

Probing the origin of UHECRs with neutrinos

The recent results from IceCube and its outlook

Shigeru Yoshida Department of Physics ICEHAP, Chiba University

UHECRs

Neutrino Astronomy

Scan star core

Solar neutrinos come

from the Sun's core

■杉暦 ■紅炎(プロミネンス)

Visible lights are emitted from its surface Explore the energetic phenomena in the deep universe

VLA image of Cygnus A

The High Energy Neutrino Astronomy

Why v is so powerful to explore high energy universe?

The Neutrino Flux: overview

The Cosmic Neutrinos Production Mechanisms

The IceCube Neutrino Observatory

Digital Optical Module (DOM)

Detectors shipped from Japan

The IceCube Lab 「Beer Can」

Constructions 2005-2011

Researchers working on deployment

Topological signatures of IceCube events

Down-going track

- atmospheric μ
- secondary produced $\underline{\mu}$ from v_{μ}
 - τ from v_{τ}^{μ} @ >> PeV

Run 113641 Event 33553254 [6000ns, 9952ns]

Up-going track

• atmospheric v_{μ}

Cascade (Shower)

directly induced by $\boldsymbol{\nu}$ inside the detector volume

```
• via CC from v_e
• via NC from v_e, v_\mu, v_\tau
all 3 flavor sensitive
```

Neutrino Signatures UHE (>100 PeV) VHE(>100 TeV)

Post Bert & Ernie The Discovery Analyses

NEWSPAPER

8 12

Deservation of a high-energy particle forwar event from August 2011, dentified us a ReV-energy soutries. Each represents a digital optical module is the IncCube detector. Sphere at is a summer of the recorded number of photoelectrons. Colors represent arrival times of photoas (rad, arrhy: blue, hate). Selected for a Synopsis is Physics and as fidtors' Supposition. D4 C. Aerisen et el., lesCube Collaboration, Roya Rev. Lat. 111, 021103 (2013)

PHYSICAL REVIEW LETTERS,

Contents

Articles published 6 July -12 July 2013

VOLUME 111, NUMBER 2 12 J	uly 2013
General Physics: Statistical and Quantum Mechanics, Quantum Information, etc.	
Scalable Reconstruction of Density Matrices T. Barmanatz, D. Gross, M. Cramer, and M.B. Plenio	020401
Particles, Holes, and Solitons: A Matrix Predict State Approach Damias Darkler Julio Hargeman, Tobias J. Osborne, Vid Stojevic, Laurens Vanderstateles, and Frank Verstrate	020402
Bornding Tempoul Quartum Correlations	020403
Quastam Telepontation of Dynamics and Effective Interactions to tween Remote Systems	020501
Secure Exturglement Distillation for Double-Server Blind Quantum Computation	020502
Fuithful Solid State Optical Memory with Dynamically Decoupled Spin Wave Stonge Marko Lovrid, Dieter State Albas Ferrier and Philippe Goldaer	020503
Quartam Framesoss for CPT Symmetry Michael Skotisiotis, Borza Toloni, Jan T. Darham, and Barry C. Sanders	020504
Nonadditivity in Quasicquilibrium States of Spin Systems with Lattice Distortion	020601
Gravitation and Astrophysics	
Observables of a Test Muss along an Jaclined Orbit in a Pest-Newtonian-Appentimated Kerr Spacetime Including the Linear and Quadratic Spin Terms Shows Herst A blavy Shal, and Gerland Schüfer	02110
Three-Dimensional Model of Cosmic-Ray Lepton Propagation Reproduces Data from the Alpha Magnetic Spectrometer on the International Space Station	021102
First Observation of PeV-Energy Neutrinos with lock the	021103
Limits or Spin-Dependent WIMP-Nucleon Const Sections from 225 Live Days of XENONIOO Data	021301
Effective Field Theory Approach to Gauvitationally Induced Decole ence	021302

111 (2), 020401-029902, 12 July 2013 (416 total pages)

111

Articles published week ending 12 JULY 2013

TeV

Mid Energy (60 TeV-)

PeV

IceCube 3 years data (2010-2013)

IceCube collaboration Phys. Rev. Lett. 113, 101101

EeV

2PeV "Big Bird"

TeV

Mid Energy (60 TeV-)

PeV

EeV

VHE (100 TeV-PeV) The "traditional" v_{μ} search looking into upgoing tracks IceCube 2 years data (2010-2012) $\nu_{\mu} \rightarrow \mu$ detected as upgoing track IceCube Preliminary

PeV

TeV

3.9 σ excess over the atmospheric BG

EeV

 $E^{2} \phi(E) \sim 9.6 \times 10^{-9}$ V_µ [GeV/cm² sec sr]

UHE (PeV-EeV

Pa∖

EeV

The model-independent upper limit on flux

IceCube 2 years data (2010-2012)

TeV

TeV

UHE (PeV-EeV)

₽a∖

EeV

IceCube 6 years data (2008-2014) all combined

TeV

P₂\

EeV

IceCube 6 years data (2008-2014) all combined

Search Results coming soon

The Cosmic Neutrinos Production Mechanisms

v emission always accompanies γ

$$\begin{array}{c} \mathbf{p} \ \gamma \longrightarrow (\mathbf{p}, \mathbf{n}) (\pi) \\ \mathbf{p} \ \mathbf{p} \end{array} \xrightarrow{} 2 \gamma \qquad \mathbf{Fermi} \\ \mathbf{observations } !! \\ \mathbf{p} \ \mathbf{v} \qquad \mathbf{p} \\ \mathbf{v} \qquad \mathbf{v} \\ \mathbf{p} \ \mathbf{v} \qquad \mathbf{v} \\ \mathbf{v} \\$$

$\gamma\text{-ray}$ sky bounds high energy ν emission

Fermi GeV γ-ray sky

EBL <u>cools</u> energetic y

Extra-galactic Background Light

Bounds on $pp \rightarrow v$ by Fermi

Murase, Ahlers, Lacki, PRD 2013

27

30

 extra-galactic proton flux must *dominate* in the all-particle CR flux @ 1 EeV(=1000PeV)

 optical depth must be ~1

Requirements

@ 10PeV γp optical depth ~ 0.1 Proton emission energy budget O(10%)x L^{10PeV}~ 10⁴⁵erg/Mpc³ yr

Requirements

@ 10PeV γp optical depth ~ 0.1 **Proton emission energy budget** $O(10\%) \times L_{CR}^{10PeV} \sim 10^{45} erg/Mpc^{3} yr$ @EeV=1000PeV if emitted proton spectrum extends further to this energy (this is *probably* easy to achieve) γp optical depth ~ 1 Proton emission energy budget $\sim L_{CR}^{1EeV} \sim 10^{44} \text{erg/Mpc}^3 \text{ yr}$ $L_{\gamma} > 10^{45} erg/s$ 35

GRBs

\bigcirc	@ 10PeV γp optical depth ~ 0.1
	Proton emission energy budget
×	O(10%)x L ^{10PeV} ~ 10 ⁴⁵ erg/Mpc ³ yr
	@EeV=1000PeV
	if emitted proton spectrum extends further to this energy (this is <i>probably</i> easy to achieve)
×	γp optical depth ~ 1
0	Proton emission energy budget
\bigcirc	$L_{\gamma} > 10^{45} \text{erg/s} \sim L_{CR} \sim 10 \text{ erg/Mpc} \text{ yr}$

Blazars (BL Lac)

	@ 10PeV
×	γp optical depth ~ 0.1
	Proton emission energy budget
\triangle	O(10%)x L ^{10PeV} ~ 10 ⁴⁵ erg/Mpc ³ yr
	@EeV=1000PeV
	if emitted proton spectrum extends further to this energy (this is <i>probably</i> easy to achieve)
×	γp optical depth ~ 1
0	Proton emission energy budget
O	$\sim L_{CR} \sim 10$ erg/Mpc yr
	37

Blazars (FSRQs)

@ 10PeV
γp optical depth ~ 0.1
Proton emission energy budget
O(10%)x L ^{10PeV} ~10 ⁴⁵ erg/Mpc ³ yr
@EeV=1000PeV
if emitted proton spectrum extends further to this energy (this is probably easy to achieve)
γp optical depth ~ 1
Proton emission energy budget
$L_{\gamma} > 10^{45} \text{erg/s} \sim L_{CR} \sim 10 \text{ erg/Mpc} \text{ yr}$

An example of $\gamma p \rightarrow v$ models v emission from Blazars (FSRQs)

Murase, Inoue, Dermer, PRD 2014

An example of $\gamma p \rightarrow \nu$ models ν emission from Blazars (FSRQs)

Murase, Inoue, Dermer, PRD 2014

UHE cosmic ray and GZK ν fluxes

Tracing *history* of the particle emissions with v flux

color : emission rate of ultra-high energy particles

IGZK_V @ 1EeV is an excellent indicator for the UHECR emission history

v = early history of cosmic radiation!

Ultra-high energy ν intensity depends on the emission rate in far-universe

Yoshida and Ishihara, PRD <u>85</u>, 063002 (2012)

more than an order of magnitude difference

GZK cosmogenic v intensity @ 1EeV in the phase space of the emission history

Yoshida and Ishihara, PRD <u>85</u>, 063002 (2012)

The Constraints on evolution (=emission history) of UHE cosmic ray sources

The Constraints on evolution (=emission history) of UHE cosmic ray sources

The Multi Messengers: UHE $v \rightarrow \gamma$ (or any other messengers)

look up this direction!

"GFU"

UHE (PeV-EeV)

Pal

Online Analysis for γ-ray/optical follow-up

new

event topology separation

TeV

track

EeV

cascade (non track-like)

UHE (PeV-EeV)

10³ / 10² / 10²

10⁻¹

10⁻²

10-4

10-5

EeV

Online Analysis for γ -ray/optical follow-up

P₂\

BG: ~ 2-3 event/year

 $\Delta \theta \sim 0.3 \deg$

We will send you:

- direction
- Energy (proxy)
- rating of signal-likelihood

TeV

51

Next Generation: IceCube HEX

Next Generation: IceCube HEX

Photo-detector development

Two 8' Hamamatsu R5912 High-QE PMTs •up/down symmetry: good for veto, reco etc •two PMTs insead of one: Better saturation response

Maximal Diameter Φ284mm

620mm

customized glass shape/curvaturedesigned best match curvature to our PMT

• less thickness top/bottom part (9mm-10mm where PMT cceptance) for better light transmittance

> Slightly enhanced diameter and glass thickness in the middle for a mechanical strength

A baseline design

background: down-going muons to be <u>vetoed</u>

up-down symmetry is beneficial.

good signal: up/horizontally-going track

Next Generation: IceCube HEX Photo-detector development

Glass + PMT assembly

8' high-QE PMT

Silicon gel

Lovely ball

Next Generation: IceCube HEX Photo-detector development

QE@340nm

7% (present icecube) \rightarrow 24%

Next Generation: ARA

Next Generation: ARA "end-to-end" calibration

after antenna, filter a

ICE (90 kg)

Cooling unit container

40 MeV electrons

Electron Light Source

LINAC at Telescope Array site @Utah

Control room

Antenna

~6 m

Expected signals from ice

Generator (80 kW)

59

Executive Summary

v = THE smoking gun