超新星ニュートリノに関する現状と課題

吉田 敬

国立天文台理論研究部

2008年度理論懇シンポジウム「理論天文学の将来」 2008年12月16日 国立天文台

超新星ニュートリノの検出 ● 直接検出 ● 超新星relic neutrinos ➡ 超新星ニュートリノ **Collapsing stellar core** ニュートリノ振動 ニュートリノ元素合成 • The ν -process vp-process

SUPERKAMIOKANDE

r-process

O/C

He

超新星ニュートリノ

写真提供 東京大学宇宙線研究所 神岡宇宙素粒子研究施設

v-processの反応率

Neutral current reactions e.g., $(Z,A) + v \rightarrow (Z-1,A-1) + v' + p$

$$\lambda_{\nu} = \sum_{\alpha=e,\mu,\tau} \frac{L_{\nu\alpha}}{4\pi r^2} \frac{1}{F_3(\eta_{\nu\alpha})(kT_{\nu\alpha})^4} \int_0^\infty \frac{\varepsilon^2 \sigma_{\nu}(\varepsilon) d\varepsilon}{\exp(\varepsilon/kT_{\nu\alpha} - \eta_{\nu\alpha}) + 1}$$

Charged current reactions e.g., $(Z,A) + v_e \rightarrow (Z+1,A) + e^{-1}$ $\lambda_{ve} = \sum_{\alpha=e,\mu,\tau} \frac{L_{v\alpha}}{4\pi r^2} \frac{1}{F_3(\eta_{v\alpha})(kT_{v\alpha})^4} \int_0^\infty \frac{\varepsilon^2 P_{\alpha e}(r;\varepsilon)\sigma_{ve}(\varepsilon)d\varepsilon}{\exp(\varepsilon/kT_{v\alpha}-\eta_{v\alpha})+1}$

Neutrino luminosity

$$L_{v\alpha}(t) = \frac{1}{6} \frac{E_v}{\tau_v} \exp\left(-\frac{t - r/c}{\tau_v}\right) \Theta(t - r/c)$$
E_v: ニュートリノが運び去る全エネルギー
\tau_v: neutrino luminosityが減少するタイムスケール
T_v: v_{\alpha} の温度

*P*_{vae}(*r*;ε): v_a から v_e へのニュートリノ振動遷移確率

<u>v-Processによる軽元素合成</u>

• 軽元素質量比分布

16.2 M_☉ 超新星 (SN 1987A) E_v=3×10⁵³ ergs, T_{νµ,τ}=6 MeV

(Yoshida et al. 2008, ApJ 686, 448)

●重要なv-process反応

⁴He(v,v'p)³H, ⁴He(v,v'n)³He, ¹²C(v,v'p)¹¹B, ¹²C(v,v'n)¹¹C

⁴He(ve,e⁻p)³He, ⁴He($\bar{v}e,e^+n$)³H, ¹²C(ve,e⁻p)¹¹C, ¹²C($\bar{v}e,e^+n$)¹¹B

<u>ニュートリノ振動を考慮したv-Process</u> • 7Li, ¹¹B生成量 ニュートリノ振動によって増加 (Yoshida et al. 2006, PRL 96, 091101; Yoshida et al. 2008, ApJ 686, 448)

Charged-current reactions ⁴He(ve,e⁻p)³He,¹²C(ve,e⁻p)¹¹C ⁴He(ve,e⁺n)³H, ¹²C(ve,e⁺n)¹¹B • N(⁷Li)/N(¹¹B)が振動パラメータへの制限となる可能性 第21回理論懇シンポジウム, 2008年12月16日, 国立天文台

Neutrinos from Collapsing Stars

Neutrinos from a BH forming collapse

(Sumiyoshi et al. 2006, PRL 97, 091101; 2007, ApJ 667, 382; 2008, ApJ 688, 1176)

40 M_o progenitor

(Woosley & Weaver 1995, ApJS 101, 181)

Neutrino signal

Shen EOS Lattimer & Swesty EOS

Neutrinos from Collapsing Stars

SKによる ve検出予測 (Nakazato et al. 2008, PRD 78, 083014)

Neutrino Oscillations with vv-Interations

$$i\hbar c \frac{d}{dx} \binom{v_{\mathbf{e}}}{v_{\mu}} = [UMU^{+} + H_{e} + H_{vv}] \binom{v_{\mathbf{e}}}{v_{\mu}}$$

 H_e : MSW effect $H_{\nu\nu}$: $\nu\nu$ forward scattering

$$Pz = (n_{ve} - n_{vx})/(n_{ve} + n_{vx})$$
$$\overline{P}z = (n_{\overline{v}e} - n_{\overline{v}x})/(n_{\overline{v}e} + n_{\overline{v}x})$$
Inverted mass hierarchy

 $L_{\nu}=10^{51} \text{ ergs}; |\Delta m^2 c^4|=2 \times 10^{-3} \text{ eV}^2;$ $\sin^2\theta_{13}=10^{-4}$

Neutrino Oscillations with vv-Interations

$$i\hbar c \frac{d}{dx} \begin{pmatrix} v_{\mathbf{e}} \\ v_{\mu} \end{pmatrix} = \left[UMU^{+} + H_{e} + H_{vv} \right] \begin{pmatrix} v_{\mathbf{e}} \\ v_{\mu} \end{pmatrix}$$

H_e : MSW effect H_{vv} : vv forward scattering

<u>まとめと課題</u>

ニュートリノ元素合成 The v-process, vp-process

v-process → 軽元素, 鉄族元素(奇数核)
ニュートリノ振動の効果

● vp-process ➡ 重元素合成(p核)

 詳細な爆発モデルと合わせた元素合成 (特にejectaの最深部)

Effects by vv **interactions >** *r*-process?

<u>まとめと課題</u>

超新星ニュートリノの検出 ● BH forming コアからのニュートリノ → progenitorや状態方程式の依存性

vv interactions

爆発モデル依存性
 Effects by vv interactions?
 progenitorの違いを他の方法で見られるか
 relic neutrinos?

Neutrino Oscillations

$$i\hbar \frac{d}{dt} \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \left\{ U \begin{pmatrix} 0 \\ \Delta m^{2}_{21}c^{4}/2\varepsilon_{v} \\ \Delta m^{2}_{31}c^{4}/2\varepsilon_{v} \end{pmatrix} U^{+} + A(n_{e}) \right\} \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix}$$
$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ s_{12}c_{23}-c_{12}c_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & s_{23}c_{13} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$
flavor eigenstate MNS matrix mass eigenstate (Maki, Nakagawa, Sakata)
$$A(n_{e}) = \begin{pmatrix} \pm \sqrt{2}G_{F}(\hbar c)^{3}n_{e} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} n_{e} : \text{electron number density}$$
$$\bullet \text{Squared mass differences} \bullet \text{Mixing angles} \\ \Delta m^{2}_{ji} = m_{j}^{2} - m_{i}^{2} \qquad s_{ij} = \sin\theta_{ij}, c_{ij} = \cos\theta_{ij} \end{cases}$$

• *CP* phase $\delta \delta = 0$ (This study)

Neutrino Oscillation Parameters

Squared mass differences

 $\Delta m^2 31 = \pm 2.4 \times 10^{-3} \text{ eV}^2, \ \Delta m^2 21 = 7.9 \times 10^{-5} \text{ eV}^2$

(Based on SK 2004; SNO 2004; KamLAND 2005)

Mass hierarchy Normal Inverted

NormalInverted $m_3 - \dots - m_3 < m_1 < m_2$

 $m_1 < m_2 < m_3$ $\Delta m^2_{13} + \Delta m^2_{32} + \Delta m^2_{21} = 0$

• Mixing angles $\implies \sin^2 2\theta_{12} = 0.816, \sin^2 2\theta_{23} = 1$ $\sin^2 2\theta_{13} < 0.1$ (Based on CHOOZ 2003; SK 2004; SNO 2004; KamLAND 2005)

Resonances of Neutrino Oscillations

- Flavor change occurs at resonances.
- SN 1987A presupernova

Normal mass hierarchy

T. Yoshida, The 6th Japan-Italy Symposium on Heavy Ion Physics, November 13, 2008

Conversion Probabilities

Normal mass hierarchy

Conversion Probabilities

> Neutrino flavors gradually change in He layer.

Mass Fraction Distribution of 7Li and 11B

• Normal mass hierarchy; sin²2013=0.01

Increase in the mass fractions of ⁷Be & ¹¹C in the He layer Increase in the rates of ⁴He(ve,e⁻p)³He, ¹²C(ve,e⁻p)¹¹C ⁷Be & ¹¹C yields Increase by factors of 2.5 & 1.4

$$\frac{dY_i}{dt} = -\lambda_i Y_i + \sum_k \lambda_k Y_k - \sum_j \rho N_A [ij]_{kl} Y_i Y_j + \sum_{k,l} \rho N_A [kl]_{ij} Y_k Y_l +$$

温度, 密度進化に従い元素合成過程を計算する