekiguchi, Kenta Kiuchi, Masaru Shibata, Koutaro Kyutoku, Shinya Wanajo

Images: NASA, ESA, JPL-Caltech, CXC

Multi-Messenger Studies of Compact Binary Merger

Mass ejection and nucleosynthesis
Electromagnetic wave signals
Toward multi-messenger astronomy

New astronomy with gravitational waves

Supernova

Compact binary merger (neutron star/black hole)

< 10-100 kpc ~0.01 event/ l yr < 200 Mpc ~30 (0.3-300) events/ | yr

2017 -- Advanced LIGO (US) - Advanced Virgo (Europe) - KAGRA (Japan)

GW alert error e.g. 6 deg x 6 deg (not box shape in reality)

No electromagnetic counterpart No gravitational wave astronomy

GW detection

Source identification

"Multi-messenger" astronomy

EM signature from NS merger

- On-axis short GRB
- Extended emission (~25% of short GRB)
- Off-axis radio/optical afterglow
- Radioactive emission (kilonova, macronova)

Need mass ejection

Mass ejection from NS mergers

M ~ 10⁻³ - 10⁻² Msun

Hotokezaka+13

see Kiuchi-san's talk

Nucleosynthesis in NS merger

$$Y_e = \frac{n_e}{n_p + n_n} = \frac{n_p}{n_p + n_n}$$

r-process elements in stars

0.09 0.14 0.19 0.24 0.34 0.44

Recent progress

General relativity with neutrino transfer

See Sekiguchi-san's poster (No 37)

Amount of r-process elements

NS-NS merger rate Within 200 Mpc ~ 30 events/yr (~0.3-300)

Ejection per event

M_{ej}(r-process) ~ 10⁻² Msun

 $M(Galaxy, r-process) \sim M_{ej}(r) \times (R_{NSM} \times t_G)$ $\sim 10^{-2} \times 10^{-4} \times 10^{10} \sim 10^{4} M_{sun}$

r-process elements in the early Universe

(e.g., Argast+04, Matteucci+14, Tsujimoto & Shigayema 2014)

Multi-Messenger Studies of Compact Binary Merger

Mass ejection and nucleosynthesis
Electromagnetic wave signals
Toward multi-messenger astronomy

EM signature from NS merger

- On-axis short GRB
- Extended emission (~25% of short GRB)
- Off-axis radio/optical afterglow
- Radioactive emission (kilonova, macronova)

Radioactive-powered emission

Thick against gamma-rays => optical emission

Timescale

$$\sim 1 \, \mathrm{day} \left(\frac{M}{0.01 M_{\odot}} \right)^{1/2} \left(\frac{v}{0.2c} \right)^{-1/2} \left(\frac{v}{0.2c} \right)^{-1/2}$$

$$\left(\frac{10}{6.1 \text{ cm}^2 \text{ g}^{-1}}\right)^{1/2}$$

Luminosity

4
$$L \sim 10^{42} \text{ erg s}^{-1} \left(\frac{M}{0.01M_{\odot}}\right)^{1/2} \left(\frac{v}{0.2c}\right)^{1/2}$$

$$\left(\frac{\mathbf{IO}_{\kappa}}{0.1 \text{ cm}^2 \text{ g}^{-1}}\right)^{-1/2}$$

Opacity of r-process elements K ~ 10 cm² g⁻¹ (Kasen+13, MT & Hotokezaka 13)

 t_p

Bound-bound opacity of Fe

Higher opacity by factor of 100!

Equation of state => EM emission

Radius of 1.35 Msun NS

R = 11.1 km R = 13.6 km

Softer EOS (smaller NS radius) => brighter emission

Observational constraints on EOS

EM signal

GW signal

Bauswein & Janka 2012 Hotokezaka, Kiuchi, Kyutoku 2013

Hotokezaka, Kyutoku, MT+ 2013

Kilonova candidate in GRB 130603B

Mej ~ 0.02 Msun => soft EOS (if NS merger) Hotokezaka, Kyutoku, MT+2013

see also Takami, Nozawa, Ioka 2014 Kisaka, Ioka, Takami 2014 (Kisaka-san's poster No 23)

Amount of r-process elements

Ejection per event

M_{ej}(r-process) ~ 10⁻² Msun EM

 $M(Galaxy, r-process) \sim M_{ej}(r) \times (R_{NSM} \times t_G)$ $\sim 10^{-2} \times 10^{-4} \times 10^{10} \sim 10^{4} M_{sun}$

"Testable" scenario for r-process nucleosynthesis

Multi-Messenger Studies of Compact Binary Merger

Mass ejection and nucleosynthesis
Electromagnetic wave signals
Toward multi-messenger astronomy

I. Numerical simulations

Effect of neutrino => EM emission can be brighter/bluer

> (e.g., Just+14, Metzger+14, Kasen+14)

Magnetized NS => Additional mass ejection? (Kiuchi-san's talk)

Numerical relativity + radiative transfer (v+EM)

2. Nuclear physics

Same NS merger model with different fission fragment distribution

see Shibagaki-san's poster (No 31)

3. EM counterpart search

2 deg

Kiso I.05m Schmidt telescope

MOU between Japanese Opt/IR group and LIGO/Virgo collaboration

Toward wider field of view - Tomo-e camera -

http://www.ioa.s.u-tokyo.ac.jp/tomoe/index.html

Large FOV Ω (20 deg²)
 Efficient observation f

Survey power = $fA\Omega$

(PI: Shigeyuki Sako)

GW alert error box e.g. 6 deg x 6 deg

Kiso/Tomo-e 9 deg

Kiso/CCD 2 deg

Subaru/ Hyper Suprime-Cam

GW alert error box e.g. 6 deg x 6 deg

Kiso/Tomo-e 9 deg

Subaru/HSC I.5 deg

8m-class telescope

Numerical simulation

Origin of r-process elements Neutron star radius (High-density EOS)