第21回理論懇シンポジウム@国立天文台 2008年12月16日(火)

非熱的ニュートリノで探る 星の強磁場

堀内 俊作 (宇宙理論·東京大学 D3)

SH, Yudai Suwa, Hajime Takami, Shin'ichiro Ando, Katsuhiko Sato MNRAS, 391, 1893 (2008)

Magnetic Fields

In Early-type stars:

– Recently, B ~ 10³ G [Donati et al. 2006, etc]

Origin scenarios:

- Fossil field ?

stellar magnetic field inputs

In Neutron stars:

- Typically $B \sim 10^{11} 10^{14} G$
- SGRs, AXPs,... **B** ~ **10**¹⁵ **G**

Origin scenarios:

- Dynamo?

[Thompson&Duncan1993]

- Fossil field ? [Ruderman1972,Ferario2006]

Source	Surface B-field [G]	Radius [cm]	B-flux [G cm ²]
O stars	? — 10 ³	1012	< 10 ²⁸
Neutron stars	$10^{11} - 10^{15}$	10 ⁶	< 10 ²⁸

Use neutrinos to see inside

Adopt the fossil scenario and investigate neutrino emission

First-order Fermi acceleration at supernova shock

Supernova shock

[Blandford&Eichler 1987]

[Drury 1983

High-energy proton + target proton/photon

Secondary π decay

$$pp \to pn\pi^+$$
$$p\gamma \to \Delta \to n\pi^+$$

$$\pi^+ \rightarrow \nu_{\mu} \mu^+$$

μ

Supernova of a Magnetic star

Surface B-field: observed

Eventually becomes magnetar B-field

Assuming fossil field hypothesis, the Fe core B-field is given by conservation of Br² :

$$B_{\rm core} = 10^{15} \left(\frac{R_{\rm Fe}}{10^6 \,{\rm cm}}\right)^{-2} = 10^{11} \,{\rm G}$$

Assume a power-law :

shock /

Fe

Acceleration (timescale)

Maximum Proton energy

[Horiuchi et al. 2008]

Proton cooling includes 100 1. pair-production 10 Helium star Density [g/cm³ 2. synchrotron Acceleration 3. inverse-Compton NOT possible 0.1 0.5 Ge (include effects of electron 10-2 synchrotron photons) 10^{-3} 4.) proton-proton collision 10^{-4} 500 Ge Fastest 10^{-5} 5×10³ Ge 10^{-6} 1011 1010 1012 Radius [cm]

$$t_{acc} = t_{cool}$$

yields the maximum proton energy

Total neutrino event

Fluence:
$$\frac{dF_{\nu}}{d\epsilon_{\nu}} \approx \frac{1}{4\pi D^2} \frac{\xi_{\text{th}}\xi_{\nu}\xi_{p}E_{\text{exp}}}{\ln(\epsilon_{p,\text{max}}/\epsilon_{p,\text{th}})\epsilon_{\nu}^{2}}\zeta(\epsilon_{\nu})$$

are fractions of the total energy: $\xi_p \sim 0.1$

 \mathcal{L} event number, for 10⁵¹ ergs Supernova at 10 kpc :

Soure	Neutrino E-max	@ Super-K		@ IceCube			
Type II	20 GeV	130		200			
Type lb	400 GeV	160		6000			
Type Ic	600 GeV	70		600			
	Background ~ 10/day		Background ~ 100 /day				

Detectable above background.

Discussion of event numbers

Summary

- Magnetic fields inside stars provides information for field origins [e.g., fossil scenario]
- Non-thermal neutrinos from supernovae of strongly magnetic stars:
 - Energy: ~ GeV
 - Time: ~ hours after thermal neutrinos
- Neutrinos observable above background from Galactic supernovae.
- Future work
 - Stellar magnetic field configuration
 - Acceleration efficiency with geometry

Future

- Future work
 - Stellar magnetic field configuration
 - Acceleration efficiency with geometry

Particle Acceleration

First order Fermi acceleration is a favourite. Shocks are efficient proton accelerators.

Drury, PhyRep (1983) Blandford, Eichler ,PhyRep (1987)

Particles are deflected by plasma wave-particle interactions. Does photons prohibit this?

Photon-electron collision frequency : $v_{e\gamma} = c \sigma_T n_e \approx 3 \times 10^8 s^{-1}$

Plasma frequency:
$$v_p = \sqrt{\frac{q^2 n_e}{m_e \varepsilon_0}} \approx 2 \times 10^{13} s^{-1}$$

Gyrofrequency: $v_g = \frac{qB}{2\pi \varepsilon_p} \approx 5 \times 10^5 s^{-1}$

No.

Acceleration time

Solve the diffusion-convection equation

12

꽤闪馁作

Test-particle approx (reaction is ignored). The residence time t are

Acceleration time

$$t_{acc} = \frac{p\Delta t}{\Delta p} = \frac{3}{\Delta U} \left(\frac{\kappa_1}{u_1} + \frac{\kappa_2}{u_2} \right) \sim \frac{3}{u_1} \frac{\kappa_1}{u_1} \qquad \left(\begin{array}{c} \text{Limit of } u_1 >> u_2 \\ \text{and dropping } T_2 \end{array} \right)$$

第21回理論天文学宇宙物理学懇談会シンポジウム 堀内俊作