¥È¥Ã¥×   ¿·µ¬ °ìÍ÷ ñ¸ì¸¡º÷ ºÇ½ª¹¹¿·   ¥Ø¥ë¥×   ºÇ½ª¹¹¿·¤ÎRSS

Planet ¤Î¥Ð¥Ã¥¯¥¢¥Ã¥×º¹Ê¬(No.67)


  • Äɲ䵤줿¹Ô¤Ï¤³¤Î¿§¤Ç¤¹¡£
  • ºï½ü¤µ¤ì¤¿¹Ô¤Ï¤³¤Î¿§¤Ç¤¹¡£
#norelated
* ÏÇÀ±¥»¥ß¥Ê¡¼2019 [#zbb5ecca]

ÏÇÀ±¥»¥ß¥Ê¡¼¤Ï¸¶Â§¤È¤·¤ÆËè½µÌÚÍËÆü¤Î14:00¤«¤éÍýÏÀÉô¥»¥ß¥Ê¡¼¼¼¤Ç³«ºÅ¤·¤Æ¤¤¤Þ¤¹¡£~
astro-ph¥»¥ß¥Ê¡¼¤ÏËè½µ¶âÍËÆü¤Î12:00¤«¤éÍýÏÀÉô¥»¥ß¥Ê¡¼¼¼¤Ç³«ºÅ¤·¤Æ¤¤¤Þ¤¹¡£

// ¥»¥ß¥Ê¡¼È¯É½½çÈÖ
// 

** Schedule & History [#vfafd1d8]

[[2018ǯÅÙ>Planet2018]]
[[2017ǯÅÙ>Planet2017]]
[[2016ǯÅÙ>Planet2016]]
[[2015ǯÅÙ>Planet2015]]
[[2014ǯÅÙ>Planet2014]]

|BGCOLOR(#ccf):|BGCOLOR(#ffc):|BGCOLOR(#ffc):|BGCOLOR(#fcf):|c
|ÆüÄø|ȯɽ|¥¿¥¤¥È¥ë|Remarks|h
|BGCOLOR(#ccf):|BGCOLOR(#ffc):|BGCOLOR(#ffc):|BGCOLOR(#fcf):|c
//|BGCOLOR(#ddf):|BGCOLOR(#ffd):|BGCOLOR(#ffd):|c
|[[Á°´ü Âè1²ó 4/11 14:30->#planet0411]]|Shinsuke Takasao| 3D MHD simulations of Inner Protoplanetary Disks |14:30|
|[[Á°´ü Âè2²ó 4/18 14:00->#planet0418]]|Carina Heinreichsberger (Universität Wien)|Terrestrial or Gaseous? A classification of exoplanets according to density, mass and radius||
|[[Á°´ü Âè3²ó 4/25 14:00->#planet0425]]|Kazunari Iwasaki |Chemistry in Debris Disks ||
|[[Á°´ü Âè4²ó 5/16 14:30->#planet0516]]|Yuhito Shibaike (Tokyo Tech) |A new formation scenario for the Galilean satellites |14:30|
|[[Á°´ü Âè5²ó 5/23 14:00->#planet0523]]|Yuji Matsumoto (ASIAA) |The orbital stability of planets in resonances considering the evolution of mass ratio ||
//6/6: ¾®µ×Êݤµ¤ó½¸Ãæ¹ÖµÁ
//|[[Á°´ü Âè6²ó 6/13 14:00->#planet0613]]|Hiroaki Kaneko (Tokyo Tech) |TBA ||
//|[[Á°´ü Âè7²ó 6/20 14:00->#planet0620]]|Yuhiko Aoyama (University of Tokyo) |TBA ||
|[[Á°´ü Âè6²ó 6/13 14:00->#planet0613]]|Hiroaki Kaneko (Tokyo Tech) |TBA ||
|[[Á°´ü Âè7²ó 6/20 14:00->#planet0620]]|Yuhiko Aoyama (University of Tokyo) |TBA ||

//º£¸å¤Î¸õÊä
//Ìµ¤ó¤Î¥³¥í¥­¥¦¥à¤Çʹ¤±¤Ê¤«¤Ã¤¿Éôʬ¡Ê¼ÂºÝ¤Ë¤ä¤Ã¤Æ¤¤¤ë³ØÀ¸¤Ç¤â¡Ë
//
//ÆâÉô¡§¾®µ×ÊÝ¡¢²¡Ìî¡¢²®¸¶¡¢ÇÈ¡¹ÇìÉô¡¢Carol¡¢À±Ìî
//¸¶À¤ó¡¢¿¹Å礵¤ó¡¢¿¹¤µ¤ó¡ÊÅ칩Âç¡Ë¡¢¼ÇÃÓ¤µ¤ó¡ÊÅ칩Âç¡Ë
//¾®ÎÓ¤µ¤ó¡Ê̾Âç¡Ë¡¢º´¡¹ÌÚ¤µ¤ó¡ÊµþÂç¡Ë¢«ÍýÏÀ¥³¥í¥­¥¦¥à¡©
//¹â¶¶¼ÂÆ»¤µ¤ó¡¤Ä¹Ã«Àɧ¤µ¤ó

// ¢«¥À¥Ö¥ë¥¹¥é¥Ã¥·¥å¤Ï¥³¥á¥ó¥È¥¢¥¦¥È
//:&aname(planet0418){4/18}; Dimitri Veras, The growing field of post-main-sequence exoplanetary science, with strong connections to the solar system|
//The quest for identifying the bulk chemical composition of extrasolar planets and robust observational evidence that between 25% and 50% of all Milky Way white dwarfs host currently dynamically-active planetary systems motivate investigations that link their formation and fate. Here I provide a review of our current knowledge of these systems, including an update on the observational and theoretical aspects of the groundbreaking discovery of at least one disintegrating minor planet transiting white dwarf WD 1145+017. I show how this field incorporates several facets of solar system physics and chemistry, and how its interdisciplinary nature requires input from orbital dynamics, stellar evolution, astrochemistry, atmospheric science and surface processes.

//¥¢¥Ö¥¹¥È

//:&aname(planet1107){5/21}; ̾Á°¡¡¥¿¥¤¥È¥ë|
//¥¢¥Ö¥¹¥È

:&aname(planet0418){4/18}; Carina Heinreichsberger, Terrestrial or Gaseous? A classification of exoplanets according to density, mass and radius|
When looking at Exoplanet Archives the class of a planet is not given. Therefore I tried to find an easy and fast way to classify exoplanets using only density, mass and radius. In this talk I will discuss the formation theory of Planets to explain the boundaries between the different classes (gas, terrestrial) and show the results of my empirical study.

:&aname(planet0516){5/16}; Yuhito Shibaike, A new formation scenario for the Galilean satellites|
It is generally accepted that the four major (Galilean) satellites formed out of the gas disk that accompanied Jupiter¡Çs formation. I will discuss a new formation scenario for the Galilean satellites, based on the capture of several planetesimal seeds and subsequent slow accretion of pebbles. Our slow-pebble-accretion scenario can reproduce the following characteristics: (1) the mass of all the Galilean satellites; (2) the orbits of Io, Europa, and Ganymede captured in mutual 2:1 mean motion resonances; (3) the ice mass fractions of all the Galilean satellites; (4) the unique ice-rock partially differentiated Callisto and the complete differentiation of the other satellites.