N体シミュレーションに基づく バリオン音響振動の精密モデリング

西道 啓博 (東大・理)

arXiv:0810.0813 (PASJ accepted)

with

A.Shirata, A.Taruya, K.Yahata, S.Saito, Y.Suto, R.Takahashi, N.Yoshida, T.Matsubara, N.Sugiyama, I.Kayo, Y.P.Jing, K.Yoshikawa

第21回理論天文学宇宙物理学懇親会シンポジウム 国立天文台 2008/12/15-17

非線形性のモデリング

N体シミュレーション: 初期条件

Lagrangian PT $\mathbf{x}(\mathbf{q},t) = \mathbf{q} + \mathbf{\Phi}(\mathbf{q},t)$ $\mathbf{v}(\mathbf{q},t) = d\mathbf{\Phi}(\mathbf{q},t)/dt$ $\mathbf{\Phi}(\mathbf{q},t) = \mathbf{\Phi}^{(1)}(\mathbf{q},t) + \mathbf{\Phi}^{(2)}(\mathbf{q},t) + ...$ Zel'dovich \mathbf{A} Approximation Crocce+07 Zel'dovich70

N体シミュレーション: ボックスサイズ

L=1 f⁻¹Gpc程度あればよさそう。
 L=500 f⁻¹Mpcでは~1%程度の系統誤差

N体の設定と有限体積の補正

cosmological	Ω_m	Ω_{Λ}	Ω_b/Ω_m	h	σ_8	n_s
value	0.234	0.766	0.175	0.734	0.76	0.961
simulation	boxsize	# of particles	$z_{ m ini}$	# of PM grids	softening length	N^{run}
value	$1000h^{-1}{ m Mpc}$	512^{3}	31	1024^{3}	$0.1h^{-1}\mathrm{Mpc}$	4

パワースペクトル(補正前)

- SPT: (標準)摂動論
- RPT: 繰り込み摂動論 (Crocce+Scoccimarro06a,b,08)
- CLA: 完結近似(Taruya+Hiramatsu08)
- LIN: 線形理論
- シミュレーションの全体積が4/~3Gpc3と比較的小さいので、誤差が大きい。 1%レベルでの収束性のテストは困難。

パワースペクトル(補正後)

- N体の誤差が非常に小さくなった。サブパーセントレベル。
- N体と3つの非線形モデルは大スケールで非常によく一致 (k<0.05/Mpc⁻¹)。
- プロットした領域では、RPTとCLAはSPTよりも収束性がよい。
- 各理論の破綻するスケールを精密に決定することができる。

理論の信用区域

$$\frac{k^2}{6\pi^2} \int_0^k P^{\mathcal{L}}(q,z) dq < C$$

		$k_{1\%}^{\rm lim}~[h{\rm Mpc}^{-1}]$		$C_{1\%}$		$k_{3\%}^{\rm lim}~[h{\rm Mpc}^{-1}]$		$C_{3\%}$
	z = 3	z = 1	z = 0		z = 3	z = 1	z = 0	
$\mathrm{RPT}/\mathrm{CLA}$	0.3	0.18	0.12	0.35	0.36	0.20	0.14	0.5
SPT	0.22	0.13	0.08	0.18	0.29	0.16	0.11	0.3
LIN	0.13	0.09	0.06	0.06	0.19	0.12	0.08	0.13

- N体との一致が1%及び3%
 以内であるような波数領
 域を精密に決定。
- これは、簡単な表式でよく
 再現できる。
 - 以前の研究よりも狭い理
 論の信用区域
 - 小さいエラーバー
 - 十分大きいボックスサイズ

BAOの位相情報:よりロバストな解析?

スプラインフィットを使って 振動のみを取り出す。 Percival+07,Nishimichi+07

BAOの位相は、P(k)そのものよりも広い範囲で理論とN体がよく一致している。

WFMOSで到達可能な精度

我々の決めた信用区域の みを使ったとしても、 WFMOSサーベイでは - α : 0.7% → w: 2.8% @z=1 - α : 1% → w: 6% @z=3 程度の制限が見込まれる。

まとめ

- N体シミュレーションでBAOを正確に記述する
 - 初期条件
 - 2nd-order LPTを使いましょう。
 - ZAならば、z≧100程度が目安。
 - ボックスサイズ
 - 1000h⁻¹Mpcより大きくしましょう。
- シミュレーションと理論の一致
 - 大スケール: 有限ボックス効果を補正することで、サブパー
 セントレベルを達成。
 - 理論/シミュレーションの適用限界を精密に決定。
- WFMOSサーベイでの制限
 - BAOスケール: ~1%
 - ダークエネルギーのwパラメタ: ~5%