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1.	
  偏光：	
  X線・γ線観測のフロンティア	




多くの衛星計画	


•  GEMS,	
  IXPE,	
  PolariS,	
  PolSTAR	
  
•  POET,	
  POLAR,	
  SPHiNX,	
  GAP2	
  
•  Astro-­‐H/SGD	
  

•  GAP,	
  PoGOLite,	
  Tsubame	




BH時空の観測的検証	


(SchniUman	
  &	
  Krolik	
  2009)	


•  X線連星の明るい状態	
  
•  標準円盤、散乱>>吸収→直線偏光	
  

(Chandrasekhar	
  1960)	
  
•  一般相対論的効果	
  (Stark	
  &	
  Connors	
  

1977;	
  Li+2009;	
  SchniUman	
  &	
  Krolik	
  2009)	
  

偏光角の波長依存性	




強磁場中のQEDの検証	

•  強磁場中性子星の熱放射	
  

•  ⇒　基本モードは直線偏光	
  
•  磁場に垂直なモードは散乱されにくい	
  

中性子星
大気	


E < ~ eB

mec
= 11.6B12 keV

モード変換による偏光角のエネルギー依存	
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Figure 2. The polarization ellipticity of the photon mode as a function of plasma
density near the vacuum resonance. The two curves correspond to the two different
modes. In this example, the parameters are B = 1013 G, ϵ = 5 keV, Ye = 1, and
θkB = 45◦. The ellipticity of a mode is specified by the ratio K = −iEx/Ey, where
Ex (Ey) is the photon’s electric field component along (perpendicular to) the k-B
plane. At densities away from the resonance density ρV , the two modes are almost
linearly polarized (with polarization ellipses orthogonal to each other): The O-mode
is characterized by |K| ≫ 1, and the X-mode |K| ≪ 1. At ρ = ρV , both modes are
circularly polarized. In the adiabatic limit, an O-mode (X-mode) photon from the
high-density region will convert to the X-mode (O-mode) as it traverses the vacuum
resonance density ρV , with its polarization ellipse rotated by 90◦.

(Lai	
  &	
  Ho	
  2003)	


真空偏極優勢	
プラズマ偏極優勢	


B = 1013 G

E = 5 keV

真空偏極	


強磁場の影響	




ガンマ線バーストの放射機構	


相対論的ジェット	
BH	
  +	
  accre^on	
  flow	


光球放射	
 内部散逸放射	
 Forward	
  
shock	


Reverse	
  
shock	
準熱的（散乱>>吸収）	
  

明るいほど低偏光	

シンクロトロン放射	
  
揃った磁場なら高偏光	


•  GAPのγ線偏光観測	
  (Yonetoku+2011;2012)	
  
•  明るい３例から高偏光(P>30%;	
  2σ)を検出	
  
•  シンクロトロン放射、磁場駆動ジェットを示唆	
  (KT	
  2013)	
  
	
  
•  Tsubame（東工大）に期待	
  

•  バーストの可視偏光は未だ観測できていない	
  

バースト	
 残光	




残光の可視偏光	
The theoretical maximum degree of linear polarization of synchro-
tron radiation emitted by electrons in a perfectly homogeneous mag-
netic field is P < 70%; the difference between the measured and the
theoretical maximum can therefore provide further constraints on the

physical properties of the emitting source. The measured net polariza-
tion can be less than the theoretical maximum because of (1) the dilu-
tion of polarized reverse-shock emission by unpolarized forward-shock
emission, (2) the combination of ordered magnetic fields from the central
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Figure 2 | Evolution of optical polarization and
brightness in GRB 120308A. a, b, Evolution of
polarization degree P (a) and position angle h
(b; degrees east of north) for GRB 120308A.
Individual 0.125-s RINGO2 exposures at the eight
Polaroid angles are co-added over a desired time
interval into eight images, on which absolute
aperture photometry is performed and
P and h derived. Owing to the low read noise of the
system, data from each rotation angle can be
stacked into temporal bins after data acquisition to
optimize signal-to-noise ratio versus time
resolution. Here the data were subdivided into four
bins of duration ,84 s and one bin of ,252 s giving
roughly equal signal-to-noise ratio. The observed
polarization properties are robust to alternative
choices of temporal binning (see Supplementary
Information and Extended Data Figs 7, 8, 9). Error
bars, 61s, as described in Fig. 1b. c, Light curve of
GRB 120308A in red (555–690 nm) light using
RINGO2 and RATCam. Data have been cross-
calibrated to the SDSS r9 system via five objects in
common, with a possible systematic error of up to
,6% between the two instruments due to colour
effects. Model fits using one peak (blue solid line)
or two peaks (broken grey line for each component;
resultant combined light curve in solid grey) are
shown with an additional point26 constraining late
time behaviour (see Supplementary Information).
The two-peak model is statistically slightly
preferred. Error bars, 61s.
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Figure 1 | Time-integrated optical properties of the GRB 120308A field.
a, RINGO2 total intensity image of 49 3 49 field containing GRB 120308A, with
total exposure time 588 s. The GRB (boxed) and seven comparison objects
(numbered) are indicated; the directions of north and east are shown. RINGO2
combines a Polaroid polarizer rotating at ,1 revolution s21 with a fast readout
electron multiplying CCD camera that is triggered eight times per revolution.
Summing data from each rotation angle allows derivation of the total intensity
for each source in the image, while analysis of their relative intensities allows
calculation of their Stokes parameters25. Measurements are not affected by
variations in source brightness or observing conditions on timescales .1 s
owing to the rapid rotation of the polaroid. There is no significant variation in
atmospheric transparency or seeing (image point-spread function) over the
588-s exposure. b, Measured time-averaged polarization P of all objects versus

apparent magnitude. As P is a one-sided (always positive) quantity, noise in the
Stokes q and u parameters translates into a rising P with large uncertainty for
the faintest objects, even though their actual polarization is likely to be small.
The strong time-averaged polarization of the GRB (red symbol) of 20%
compared to sources of similar brightness is obvious. Error bars (61s) were
calculated using a Monte Carlo simulation (N 5 10,000). This used a range of
input q and u values with an error distribution calculated from the combination
of photon counting statistics with the uncertainty in instrumental calibration to
calculate 1s ranges of P and position angle (h) for each object. All quoted
measurements in this Letter use this Monte Carlo estimator, although because
polarization in GRB 120308A is significantly non-zero, the derived errors
(within ,1% absolute error) are comparable to standard error analyses for that
object (see Supplementary Information and Extended Data Figs 1, 2, 3, 4, 5, 6).
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時間	


偏光度	


偏光角	


光度	


•  早期の可視残光がP>20%	
  ⇔　１日後ではP~1-­‐3%	
  (Covino+	
  2004)	
  
•  後期可視残光から円偏光 P_c/P_l	
  ≅	
  0.15	
  (Wiersema,	
  Covino,	
  KT+2013	
  Nature)	
  

(Mundell+2013	
  Nature)	
 (Takaki,	
  KT,	
  Kawabata+	
  in	
  prep.)	


広島大かなた望遠鏡による結果	


6 Takaki et al.
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Fig. 4.— Model of the observed X-ray and optical LCs and PD (solid lines). These correspond to the B∥ case and the emission is assumed

to come from the bright patch in the forward shock (see more details in the text). The PA changes by 90◦ at t ≃ 5.7 × 103 s. The dashed
line represents the B⊥ case, for which the light curves are the same as those in the B∥ case.

circumburst medium (Kumar & Barniol Duran 2010) and
the long-lived reverse shock emission (Uhm et al. 2012)
should also be examined, although we leave them as fu-
ture work.

Swift satellite has revealed that many of X-ray after-
glows in the early phase decay much shallower than pre-
dicted by the standard forward shock model, and the
X-ray LC observed at 5 × 102 s ! t ! 7 × 103 s in GRB
111228A corresponds to that phase. The origin of this
shallow decay is still under debate (Pennanen et al. 2014;
Duffell & MacFadyen 2014, and references therein). Our
optical polarimetric observations and theoretical analy-
sis of GRB 111228A disfavor the scenario of the evolving
microphysical parameters for the origin of the X-ray shal-
low decay phase. The simple dynamical models such as
the energy injection models and small Γ0 models (Duffell
& MacFadyen 2014), which do not relate the LC break

to the optical PA change, may not reproduce the ob-
served polarimetric behavior either. The PA changes in
the early phase optical afterglow would be a new clue
to understanding the origin of the X-ray shallow decay
phase.

Our findings demonstrate that the dense polarimetric
observations in addition to the multi-band LCs are quite
powerful for constraining the theoretical models of GRB
afterglows. The optical polarizations of blazars also show
interesting behaviors (e.g., Marscher et al. 2008; Abdo
et al. 2010). The polarimetries and theoretical studies
of blazars (e.g., Chen et al. 2014) would be helpful for
understanding GRB afterglows.

This work is supported by JSPS Research Fellowships
for Young Scientists (KT, RI, MS, TU and MY) and



2.	
  BHジェットの駆動機構：一般相対論
とプラズマ物理の境界にある問題	




パルサー風	


� ⇠ 106 ?
(Kennel	
  &	
  Coroni^	
  1984;	
  	
  
S.J.	
  Tanaka	
  &	
  Takahara	
  2010;	
  2013)	




単極誘導	


~B

＋	
 ＋	


＋	
 ＋	

ー	
ー	


~J

~V

電位差	


抵抗	


 =

Z
V Bdl

導体円盤	


(Faraday	
  1832)	


~E = �~V ⇥ ~B



Goldreich	
  &	
  Julian	
  (1969)	
  model	

光円柱	
•  定常軸対称	
  

•  星は伝導体で物質エネルギー優勢	
  
•  星外は磁場優勢だが粒子で満たされ	
  

~E · ~B = 0

~E = �$⌦F~e' ⇥ ~B

•  星の回転が磁気圏に電位差を作る	
  
•  粒子はE×Bドリフトで共回転か磁場に

沿って運動	
  
•  光円柱の存在　⇒　B_φ	
  ≠	
  0	
  
•  星の回転が電流を駆動	


⌦F = ⌦s

~S =
1

4⇡
~E ⇥ ~B'

B' < 0
~E

~J
⌦s

~E = �~V ⇥ ~B

~r · ~S = � ~E · ~J = �( ~J ⇥ ~Bp) · ~V'

~Bp

E×Bドリフト	


パルサー風	


~vd = ~E ⇥ ~B/B2

⇢ < 0

⇢ > 0



Par^cle	
  In	
  Cell	
  Simula^on	

The Astrophysical Journal Letters, 795:L22 (5pp), 2014 November 1 Chen & Beloborodov
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Figure 1. Magnetosphere of type I aligned rotator (poloidal cross section) at t = 100. Vertical dashed line shows the light cylinder. Green curves show the magnetic
flux surfaces. (a) Radial component of electric current density Jr . (b) Net charge density ρ. (c) Toroidal component of the magnetic field Bφ .
(A color version of this figure is available in the online journal.)
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Figure 2. Charge densities of (a) positrons, (b) electrons, and (c) ions.
(A color version of this figure is available in the online journal.)

The opposite current (the current sheet) is sustained by e±

discharge at r < RLC. It cannot be conducted by particles lifted
from the star as its sign is opposite to that of the charge density
demanded by the magnetosphere. Note also that |ρ| ≫ |ρGJ|
in the current sheet, so ρGJ is not important. The accelerating
potential drop is Φ∥ ∼ 2πρδ2 ∼ −(δ/r)Φ0 where δ is the
sheet thickness and we used 2πrδ|ρ|c ∼ IGJ = cΦ0. Pair
creation is biased to the outer side of the sheet (a result of
its curvature and the finite free path of photons), therefore
the unscreened Φ∥ is largest on the inner side. The sheet
thickness δ is set by the Larmor radius of particles near the
Y-point.

Plasma outflows along the equatorial plane outside RLC and
the Y-point resembles a nozzle formed by the open magnetic
fluxes of opposite polarity. Two plasma streams come to the
Y-point along the boundary of the closed zone and exchange
their opposite θ -momenta. Their collimation is achieved through
gyration in the (predominantly toroidal) magnetic field, which
communicates the θ -momentum from one stream to the other.

As a result the streams flow out in the direction of their net
momentum, which is radial (see also Shibata 1985).

About 10% of current is carried by the ions extracted from
the star at the footpoints of the current sheet. Ions experience
no radiative losses and tap the full Φ∥ (Figure 3(a)). They
have the largest Larmor radius rL, so the ion streams show
large oscillations around the equatorial plane (Figure 2(c)). The
streams with smaller oscillations are formed by accelerated
positrons with γ limited by radiation reaction. Secondary
particles have even smaller energies; they outflow almost exactly
in the equatorial plane. The streams with different rL contribute
to the thickening of the equatorial current sheet as seen in
Figures 1–3.

Since ions do not create pairs, the discharge in the current
sheet relies on the accelerated e±. This requires continual
recycling of created particles as seeds for new rounds of pair
creation, which leads to voltage oscillations. The oscillations
occur on the timescale ∼ RLC/c = Ω−1 and make the
magnetosphere “breath” around RLC.

3

(Chen	
  &	
  Beloborodov	
  2014)	

•  PIC計算　＋　電子の曲率放射と γ→e+	
  +	
  e-­‐	
  
•  広い領域でe+e-­‐生成が可能とした場合、準定常的な電流回路が形成される	
  
•  電流シートに沿った電場がe+e-­‐生成	
  
•  高エネルギー粒子が磁力線を横切る	


~E · ~B 6= 0 but	


(see	
  also	
  Yuki	
  &	
  Shibata	
  2012;	
  Philippov	
  &	
  Spitkovsky	
  2014)	


|⇢| � |⇢GJ|



BH	
  jets	


� = 10� 100

ガンマ線バーストでは	
 Lj � LEdd � > 100

活動銀河核	


Lj . LEdd ' 1046M8 ergs�1



中心エンジン	


ジェット	


降着円盤	

BH	


•  パルサーと異なり、BHには降着流が
付随するが・・・	
  

•  ジェットへの質量流入は適度に調節
されているようだ	
  

•  エネルギー源は何か？	
  
•  質量源は何か？	
  
•  加速機構は何か？	
  
•  収束機構は何か？	
  

nGJ ⇠ 10�2B3M8 cm�3

�
max

⇠ 1010

Lj ⇠ �Ṁjc
2

� = 10� 100



有力視されているシナリオ	


低密度	
 高密度	

•  BH上空の低密度領域に

エネルギーを注入	
  
•  ブラックホール回転エネ

ルギーの定常的注入 
(Blandford	
  &	
  Znajek	
  1977)　
→　電磁場優勢ジェット	
  

•  物質源は不明。非定常過
程？中性子注入？(KT	
  &	
  
Takahara	
  2012)	
  

•  ローレンツ力（磁気圧勾
配、磁気遠心力）による
物質加速	
  (cf.	
  KT	
  &	
  
Takahara	
  2013	
  PTEP)	
  

•  外側のガス圧で絞る	
  

円盤風	


ジェット	




Blandford	
  &	
  Znajek	
  (1977)	

H' = �2⇡⌦FB

rp� sin ✓無限遠での解	


H' = 2⇡(⌦F � ⌦H)B
rp� sin ✓ 地平面での条件	


•  Kerr時空、定常軸対称場	
  
•  無限小回転BH	
  

•  スプリットモノポール場	
  

•  Force-­‐free近似（電磁場優勢）	
  

⌦H ⌧ 1

Brp� = const.

H' = const.

⌦F = ⌦H/2 +O(a3)



Force-­‐free	
  /	
  MHD	
  simula^ons	

•  Koide,	
  Shibata,	
  Kudoh	
  (1999-­‐)	
  
•  Komissarov,	
  Barkov	
  (1999-­‐)	
  
•  Gammie,	
  McKinney,	
  Tchekhovskoy	
  (2003-­‐)	
  
•  De	
  Villiers,	
  Hawley,	
  Krolik	
  (2003-­‐)	
  
•  See	
  水田さん、高橋博之さんポスター	
  

•  Kerr時空は固定	
  
•  初期条件にB_pを設定	
  
•  準定常的なポインティング流速生成	
  

•  MHD計算では、粒子を注入し続けなけれ
ばならない	
  

•  負のエネルギー粒子なし(Komissarov	
  
2005)	
  

•  最近では輻射輸送計算が盛ん	
  
Fig. 3.—Initial (left) and final (right) distribution of A!. Level surfaces coincide with magnetic field lines, and field line density corresponds to poloidal field

strength. In the initial state field lines follow density contours if "0 > 0:2"0; max.(McKinney	
  &	
  Gammie	
  2004)	


Lj > Ṁaccc
2

も可能	




非定常シナリオ	

Black hole jets without large-scale flux L63

Figure 1. Retrograde simulation. (a) t = 592 rg/c. A fresh magnetic loop is poised just outside risco. (b) t = 794 rg/c. As the new loop begins to be accreted
on to the black hole it compresses the preceding flux system, inducing reconnection. Poloidal field lines begin to expand outwards. Peak jet power is reached
at t ≈ 975 rg/c. (c) t = 1064 rg/c. Reconnection begins in the current sheet along the loop’s centre line, ejecting plasmoids to infinity. (d) t = 1170 rg/c. The
reconnecting current sheet is brought on to the black hole. Thick (thin) black lines are poloidal field lines for initially clockwise (counter-clockwise) loops as
viewed in the poloidal (r–θ ) plane, with one additional field line per clockwise loop highlighted in red; the green bar indicates the position of the ISCO and the
green curve is the ergosphere boundary. Hφ is the poloidal current function, loosely equivalent to the toroidal magnetic field .

The initial conditions consist of a series of equal-flux mag-
netic loops, of width l and alternating polarity, sourced from a
thin disc in the equatorial plane; this configuration is a vacuum
steady state. At t = 0 conducting massless plasma is injected ev-
erywhere (i.e. the force-free current term is activated) and an ideal
heavy thin accretion disc begins to advect and twist the frozen-in
magnetic field loops, with spatial velocity field vi = ui/ut = (vr,
0, #K), where uα is the four-velocity in Kerr–Schild coordinates
and #K = ±c/(r

√
r/rg ± arg) is the Keplerian angular velocity

for prograde (+) and retrograde (−) orbits. Inside risco the gas,
into which the magnetic field remains frozen, plunges geodesically
into the black hole. We describe here two simulations, one each
for prograde and retrograde accretion flows. In both cases, the ac-
cretion speed is a constant vr = −c/200 outside risco and the loop
width l = 2 rg.

In the prograde simulation, field lines are inflated by the Keple-
rian differential rotation while both footpoints are attached to the
disc, but they collapse to a lower energy closed state once their
inner footpoints are advected on to the black hole. They no longer
expand poloidally, but rather passively transfer energy and angular
momentum from the black hole to the inner disc. The disc dif-
ferential rotation drives large eruptive plasmoid ejections from the

next-to-innermost flux system. There is no outflow from the black
hole, because the loop scale is smaller than the critical scale, l < lcrit;
in this case we find lcrit ≈ 3.2 rg.

The retrograde configuration behaves entirely differently. Con-
sider the evolution from when a flux loop first reaches the ISCO
(Fig. 1a). As the loop’s leading edge is accreted through the ISCO
the entire flux structure begins to open up, due to the fast differ-
ential rotation between footpoints near the black hole and those
still rooted in the disc. The loop begins to be dragged on to the
black hole, pushing together oppositely directed field lines ahead
of it and inducing magnetic reconnection (Fig. 1b). At this time the
absolute flux through the horizon is at a minimum and therefore
so is the jet power (Fig. 2). The differential rotation across a field
line changes sign as its leading footpoint approaches the black hole
and experiences the frame dragging effect in the direction opposite
to the disc’s retrograde Keplerian rotation. As a result the toroidal
magnetic field in the loop changes sign. As more of the loop is
brought on to the hole the flux through the horizon increases and
the integrated outgoing Poynting power climbs steadily. The angu-
lar velocity difference between the black hole and the retrograde
Keplerian disc is so great that, despite the ability of the magnetic
field to slip through the horizon, all field lines threading the hole

MNRASL 446, L61–L65 (2015)
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(Perfrey,	
  Giannios	
  &	
  Beloborodov	
  2015)	
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Figure 2. Jet power in units of the fiducial power L0 = ϒ"2
l a

2c/r2
H over

five full jet-launching cycles.

are forced to open towards infinity (Fig. 1c). By the time of peak jet
power output almost all of the available magnetic flux has opened
and the field configuration is similar to Fig. 1(a) (with loop polarities
reversed).

A current sheet is formed through the centre of the loop when the
poloidal field inflates and becomes approximately radial. The cur-
rent sheet becomes unstable to reconnection via the tearing mode,
which would dissipate magnetic energy into radiation and particle
kinetic energy (heating and acceleration). We observe that recon-
nection begins near the intersection of the current sheet and the
equatorial disc, at ∼4 rg. Initially, the current sheet intersects the
disc and all of the plasmoids created by the tearing process are
ejected from the system (Fig. 1c). Eventually, the current sheet base
is carried on to the black hole by the plunging plasma; the sheet
now extends through the horizon, and some of the plasmoids are
swallowed by the hole (Fig. 1d). Soon all of the loop’s field lines
have both footpoints on the horizon, and the reconnection contin-
ues to be driven by the Maxwell pressure of the next flux system
being accreted, until all of the loop’s magnetic energy has passed
in through the horizon or been expelled, and the next loop has re-
placed it on the black hole. The entire reconnection process takes
about #t ≈ 185 rg/c ≈ l/2vr = tacc/2. Large plasmoids are some-
times formed by the coalescence of smaller plasmoids, especially
in the later stages of reconnection (Fig. 1b). Although most of the
dissipation occurs inside risco, reconnection also takes place beyond
this point, as coronal flux systems entirely frozen into the disc ex-
pand under the Keplerian shear and form current sheets (Fig. 1, all
panels).

The anticipated maximum jet power is L0 = ϒ"2
l a

2c/r2
H (Sec-

tion 2). To estimate the BZ power Lj in our simulation we consider
the energy flux through the black hole’s surface. The total flux of
energy-at-infinity through the horizon is L = Lout − Lin, where
Lout (Lin) is the total luminosity of outgoing (ingoing) energy. We
associate the jet power Lj = Lout; it is plotted in units of L0 in Fig. 2.

At t = 0 much of the first loop’s flux lies inside the plunging region
and cannot inflate fully before the onset of reconnection; hence the
first cycle (t = 0–350 rg/c) has a reduced peak power. For all other
cycles, the power reaches a maximum of ≈0.75 L0. Averaging over
five complete cycles we find the jet power to be ⟨Lj⟩ = 0.43 L0.
The outflowing electromagnetic energy survives to large radii; e.g.
the average power through a sphere of radius r = 100 rg is 0.51 L0,
where the increase in power is supplied by the disc.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We have argued that small-scale magnetic fields, sourced in an ac-
cretion disc where they are amplified by MRI turbulence, can launch
powerful relativistic jets when coupled to a rapidly rotating black
hole. In this scenario, the existence and transport of large-scale
net flux are unnecessary. For prograde discs, there is a minimum
poloidal length-scale lcrit below which the magnetic loops can re-
main closed when connecting the black hole to the disc, preventing
jet production. There is no such minimum loop scale for retrograde
accretion, allowing these flows to power jets even for lower disc
thicknesses (if l ∝ H). Retrograde discs also naturally contain loops
with larger flux "l near the disc’s inner edge, and so can produce
more powerful jets since ⟨Lj⟩ ∝ "2

l .
Prograde discs can, however, create jets via this mechanism pro-

vided field loops of sufficient size are present. Several effects are
expected to mitigate in favour of prograde jet launching. A coronal
inverse cascade would increase the maximum loop scale (Uzdensky
& Goodman 2008), potentially beyond the critical value. Inflated
hole–disc coupling field lines may diffuse outwards due to strong
magnetic tension forces; the further they diffuse the greater the dif-
ferential rotation between the line’s footpoints, possibly resulting
in diffusion to beyond rclose if the accretion velocity is sufficiently
low.

Retrograde accretion has previously been invoked to explain as-
pects of the radio-loud quasar population (Garofalo, Evans & Sam-
bruna 2010), due to the larger ISCO radius (Garofalo 2009) and
the increased shear between black hole and disc (Meier 2011) in
this configuration. Retrograde accretion should occur naturally in a
fraction of TDEs, AGN, and wind-fed X-ray binaries. While deter-
mining observationally the direction of an accretion flow (closely
related to measuring the spin of the black hole) remains difficult,
there are suggestions of retrograde accretion in a small number of
radio galaxies (Sambruna et al. 2009, 2011) and microquasars (Reis
et al. 2013; Middleton, Miller-Jones & Fender 2014).

The ability of prograde accretion flows to maintain closed black
hole–disc field lines may explain the absence of jets in known high-
spin prograde accretion systems; e.g. iron line measurements of sev-
eral Seyfert galaxies indicate rapidly rotating black holes (a > 0.8)
and prograde accretion (Brenneman et al. 2011; Risaliti et al. 2013).
This jet-quenching mechanism may also operate in those black hole
X-ray binaries which have no jet in the soft state, when a thermal
disc is observed down to a few rg (e.g. Plant et al. 2014). A jet may
form in the hard state because the inner accretion flow is geometri-
cally thick, supporting flux loops larger than lcrit, or because large
loops are created by an inverse cascade in a magnetically active
X-ray corona.

The jets produced by the proposed mechanism are naturally
highly variable, on both the loop accretion and the reconnection
time-scales. Reconnection occurs constantly above the disc as flux
systems are energized by the azimuthal shear, expand, and form
current sheets. However, most of the dissipation takes place very
near the black hole and along the axis, when greatly inflated field
loops, storing large magnetic free energy, suffer reconnection of
almost all their field lines; this is true for both prograde and retro-
grade configurations. The reconnection converts magnetic energy
into radiation, plasma thermal energy, and kinetic energy of ac-
celerated particles, and may be the ultimate source of X-ray coro-
nae in AGN and X-ray binaries. Our model naturally places the
hard X-ray source at the base of an outflow; an outflowing corona
was previously proposed to explain the hard state spectrum of ac-
creting black holes (Beloborodov 1999). The concentration of the
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity
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The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO
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= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +
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1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
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√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1
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(E · D + B · H)

]
+ ∇ ·

(
1
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E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as
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(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
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(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
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γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),
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where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity
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1
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(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
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Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
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γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
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γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT
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µ = −FµνI

ν gives us the energy equation as
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−(E · m)D − (H · m)B
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(E · D + B · H)m
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= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),
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where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
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,
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, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +
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1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,

MNRAS 442, 2855–2866 (2014)

 by guest on June 27, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

角運動量flux	




Kerr	
  BH	
  磁気圏	


•  外部電流で作られたB_pがエルゴ領域を貫いている	
  
•  磁気圏プラズマは低密度でcollisionlessであるが、次式を満たしてはいる	
  

•  重力はローレンツ力に比べて無視できる（地平面ごく近傍を除いて）	


~D · ~B = 0

2858 K. Toma and F. Takahara

3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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parallel to the rotation axis, at infinity in an elegant way by utiliz-
ing the fact that ξµ and χµ generate a solution of Maxwell equa-
tions (see Appendix A). For this solution, the poloidal D field
is non-zero. This may be understood by considering ∇ × E =
∇ × (α D + β × B) = 0. Since ∇ × (β × B) ̸= 0 generally, one
has ∇ × (α D) ̸= 0. This D field is produced by the charges at the
event horizon and at infinity. Note that D · B ̸= 0 for this solution.

∇ × E = 0 implies Eϕ = 0, and ∇ × H = 0 tells us Hϕ = 0.
Then the poloidal components of the energy and angular momentum
fluxes are zero. These properties are the same as those for the pulsar
in the vacuum.

4 K E R R BH MAG N E TO S P H E R E

Now, we examine the steady, axisymmetric, test electromagnetic
field in Kerr space–time in which the plasma is filled. As a prepa-
ration for the discussion on the unipolar induction of rotating BHs
(in Section 5), we summarize the general properties of the electro-
magnetic field in Section 4.1. In Section 4.2, we study the particle
motions as viewed by FIDOs. This study provides a conclusion that
D2 > B2 is the necessary and sufficient condition for driving the
electric currents to flow across the poloidal B field lines.

4.1 Electromagnetic field

We consider the Kerr BH magnetosphere under the following as-
sumptions: (1) the poloidal B field produced by the external electric
currents is penetrating the ergosphere. (2) The plasma in the BH
magnetosphere is dilute and collisionless, but its number density
is high enough to screen the electric field along the B field lines,
i.e. D · B = 0. The energy density of the particles is much smaller
than that of the electromagnetic field. (3) The gravitational force
is negligible compared with the Lorentz force. [The gravitational
force overwhelms the Lorentz force in a region very close to the
event horizon (Punsly 2008), but the physical condition in that re-
gion hardly affects its exterior.] These assumptions are the same
as those for the pulsar case. One big difference is that there is no
matter-dominated region on which the B field is anchored (see Sec-
tion 1). As a result, the determination of %F is not so simple as the
pulsar case.

In terms of the vector potential, one can write B = ∇ × A
(Komissarov 2004a). Thus, one finds

Br = 1
√

γ
∂θ(, Bθ = −1

√
γ

∂r(, (22)

where we have defined ( ≡ Aϕ . It is easily shown that Bi∂i( = 0,
which means that ( is constant along each B field line.

The condition D · B = 0 and equation (17) lead to E · B = 0.
Taking account of Eϕ = 0, one can write

E = −ω × B, ω = %Fm. (23)

Substituting this equation into ∇ × E = 0 and ∇ · B = 0, one ob-
tains

Bi∂i%F = 0. (24)

That is, %F is constant along each B field line. The E field is
also described by Ei = −%F∂i(, which means that each B field
line is equipotential, and %F corresponds to the potential difference
between the field lines. These properties are the same as those in
the pulsar case, discussed in Section 2.

In the steady, axisymmetric state, the angular momentum equa-
tion (21) is reduced to

∇ ·
(

−Hϕ

4π
Bp

)
= Bi∂i

(
−Hϕ

4π

)
= −( Jp × Bp) · m. (25)

The energy equation (20) is reduced to

∇ ·
(

−%F

Hϕ

4π
Bp

)
= Bi∂i

(
−%F

Hϕ

4π

)
= −E · Jp, (26)

which can be deduced by equation (25) together with equations
(23) and (24). These equations imply that Hϕ is generated by the
poloidal currents which have the component perpendicular to the
poloidal B field, and then the poloidal component of the Poynt-
ing flux −%FHϕ Bp/(4π) is non-zero when %F ̸= 0. We note that
%F = −Ftθ/Fϕθ and Hϕ = ∗Ftϕ are the same in the BL and KS
coordinates (Komissarov 2004a).

4.2 Poloidal currents

Komissarov (2004a) argues that the poloidal currents can have the
component perpendicular to the poloidal B field in the region where
D2 > B2, by utilizing a specific Ohm’s law (or some effective re-
sistivity). Here, we prove this to be valid by examining particle
motions in the electromagnetic fields more generally, without rely-
ing on Ohm’s law.

We treat the particle motion as viewed by FIDOs. They can use a
convenient local orthonormal basis for which the space–time metric
is diagonal and one can investigate local, instantaneous particle
motions under the Lorentz force as special relativistic dynamics. In
fact, the equation of a particle motion as viewed by FIDOs (either
BL or KS FIDOs) is

dûi

dt̂
= q

m
(D̂i + ϵijk v̂

j B̂k), (27)

as shown in Appendix B. Here, u, v, q and m are the four-velocity,
three-velocity, charge and mass of a particle, respectively, and Ĉi

denotes the vector component in respect of the FIDO’s orthonormal
basis, i.e. Ĉi = Cµe

µ
i (see Appendix A).3 Note that the FIDO frame

is not inertial and a particle feels the gravitational force, although
we assume that it is negligible compared with the Lorentz force. In
this equation, D̂i and B̂i appear as the electric and magnetic fields
as viewed by FIDOs, respectively, as expected. The assumption
D · B = 0 is equivalent to D̂ · B̂ = 0, because DµBµ is a scalar
and D̂t = Dt = 0.

When D2 < B2 is satisfied (which is equivalent to D̂2 < B̂2), the
charged particles freely move along the B̂ field line and/or drift in
the direction of D̂ × B̂. Effectively, one has û+ · D̂ = û− · D̂ =
0, where u+ and u− denote the four-velocities of positively and
negatively charged particles, respectively. This equation is valid
as long as the plasma is dilute and any particle collisions which
induce û+ · D̂ ̸= 0 or û− · D̂ ̸= 0 are ineffective. In the coordinate
basis, one has u+ · D = u− · D = 0, since uµDµ is a scalar and
D̂t = Dt = 0. Then, by considering ui = utvi, one has v+ · D =
v− · D = 0. As a result, the motions of the charged particles can
carry only the electric currents satisfying Jp · D = 0 and Jp ∥ Bp.

If D2 > B2 is realized (which is equivalent to D̂2 > B̂2), then the
positively (negatively) charged particles are forced to move in the
direction of D̂ (− D̂) (cf. Landau & Lifshitz 1975), i.e. û+ · D̂ > 0

3 The quantities Ě and B̌ used in Komissarov (2004a) are identical to
D and B. The FIDO’s orthonormal basis is not utilized for discussion in
Komissarov (2004a).
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parallel to the rotation axis, at infinity in an elegant way by utiliz-
ing the fact that ξµ and χµ generate a solution of Maxwell equa-
tions (see Appendix A). For this solution, the poloidal D field
is non-zero. This may be understood by considering ∇ × E =
∇ × (α D + β × B) = 0. Since ∇ × (β × B) ̸= 0 generally, one
has ∇ × (α D) ̸= 0. This D field is produced by the charges at the
event horizon and at infinity. Note that D · B ̸= 0 for this solution.

∇ × E = 0 implies Eϕ = 0, and ∇ × H = 0 tells us Hϕ = 0.
Then the poloidal components of the energy and angular momentum
fluxes are zero. These properties are the same as those for the pulsar
in the vacuum.

4 K E R R BH MAG N E TO S P H E R E

Now, we examine the steady, axisymmetric, test electromagnetic
field in Kerr space–time in which the plasma is filled. As a prepa-
ration for the discussion on the unipolar induction of rotating BHs
(in Section 5), we summarize the general properties of the electro-
magnetic field in Section 4.1. In Section 4.2, we study the particle
motions as viewed by FIDOs. This study provides a conclusion that
D2 > B2 is the necessary and sufficient condition for driving the
electric currents to flow across the poloidal B field lines.

4.1 Electromagnetic field

We consider the Kerr BH magnetosphere under the following as-
sumptions: (1) the poloidal B field produced by the external electric
currents is penetrating the ergosphere. (2) The plasma in the BH
magnetosphere is dilute and collisionless, but its number density
is high enough to screen the electric field along the B field lines,
i.e. D · B = 0. The energy density of the particles is much smaller
than that of the electromagnetic field. (3) The gravitational force
is negligible compared with the Lorentz force. [The gravitational
force overwhelms the Lorentz force in a region very close to the
event horizon (Punsly 2008), but the physical condition in that re-
gion hardly affects its exterior.] These assumptions are the same
as those for the pulsar case. One big difference is that there is no
matter-dominated region on which the B field is anchored (see Sec-
tion 1). As a result, the determination of %F is not so simple as the
pulsar case.

In terms of the vector potential, one can write B = ∇ × A
(Komissarov 2004a). Thus, one finds

Br = 1
√

γ
∂θ(, Bθ = −1

√
γ

∂r(, (22)

where we have defined ( ≡ Aϕ . It is easily shown that Bi∂i( = 0,
which means that ( is constant along each B field line.

The condition D · B = 0 and equation (17) lead to E · B = 0.
Taking account of Eϕ = 0, one can write

E = −ω × B, ω = %Fm. (23)

Substituting this equation into ∇ × E = 0 and ∇ · B = 0, one ob-
tains

Bi∂i%F = 0. (24)

That is, %F is constant along each B field line. The E field is
also described by Ei = −%F∂i(, which means that each B field
line is equipotential, and %F corresponds to the potential difference
between the field lines. These properties are the same as those in
the pulsar case, discussed in Section 2.

In the steady, axisymmetric state, the angular momentum equa-
tion (21) is reduced to

∇ ·
(

−Hϕ

4π
Bp

)
= Bi∂i

(
−Hϕ

4π

)
= −( Jp × Bp) · m. (25)

The energy equation (20) is reduced to

∇ ·
(

−%F

Hϕ

4π
Bp

)
= Bi∂i

(
−%F

Hϕ

4π

)
= −E · Jp, (26)

which can be deduced by equation (25) together with equations
(23) and (24). These equations imply that Hϕ is generated by the
poloidal currents which have the component perpendicular to the
poloidal B field, and then the poloidal component of the Poynt-
ing flux −%FHϕ Bp/(4π) is non-zero when %F ̸= 0. We note that
%F = −Ftθ/Fϕθ and Hϕ = ∗Ftϕ are the same in the BL and KS
coordinates (Komissarov 2004a).

4.2 Poloidal currents

Komissarov (2004a) argues that the poloidal currents can have the
component perpendicular to the poloidal B field in the region where
D2 > B2, by utilizing a specific Ohm’s law (or some effective re-
sistivity). Here, we prove this to be valid by examining particle
motions in the electromagnetic fields more generally, without rely-
ing on Ohm’s law.

We treat the particle motion as viewed by FIDOs. They can use a
convenient local orthonormal basis for which the space–time metric
is diagonal and one can investigate local, instantaneous particle
motions under the Lorentz force as special relativistic dynamics. In
fact, the equation of a particle motion as viewed by FIDOs (either
BL or KS FIDOs) is

dûi

dt̂
= q

m
(D̂i + ϵijk v̂

j B̂k), (27)

as shown in Appendix B. Here, u, v, q and m are the four-velocity,
three-velocity, charge and mass of a particle, respectively, and Ĉi

denotes the vector component in respect of the FIDO’s orthonormal
basis, i.e. Ĉi = Cµe

µ
i (see Appendix A).3 Note that the FIDO frame

is not inertial and a particle feels the gravitational force, although
we assume that it is negligible compared with the Lorentz force. In
this equation, D̂i and B̂i appear as the electric and magnetic fields
as viewed by FIDOs, respectively, as expected. The assumption
D · B = 0 is equivalent to D̂ · B̂ = 0, because DµBµ is a scalar
and D̂t = Dt = 0.

When D2 < B2 is satisfied (which is equivalent to D̂2 < B̂2), the
charged particles freely move along the B̂ field line and/or drift in
the direction of D̂ × B̂. Effectively, one has û+ · D̂ = û− · D̂ =
0, where u+ and u− denote the four-velocities of positively and
negatively charged particles, respectively. This equation is valid
as long as the plasma is dilute and any particle collisions which
induce û+ · D̂ ̸= 0 or û− · D̂ ̸= 0 are ineffective. In the coordinate
basis, one has u+ · D = u− · D = 0, since uµDµ is a scalar and
D̂t = Dt = 0. Then, by considering ui = utvi, one has v+ · D =
v− · D = 0. As a result, the motions of the charged particles can
carry only the electric currents satisfying Jp · D = 0 and Jp ∥ Bp.

If D2 > B2 is realized (which is equivalent to D̂2 > B̂2), then the
positively (negatively) charged particles are forced to move in the
direction of D̂ (− D̂) (cf. Landau & Lifshitz 1975), i.e. û+ · D̂ > 0

3 The quantities Ě and B̌ used in Komissarov (2004a) are identical to
D and B. The FIDO’s orthonormal basis is not utilized for discussion in
Komissarov (2004a).
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parallel to the rotation axis, at infinity in an elegant way by utiliz-
ing the fact that ξµ and χµ generate a solution of Maxwell equa-
tions (see Appendix A). For this solution, the poloidal D field
is non-zero. This may be understood by considering ∇ × E =
∇ × (α D + β × B) = 0. Since ∇ × (β × B) ̸= 0 generally, one
has ∇ × (α D) ̸= 0. This D field is produced by the charges at the
event horizon and at infinity. Note that D · B ̸= 0 for this solution.

∇ × E = 0 implies Eϕ = 0, and ∇ × H = 0 tells us Hϕ = 0.
Then the poloidal components of the energy and angular momentum
fluxes are zero. These properties are the same as those for the pulsar
in the vacuum.

4 K E R R BH MAG N E TO S P H E R E

Now, we examine the steady, axisymmetric, test electromagnetic
field in Kerr space–time in which the plasma is filled. As a prepa-
ration for the discussion on the unipolar induction of rotating BHs
(in Section 5), we summarize the general properties of the electro-
magnetic field in Section 4.1. In Section 4.2, we study the particle
motions as viewed by FIDOs. This study provides a conclusion that
D2 > B2 is the necessary and sufficient condition for driving the
electric currents to flow across the poloidal B field lines.

4.1 Electromagnetic field

We consider the Kerr BH magnetosphere under the following as-
sumptions: (1) the poloidal B field produced by the external electric
currents is penetrating the ergosphere. (2) The plasma in the BH
magnetosphere is dilute and collisionless, but its number density
is high enough to screen the electric field along the B field lines,
i.e. D · B = 0. The energy density of the particles is much smaller
than that of the electromagnetic field. (3) The gravitational force
is negligible compared with the Lorentz force. [The gravitational
force overwhelms the Lorentz force in a region very close to the
event horizon (Punsly 2008), but the physical condition in that re-
gion hardly affects its exterior.] These assumptions are the same
as those for the pulsar case. One big difference is that there is no
matter-dominated region on which the B field is anchored (see Sec-
tion 1). As a result, the determination of %F is not so simple as the
pulsar case.

In terms of the vector potential, one can write B = ∇ × A
(Komissarov 2004a). Thus, one finds

Br = 1
√

γ
∂θ(, Bθ = −1

√
γ

∂r(, (22)

where we have defined ( ≡ Aϕ . It is easily shown that Bi∂i( = 0,
which means that ( is constant along each B field line.

The condition D · B = 0 and equation (17) lead to E · B = 0.
Taking account of Eϕ = 0, one can write

E = −ω × B, ω = %Fm. (23)

Substituting this equation into ∇ × E = 0 and ∇ · B = 0, one ob-
tains

Bi∂i%F = 0. (24)

That is, %F is constant along each B field line. The E field is
also described by Ei = −%F∂i(, which means that each B field
line is equipotential, and %F corresponds to the potential difference
between the field lines. These properties are the same as those in
the pulsar case, discussed in Section 2.

In the steady, axisymmetric state, the angular momentum equa-
tion (21) is reduced to

∇ ·
(

−Hϕ

4π
Bp

)
= Bi∂i

(
−Hϕ

4π

)
= −( Jp × Bp) · m. (25)

The energy equation (20) is reduced to

∇ ·
(

−%F

Hϕ

4π
Bp

)
= Bi∂i

(
−%F

Hϕ

4π

)
= −E · Jp, (26)

which can be deduced by equation (25) together with equations
(23) and (24). These equations imply that Hϕ is generated by the
poloidal currents which have the component perpendicular to the
poloidal B field, and then the poloidal component of the Poynt-
ing flux −%FHϕ Bp/(4π) is non-zero when %F ̸= 0. We note that
%F = −Ftθ/Fϕθ and Hϕ = ∗Ftϕ are the same in the BL and KS
coordinates (Komissarov 2004a).

4.2 Poloidal currents

Komissarov (2004a) argues that the poloidal currents can have the
component perpendicular to the poloidal B field in the region where
D2 > B2, by utilizing a specific Ohm’s law (or some effective re-
sistivity). Here, we prove this to be valid by examining particle
motions in the electromagnetic fields more generally, without rely-
ing on Ohm’s law.

We treat the particle motion as viewed by FIDOs. They can use a
convenient local orthonormal basis for which the space–time metric
is diagonal and one can investigate local, instantaneous particle
motions under the Lorentz force as special relativistic dynamics. In
fact, the equation of a particle motion as viewed by FIDOs (either
BL or KS FIDOs) is

dûi

dt̂
= q

m
(D̂i + ϵijk v̂

j B̂k), (27)

as shown in Appendix B. Here, u, v, q and m are the four-velocity,
three-velocity, charge and mass of a particle, respectively, and Ĉi

denotes the vector component in respect of the FIDO’s orthonormal
basis, i.e. Ĉi = Cµe

µ
i (see Appendix A).3 Note that the FIDO frame

is not inertial and a particle feels the gravitational force, although
we assume that it is negligible compared with the Lorentz force. In
this equation, D̂i and B̂i appear as the electric and magnetic fields
as viewed by FIDOs, respectively, as expected. The assumption
D · B = 0 is equivalent to D̂ · B̂ = 0, because DµBµ is a scalar
and D̂t = Dt = 0.

When D2 < B2 is satisfied (which is equivalent to D̂2 < B̂2), the
charged particles freely move along the B̂ field line and/or drift in
the direction of D̂ × B̂. Effectively, one has û+ · D̂ = û− · D̂ =
0, where u+ and u− denote the four-velocities of positively and
negatively charged particles, respectively. This equation is valid
as long as the plasma is dilute and any particle collisions which
induce û+ · D̂ ̸= 0 or û− · D̂ ̸= 0 are ineffective. In the coordinate
basis, one has u+ · D = u− · D = 0, since uµDµ is a scalar and
D̂t = Dt = 0. Then, by considering ui = utvi, one has v+ · D =
v− · D = 0. As a result, the motions of the charged particles can
carry only the electric currents satisfying Jp · D = 0 and Jp ∥ Bp.

If D2 > B2 is realized (which is equivalent to D̂2 > B̂2), then the
positively (negatively) charged particles are forced to move in the
direction of D̂ (− D̂) (cf. Landau & Lifshitz 1975), i.e. û+ · D̂ > 0

3 The quantities Ě and B̌ used in Komissarov (2004a) are identical to
D and B. The FIDO’s orthonormal basis is not utilized for discussion in
Komissarov (2004a).
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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parallel to the rotation axis, at infinity in an elegant way by utiliz-
ing the fact that ξµ and χµ generate a solution of Maxwell equa-
tions (see Appendix A). For this solution, the poloidal D field
is non-zero. This may be understood by considering ∇ × E =
∇ × (α D + β × B) = 0. Since ∇ × (β × B) ̸= 0 generally, one
has ∇ × (α D) ̸= 0. This D field is produced by the charges at the
event horizon and at infinity. Note that D · B ̸= 0 for this solution.

∇ × E = 0 implies Eϕ = 0, and ∇ × H = 0 tells us Hϕ = 0.
Then the poloidal components of the energy and angular momentum
fluxes are zero. These properties are the same as those for the pulsar
in the vacuum.

4 K E R R BH MAG N E TO S P H E R E

Now, we examine the steady, axisymmetric, test electromagnetic
field in Kerr space–time in which the plasma is filled. As a prepa-
ration for the discussion on the unipolar induction of rotating BHs
(in Section 5), we summarize the general properties of the electro-
magnetic field in Section 4.1. In Section 4.2, we study the particle
motions as viewed by FIDOs. This study provides a conclusion that
D2 > B2 is the necessary and sufficient condition for driving the
electric currents to flow across the poloidal B field lines.

4.1 Electromagnetic field

We consider the Kerr BH magnetosphere under the following as-
sumptions: (1) the poloidal B field produced by the external electric
currents is penetrating the ergosphere. (2) The plasma in the BH
magnetosphere is dilute and collisionless, but its number density
is high enough to screen the electric field along the B field lines,
i.e. D · B = 0. The energy density of the particles is much smaller
than that of the electromagnetic field. (3) The gravitational force
is negligible compared with the Lorentz force. [The gravitational
force overwhelms the Lorentz force in a region very close to the
event horizon (Punsly 2008), but the physical condition in that re-
gion hardly affects its exterior.] These assumptions are the same
as those for the pulsar case. One big difference is that there is no
matter-dominated region on which the B field is anchored (see Sec-
tion 1). As a result, the determination of %F is not so simple as the
pulsar case.

In terms of the vector potential, one can write B = ∇ × A
(Komissarov 2004a). Thus, one finds

Br = 1
√

γ
∂θ(, Bθ = −1

√
γ

∂r(, (22)

where we have defined ( ≡ Aϕ . It is easily shown that Bi∂i( = 0,
which means that ( is constant along each B field line.

The condition D · B = 0 and equation (17) lead to E · B = 0.
Taking account of Eϕ = 0, one can write

E = −ω × B, ω = %Fm. (23)

Substituting this equation into ∇ × E = 0 and ∇ · B = 0, one ob-
tains

Bi∂i%F = 0. (24)

That is, %F is constant along each B field line. The E field is
also described by Ei = −%F∂i(, which means that each B field
line is equipotential, and %F corresponds to the potential difference
between the field lines. These properties are the same as those in
the pulsar case, discussed in Section 2.

In the steady, axisymmetric state, the angular momentum equa-
tion (21) is reduced to

∇ ·
(

−Hϕ

4π
Bp

)
= Bi∂i

(
−Hϕ

4π

)
= −( Jp × Bp) · m. (25)

The energy equation (20) is reduced to

∇ ·
(

−%F

Hϕ

4π
Bp

)
= Bi∂i

(
−%F

Hϕ

4π

)
= −E · Jp, (26)

which can be deduced by equation (25) together with equations
(23) and (24). These equations imply that Hϕ is generated by the
poloidal currents which have the component perpendicular to the
poloidal B field, and then the poloidal component of the Poynt-
ing flux −%FHϕ Bp/(4π) is non-zero when %F ̸= 0. We note that
%F = −Ftθ/Fϕθ and Hϕ = ∗Ftϕ are the same in the BL and KS
coordinates (Komissarov 2004a).

4.2 Poloidal currents

Komissarov (2004a) argues that the poloidal currents can have the
component perpendicular to the poloidal B field in the region where
D2 > B2, by utilizing a specific Ohm’s law (or some effective re-
sistivity). Here, we prove this to be valid by examining particle
motions in the electromagnetic fields more generally, without rely-
ing on Ohm’s law.

We treat the particle motion as viewed by FIDOs. They can use a
convenient local orthonormal basis for which the space–time metric
is diagonal and one can investigate local, instantaneous particle
motions under the Lorentz force as special relativistic dynamics. In
fact, the equation of a particle motion as viewed by FIDOs (either
BL or KS FIDOs) is

dûi

dt̂
= q

m
(D̂i + ϵijk v̂

j B̂k), (27)

as shown in Appendix B. Here, u, v, q and m are the four-velocity,
three-velocity, charge and mass of a particle, respectively, and Ĉi

denotes the vector component in respect of the FIDO’s orthonormal
basis, i.e. Ĉi = Cµe

µ
i (see Appendix A).3 Note that the FIDO frame

is not inertial and a particle feels the gravitational force, although
we assume that it is negligible compared with the Lorentz force. In
this equation, D̂i and B̂i appear as the electric and magnetic fields
as viewed by FIDOs, respectively, as expected. The assumption
D · B = 0 is equivalent to D̂ · B̂ = 0, because DµBµ is a scalar
and D̂t = Dt = 0.

When D2 < B2 is satisfied (which is equivalent to D̂2 < B̂2), the
charged particles freely move along the B̂ field line and/or drift in
the direction of D̂ × B̂. Effectively, one has û+ · D̂ = û− · D̂ =
0, where u+ and u− denote the four-velocities of positively and
negatively charged particles, respectively. This equation is valid
as long as the plasma is dilute and any particle collisions which
induce û+ · D̂ ̸= 0 or û− · D̂ ̸= 0 are ineffective. In the coordinate
basis, one has u+ · D = u− · D = 0, since uµDµ is a scalar and
D̂t = Dt = 0. Then, by considering ui = utvi, one has v+ · D =
v− · D = 0. As a result, the motions of the charged particles can
carry only the electric currents satisfying Jp · D = 0 and Jp ∥ Bp.

If D2 > B2 is realized (which is equivalent to D̂2 > B̂2), then the
positively (negatively) charged particles are forced to move in the
direction of D̂ (− D̂) (cf. Landau & Lifshitz 1975), i.e. û+ · D̂ > 0

3 The quantities Ě and B̌ used in Komissarov (2004a) are identical to
D and B. The FIDO’s orthonormal basis is not utilized for discussion in
Komissarov (2004a).
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【命題】　　　　　　　　　　　　　　　　　　　　の定常状態は維持できない。　	
⌦F = 0, H' = 0

(KT	
  &	
  Takahara	
  2014)	
BL座標で考えると	


~E = 0, ~D =
�1

↵
~� ⇥ ~B

B' = 0

D2 =
�2

↵2
B2

エルゴ領域において	
 ↵2 < �2 ! D2 > B2

B_pを横切って電流が駆動され、	
 H' 6= 0

荷電粒子の流れは電場を弱くする	
 ⌦F > 0, ~E 6= 0

起電力の起源はエルゴ領域である。地平面は本質的でない。	


（KS座標でも同じ結論）	
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3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdxµdxν = −α2dt2 + γij (β idt + dxi)(βj dt + dxj ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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Figure 4. !F, max/!H for the B field lines threading the equatorial plane in
the ergosphere as functions of r on the equatorial plane. The spin parameter
is set as a = 0.9. The vertical line represents rH = 1.436. The radius of the
outer boundary of the ergosphere is res = 2.

Figure 5. Expected electromagnetic structure of the BH magnetosphere
(Northern hemisphere). The thin solid arrows represent the poloidal B field
lines, and the open arrows the poloidal currents. See the text in Sections 5
and 6 for details.

current flow in the current crossing region, the outward flow along
the last ergospheric field line, and the inward flow in the main body
of the open field line region (See Fig. 5 and Section 6).

Similar to the pulsar case, it is reasonable that |Bϕ | =
|Bϕ |/√γϕϕ ∼ |Bp| around the outer light surface. Then, we can
have a rough estimate of the poloidal Poynting flux as |Sp| =
!F|Hϕ ||Bp|/4π ∼ B2

p,ls/(4π), where we have used the equations
valid at the outer light surface f (!F, r, θ ) = −α2 + γ ϕϕ(!F −
!)2 = 0, α ∼ 1 and ! ≪ !F. When the open poloidal magnetic
field roughly scales as Bp,ls ∼ Bp,H(rls/rH)−2 (i.e. monopole-like
rather than dipole), where Bp,H is the field strength in the vicinity
of the BH and rls is the radius of the outer light surface, and then
one has the luminosity per solid angle as

dL

d!
∼ r2

ls|Sp| ∼
B2

p,H!2
Fr

4
H

4π
∼ a2

16π

(
!F

!H

)2

B2
p,Hr2

H. (34)

Here, !F/!H is expected to be ∼!F, max/!H (Fig. 4) for the B field
lines threading the equatorial plane in the ergosphere.

6 SU M M A RY A N D D I S C U S S I O N

We consider the Blandford–Znajek process as the steady unipo-
lar induction process in the Kerr BH magnetosphere in which a
collisionless plasma is filled so that D · B = 0 is sustained and the
energy density is dominated by the electromagnetic field. The origin
of the electromotive force in this process is the ergosphere, unlike
in the pulsar case, in which the origin of the electromotive force
is the rotation of the stellar matter (see Section 2). All the open B
field lines threading the ergosphere inevitably keep having a part
where the D field (perpendicular to the B field) is stronger than
the B field, i.e. D2 > B2, which drives the poloidal currents to flow
across the poloidal B field lines (Hϕ ̸= 0; see equation 25) and give
rise to the electromotive force, i.e. !F > 0. In the current crossing
region, the currents flow in the direction of −E, which generate
the poloidal Poynting flux (see equation 26), similar to the pulsar
case. The condition Jp × Bp ̸= 0 in the current crossing region
implies that the force-free approximation cannot be assumed (see
Section 4.2). Note that we only assume D · B = 0, not utilizing the
force-free condition ρ E + J × B = 0 in our arguments.

6.1 B fields threading the horizon

We have shown the self-consistent electromagnetic structure along a
B field line threading the equatorial plane in the ergosphere in Fig. 3.
Also for the B field lines threading the event horizon, the above
conclusion on the origin of the electromotive force is applicable,
and thus the electromagnetic structure will be similar to Fig. 3,
having the current crossing region just outside the horizon. It is not
an easy task to solve the whole electromagnetic structure of the BH
magnetosphere, but our arguments so far allow us to conjecture that
the solution looks like Fig. 5. We describe the poloidal current flows
by the open arrows in Fig. 5. Some fraction of the poloidal currents
can flow across the horizon, while the remaining fraction flows
across the poloidal B field lines just outside the horizon, generating
the poloidal Poynting flux. In the current crossing region around the
equatorial plane, the negatively charged particles flow across the
horizon. The current circuits will be made for the BH not to charge
up in the steady state.

In the membrane paradigm (Thorne et al. 1986; Penna, Narayan &
Sadowski 2013), the force-free condition is assumed to be satisfied
except on the membrane (at r ≈ rH) covering the horizon, so that
all the poloidal currents flow into the membrane (i.e. flow across
the horizon for freely falling observers) in the region of the B
field lines threading the horizon. The poloidal currents are then
regarded as flowing along the viscous membrane and generating
the outward Poynting flux. However, this picture looks unphysical,
because the membrane is causally disconnected with its exterior
(Punsly & Coroniti 1989; Punsly 2008). The energy equation (26)
implies that a region of E · Jp < 0 has to be causally connected for
producing the Poynting flux. Such a region is realized outside the
horizon (or the membrane) and within the ergosphere, where the
force-free condition is violated.

We have deduced the maximum value of !F, !F, max, for the
poloidal B field lines threading the equatorial plane in the ergo-
sphere as shown in Fig. 4. This can be deduced easily by utilizing
the symmetry condition on the equatorial plane Hϕ = 0 for equation
(31). In contrast, for the poloidal B field lines threading the horizon,
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f(⌦F, r) > 0

エルゴ領域内の赤道面の r	


⌦F,max/⌦H

⌦F > 0, H' 6= 0
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まとめ	


•  偏光：X線・γ線観測のフロンティア	
  
– BH時空の検証、強磁場中のQEDの検証	
  
– ガンマ線バーストの放射機構	
  

•  BHジェットの駆動機構	
  
– Kerr時空による単極誘導	
  
– 起電力の起源はエルゴ領域	
  
– 電流は赤道面で駆動されうる	
  
– 地平面を貫く磁力線についてはforce-­‐free/MHD

が成立し、Poyn^ng	
  fluxは粒子を介さず地平面か
ら直接放射される	



