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Abstract

We qualitatively examine properties of artificial deformation in shapes of objects (galaxies and stars)
induced by the pixelization effects (also called as the aliasing effects) using toy mock simulation images.
Two causes of the effects have been recognized: One is a consequence of observing the continuous sky with
discrete pixels which is called as the first pixelization. And the other, called the second pixelization, is a
consequence of resampling a pixelized image onto an another pixel grid whose coordinates are not perfectly
adjusted to the input grid. We pay a special attention to the latter because it might be a potential
source of a systematic noise in a weak lensing analysis. In particular, it is found that resampling with
rotation induces artificial ellipticities in object shapes having a periodic concentric-circle-shaped pattern.
Our major findings are as follows. (1) Root-mean-square (RMS) of artificial ellipticities in object shapes
induced by the first pixelization effect can be as large as RMS>∼ 10−2 if a characteristic size of objects
(e.g., the FWHM) is smaller than twice of the pixel size. While for larger objects, it quickly becomes
very small (RMS<∼ 10−5). (2) The amplitude of the shape deformation induced by the second pixelization
effect depends on the object size. It also depends strongly on an interpolation scheme adopted to carry out
resampling and on the grid size of the output pixels. The RMS of ellipticities in object shapes induced by
the second pixelization effect can be suppressed to well below 10−2 if one adopts a proper interpolation
scheme (implemented in popular image processing softwares). We also discuss an impact of the pixelization
effects on a weak lensing analysis.

Key words: techniques: image processing

1. Introduction

A precise shape measurement is of fundamental impor-
tance in astronomical research, not only because the mor-
phology of celestial bodies provides us with their physical
information, but also because tiny deformation in shapes
of distant galaxies caused by gravitational lensing effect al-
lows us to explore foreground mass distribution (see Fort
& Mellier 1994; Mellier 1999; Bartelmann & Schneider
2001 for reviews). Analyses of weak gravitational lens-
ing effect (e.g., the cosmic shear correlation) especially
require very precise shape measurement, since its ampli-
tude is of a few percents level (Refregier 2003 and ref-
erences therein). Therefore, any artificial shape deforma-
tion which may arise during an observation as well as data
reduction must be properly understood and must be con-
trolled down to a sufficiently small level.

One known artificial shape deformation is caused by the
pixelization of images, known as pixelization effects (also
called as the aliasing effect). As pointed out by Rhodes
et al. (2007), there are two causes of the pixelization ef-
fect (see Fig. 6 of Rhodes et al. 2007 for an illustration):
One is a consequence of observing the continuous sky with
discrete pixels, called as the first pixelization, which is an
unavoidable effect. And the other, called as the second
pixelization, occurs when resampling a pixelized image
onto an another pixel grid whose coordinate is not per-
fectly adjusted to the input grid. During resampling, one
input pixel may be resampled onto several output pix-

els, obviously resulting in deformation in object shapes
(see Figure 2 for an illustration). The second pixeliza-
tion occurs several stages of image processing processes
involving resampling, for example, the correction for a ge-
ometric distortion, mosaicking images from multiple CCD
chips to generate a combined image, and stacking multiple
dithered images.

In this paper, we are concerned with the second pix-
elization effect taking two examples of resampling; rota-
tion and correction for an axially symmetric optical dis-
tortion. We especially pay an attention to rotation which
must be involved in the mosaic-stacking process of a mo-
saic CCD camera if multiple CCDs are not installed in
perfectly parallel with each other. In the case of the
Subaru Prime Focus Camera (Suprime-Cam), rotations of
0.025− 0.17 degrees are necessary for generating a prop-
erly mosaicked image. An important point to notice is
that resampling with rotation induces artificial elliptic-
ities in object shapes having a concentric-circle-shaped
pattern (explained in detail in the following sections and
see Figures 2 and 4 for demonstrations). Therefore it give
rise to artificial shear correlations which can potentially
act as a systematic noise in the measurement of cosmic
shear correlation functions.

We notice that the artificial shape deformation induced
by the second pixelization effect cannot be generally cor-
rected by the anisotropic point spread function (PSF) cor-
rection (which is one of the important procedures in weak
lensing analyses [Kaiser et al. 1995]) simply because they
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originate from different causes. The shape deformation by
the anisotropic PSF arises during an observation with a
real (thus non-perfect) instrument, thus it is an unavoid-
able effect and one has to develop a reliable correction
scheme (e.g., Heymans et al. 2006; Massaey et al. 2007).
Whereas the second pixelization effect occurs during im-
age processing, and can be minimized by adopting an op-
timal resampling scheme. In fact, Rhodes et al (2007)
developed such a resampling scheme for the HST ACS
data in an empirical manner by searching for optimal pa-
rameters (the interpolation kernel and output pixel size)
of the image processing software MultiDrizzle1.

The purpose of this paper is two-fold: The first is to
quantitatively examine the effect of the second pixeliza-
tion effect to understand its properties. The second is to
explore an optimum way to minimizing it. To do these,
we use simple image simulations which is described in §2.
Then in §3, we give some illustrative examples for a vi-
sual impression and for demonstrating the origin of the
concentric-circle-shaped pattern induced by resampling
with rotation. Results are presented in §4. Finally, §5
is devoted to a summary and discussion.

2. Simple image simulation

Since a very realistic mock simulation is not necessary
for our purpose, we use a toy image simulation described
below. We adopt two-dimensional Gaussian as a shape
of “object”. The full-width-half-maximums (FWHM de-
noted by θG) of the Gaussian object we consider are
θG = 0.4, 0.6, 0.8, 1.2 and 2.0 arcsec. These object sizes
are chosen because (i) the median seeing size (FWHM)
of the Subaru telescope is about 0.6 arcsec and the best
seeing is ∼ 0.35 arcsec (Miyazaki et al. 2002), and (ii)
most of objects used for weak lensing analyses are galax-
ies (and reference stars) with the FWHMs being smaller
than 2 arcsec (Hamana et al. 2003).

We take the same pixel size as the Suprime-Cam,
namely lpixel = 0.2 arcsec, as our primary science target
is the weak lensing, especially using the Suprime-Cam or
similar instruments. We create mock CCD images hav-
ing Nx×Ny pixels on which Gaussian objects (having the
equivalent FWHM and intensity) are located on a regular
interval of 3π arcsec. Note that the separation between
objects are more than 10 times of the σ of the Gaussian
(θG $2.35×σ), thus overlapping of isophotes of neighbour
objects does not make any problem in the shape measure-
ment. Note that results in this paper can be applied to any
camera that uses a pixel array imaging device by properly
translating the scaling ratio between θG and lpixel.

Following the, so-called, KSB formalism (Kaiser,
Squires & Broadhurst 1995), we quantify the image shapes
by the ellipticity parameter defined by

e =
(

I11 − I22

I11 + I22
,

I12

I11 + I22

)
, (1)

1 see MultiDrizzle web page:
http://stsdas.stsci.edu/pydrizzle/multidrizzle/

Fig. 1. The RMSs of the ellipticities in object shapes caused
by the first pixelization effect is plotted as a function of the
FWHM of the Gaussian objects. Note that the RMS ellip-
ticities of stars before the PSF correction is typically a few
percents, and the RMS of intrinsic galaxy ellipticities is about
40 percents (e.g., Hamana et al. 2003).

Iij =
∫

d2θ WG(θ)θiθjf(θ), (2)

where WG(θ) is the Gaussian window function. Notice
that the e1 (e2) component represents the elongation in
directions parallel (45 degrees rotated) to the coordinate
system. The object detection and shape measurement are
done with hfindpeaks and getshapes of IMCAT software
suite developed by Nick Kaiser, respectively.

Before investigating the second pixelization effect, here
we examine the first pixelization effect. The Gaussian has,
of course, no ellipticity, but its pixelized image may have
a finite ellipticity if the center of an object does not fall
onto special positions such like the center of a pixel or an
intersection of grid. We compute the root-mean-square
(RMS) of the ellipticities among Gaussian objects in the
simulation data of 2048×2048 pixels. The RMS is defined
by

〈e2〉 1
2 =




Nobj∑

i=1

(e2
i,1 + e2

i,2)/Nobj





1
2

. (3)

Results are plotted in Figure 1. As expected, the RMS de-
creases with the object size. It quickly becomes large for
smaller objects of θG <0.6 arcsec and is ∼0.01 for the case
of θG =0.4 arcsec (θG/lpixel =2). This should be compared
with the RMS ellipticities of stars (before the anisotropic
PSF correction) which is typically a few percents. Thus
if the seeing FWHM is less than twice of the pixel size,
the first pixelization effect can be one of major sources of
artificial shape deformation in small objects. An impor-
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Fig. 2. An illustrative example of the object shape deformations caused by the second pixelization. Top-left panel shows the
simulation data of Gaussian objects with θG/lpixel = 2 located on a regular interval of 10 pixels. Note that the objects are placed
just at the center of pixels to minimize the shape deformation caused by the first pixelization effect. The top-right panel shows the
zoom-in on the section enclosed by the dashed line in the top-left panel. In this plot, a new grid (rotated by 1.15 degrees relative
to the original grid) on which the image is resampled is over-plotted. The bottom two panels show the image after resampling onto
the new grid. The resampling is done with the 1st order bilinear polynomial interpolation scheme. The over-plotted ellipses show
the ellipticity of the objects. Note that the ellipticities are enlarged 10 times for clarify.



4 T. Hamana & S. Miyazaki [Vol. ,

Lpattern
lpixel

φ

Fig. 3. A sketch explaining the relation between the scale of
the pattern (Lpattern), the pixel size (lpixel) and the rotation
angle (φ). Two grids show the input and output grids which
cross at an angle of φ. The ellipses show the ellipticites (which
are enlarged arbitrarily for clarify) of originally circular ob-
jects resampled onto the output grid. Notice that the same
deformation pattern appears at the interval of Lpattern.

tant finding here is that for objects with FWHM larger
than three times the pixel size, the first pixelization effect
is very small, but for smaller objects, the first pixeliza-
tion effect can be a non-negligible source of the artificial
ellipticities. Another point to be noticed here is that the
pixelization effect does not necessarily generate the RMSs
of e1 and that of e2 equally, because the pixels are square
shaped and so the pixelization effect is, in general, not
axially symmetric but has some special directions. This
is the reason why the RMSs of two components are, in
general, not equal as shown in Figure 1.

3. Visual impressions

Before moving on to a thorough examination of the
second pixelization effect, it would be helpful to present
some illustrative examples of the second pixelization ef-
fect. Notice that in this section, for the illustrative pur-
pose, we use simulation data which are different from ones
used in §4 in the separation between objects. Figure 2
shows a demonstrative example for the origin of the pe-
riodic pattern caused by a resampling with a rotation.
Here, we create simulation data of Gaussian objects with
θG/lpixel = 2 located on a regular interval of 10 pixels.
Note that the objects are placed exactly at the center of
pixels to minimize the ellipticity induced by the first pix-
elization effect. The top-left panel shows the simulation
image where ellipticities of object shapes are over-plotted
by ellipses (circles in this case). The top-right panel shows
the zoom-in on the section enclosed by the dashed line in
the top-left panel. In this plot, a new grid (rotated 1.15
degrees relative to the original grid) on which the image
is resampled is over-plotted. Note that the rotation an-
gle of 1.15 degrees is much larger than a usual rotation
angle involved in the mosaicking of multiple CCDs, but
is chosen for the demonstrative purpose. The bottom two
panels show the images after resampling onto the new pix-
els. It is evident from these plots that a periodic pattern
of artificial ellipticities in object shapes are induced by the
rotation. The characteristic scale of the pattern is writ-

ten in terms of the pixel size and the rotation angle, φ, as
Lpattern = lpixel/ tanφ (∼ 50× lpixel for φ = 1.15 degree).
The reason of this is as follows (see Figure 3 for an illustra-
tion): The deformation is induced by the difference in the
grid positions between the input and output grids. Thus
if the difference in the grid positions is same at separate
positions, the same deformation is induced at those po-
sitions. In x- and y-direction, the same difference in the
grid positions occurs in the interval of Lpattern, because
it is the length that the output grid diagonally crosses
(with the angle of φ) the input grid by one pixel length.
Thus Lpattern is the separation between positions (in x-
and y-direction) where the same deformation is induced.

Next, in order to demonstrate the periodic patterns of
ellipticities in object shapes appearing in realistic data,
we create simulation data having the same dimensions as
CCDs of Suprime-Cam (namely, 2048× 4096 pixels with
lpixel = 0.2 arcsec) on which Gaussian images of θG = 0.6
arcsec are placed on a regular interval of 20 arcsec. The
data are rotated by 0.025, 0.075 or 0.15 degrees and are
resampled onto new pixels by adopting the 1st order poly-
nomial interpolation scheme (see §4 for details). These
rotation angles are chosen because the actual rotation in-
volved in mosaicking of the Suprime-Cam’s CCDs ranges
from 0.025 to 0.17 degrees. Ellipticity maps of resam-
pled images are shown in Figure 4, where the character-
istic periodic patterns are clearly observed. The scales
of the pattern are Lpattern = 0.2′′/ tanφ ∼ 7.6, 2.5 and
1.3 arcmin for φ = 0.025, 0.075 and 0.15 degrees, respec-
tively. This explains, at least qualitatively, the origin of
the concentric-circle-shaped pattern observed in the real
data displayed in Figure 2 of Miyazaki et al. (2007). As
evidently shown in Figure 4, the artificial ellipticities in-
duced by the image rotation mostly lead to the E-mode
shear. It is thus very important to note that in the pres-
ence of such systematic ellipticities, a smallness of the
B-mode shear does not guarantee a successful correction
of this systematic noise, and it may be difficult to dis-
tinguish this from signals arising from gravitational lens-
ing. Thus it is necessary to develop a resampling pro-
cedure which suppresses the systematic to a sufficiently
small level. This is exactly a purpose of this paper, and
we explore the way to minimising the systematic in an
empirical manner in the next section. Notice that the ac-
tual mosaick-stacking involves the rotation, displacement
and enlargement/reduction of images, also a high order
warping is operated to remove the optical distortion (e.g.,
see Miyazaki et al. 2007). Thus actual data may have
more complex ellipticity pattern than ones found in the
simple simulation in this section. In the next section, we
shall qualitatively examine the second pixelization effect
taking two realistic examples of resampling; namely rota-
tion operated in mosaicking and correction for the optical
distortion in the case of Suprime-Cam.

4. Results

The magnitude of the second pixelization effect depends
on the interpolation scheme used to resample an image.
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Fig. 4. Ellipticity maps showing the periodic patterns of object shape deformations arising on realistic data. Simulation data having
the same dimensions as CCDs of Suprime-Cam (2048× 4096 pixels with lpixel = 0.2 arcsec) on which Gaussian images of θG = 0.6
arcsec are placed on a regular interval of 20 arcsec, are rotated by 0.025, 0.075 and 0.15degrees (from left to right). Note that the
ellipticities are enlarged 20 times for clarify. For comparison, an ellipse with |e| = 2% (enlarged 20 times) is displayed in the small
panel at the top-left corner.

We examine the following interpolation schemes which are
implemented in some popular image processing softwares:
(i) the polynomial interpolation of 1st, 3rd and 5th order,
for which we utilize transformimage of IMCAT. (ii) the
sinc kernel [sinc(x) = sin(πx)/πx] (truncated at 31 by 31
pixels), for which we utilize rotate of IRAF2. (iii) Lanczos
kernel [sinc(x)sinc(x/a)] of a=2, 3 and 4 (called Lanczos2,
Lanczos3 and Lanczos4, respectively; implemented e.g.,
Swarp developed by Emmanuel Bertin), for which we uti-
lize a resampling program developed by ourself. Also we
examine the performance of adopting a finer grid for out-
put pixels, which we call the grid refinement. Actually,
it has been recognized that the grid refinement can re-
duce object shape deformation by the pixelization effects
(Rhodes et al. 2007; Miyazaki et al. 2007) at the cost
of the computational overheads. The grid refinement was
tested in combination with the 1st and 3rd order poly-
nomial interpolation schemes for which we utilize trans-
formimage of IMCAT.
2 see IRAF web page http://iraf.noao.edu/

4.1. Rotation

The 2048× 2048 pixel simulation data described in §2
are rotated by 0.16 degrees and are resampled onto a
new grid by applying one of the interpolation schemes
mentioned above. The rotation angle of 0.16 degrees is
chosen so that it is within the range of Suprime-Cam’s
actual rotation angles in the mosaic-stacking procedure
(0.025− 0.17 degrees). Note that the RMS of the ellip-
ticities after resampling does not depend on the rotation
angle, though the size of the concentric-circle-shaped pat-
tern does.

Let us first look into the dependence of the second pix-
elization effect on the object size for various interpolation
schemes. Figure 5 compares the RMSs of ellipticities in
object shapes as a function of the object size. Left panel
of Figure 5 compares the three polynomial interpolation
schemes, revealing that the higher the order of polynomi-
als is, the better performance one obtains. It is also found
that the higher the order of polynomials is, the steeper
the slope becomes. To be specific, the RMSs depend on
the object size roughly, 〈e2〉1/2 ∝ θ−2

G for the linear poly-
nomial, and 〈e2〉1/2 ∝ θ−4

G for the 3rd order, and further
steeper slope for the 5th order. The crosses in the same
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Fig. 5. RMSs of ellipticitis in object shapes as a function of the object size are shown for comparison among various interpolation
schemes. Left panel (a): the 1st, 3rd and 5th order polynomial for the filled circles, filled triangles and open circles respectively.
The crosses show the contribution from e2 component (〈e2

2〉1/2) of the 3rd order polynomial, which demonstrates that the second
pixelization effect mostly induces e1 component. Middle panel (b): the Lanczos2, Lanczos3, Lanczos4 and sinc resampling schemes
for the filled circles, filled triangles, open circles and crosses, respectively. Right panel (c): The 1st order polynomial with twice and
4 times finer grid for the filled circles and filled triangles respectively, and the 3rd order polynomial with twice finer grid for the open
triangles.

plot show the RMS of e2 component only for the case of
the 3rd order polynomial, from which it is found that the
e2 component is much smaller than the total RMS. In fact,
we found that the second pixelization effect preferentially
induces e1 component, irrespective of the interpolation
schemes. This is due to the fact that the pixels are square
shaped and so the pixelization effect has some special di-
rections.

The middle panel of Figure 5 shows the results for the
sinc and Lanczos kernels. It is found that the Lanczos2
works as well as the 3rd order polynomial does. The
Lanczos3 and Lanczos4 are better than 3rd and 5th or-
der polynomials for small objects (θG < 0.6 arcsec) but
for larger objects (θG > 1 arcsec) they work only a lit-
tle better than Lanczos2 does. The sinc kernel shows the
best performance among the interpolation schemes (with-
out the grid-refinement) we consider in this paper. We
note that the sinc kernel is computationally expensive as
it extends to very large area (e.g., 31 by 31 pixels for the
default setting of IRAF).

Right panel of Figure 5 shows that the grid refinement
nicely suppress the second pixelization effect. This is also
observed in Figure 6 where the improvement gained by
the grid refinement is plotted as a function of the ratio
between input and output pixel size. If combined with
the linear polynomial interpolation scheme, taking twice
finer output grid reduces the RMSs by about one third
with keeping the slope of 〈e2〉1/2 ∝ θ−2

G mostly unchanged.
The use of 4 times finer grid reduces the RMSs by about

Fig. 6. RMSs of ellipticitis in object shapes as a function of
the ratio between the input and output pixel size. Open cir-
cles are for the linear polynomial interpolation scheme, while
filled triangles are for the 3rd order polynomial. Different line
styles are different object size: θG = 0.6, 1.2 and 2.0 for the
solid, dotted and dashed line, respectively.
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Fig. 7. Ellipticity maps before (left) and after (right) the distortion correction. The left panel shows the mock simulation of the
ellipticity map due to the optical distortion of the Suprima-Cam. The Gaussian objects with FWHM of 0.6 arcsec with the optical
distortion are distributed on a mock Suprime-Cam pixels. The ellipses show the ellipticity of distorted Gaussian objects sparsely
sampled from the mock simulation data (see §2). The right panel shows the ellipticity map of the distortion corrected data. For
comparison, an ellipse with |e| = 1% is displayed in the top-left corner.

one order of magnitude for objects with θG < 1.2 arcsec
and by lesser extent for larger objects. If combined with
the 3rd order polynomial, improvements gained by the
grid refinement behave irregularly as observed in Figure
6. Interestingly, in the case of an input/output pixel ra-
tio of 3, adopting the 3rd order polynomial makes only
a slight improvement over the 1st order case. An impor-
tant message of this is that certain combinations may not
give good improvement for the computational overhead,
and thus care must be paid when one combines the grid
refinement with a higher order interpolation scheme. Our
experiment suggests that reasonably good improvement is
stably obtained when one adopts the twice finer grid with
the 3rd order polynomial interpolation.

4.2. Optical distortion

Next we examine the second pixelization effect induced
during the correction for the optical distortion. To do
so, we take the case for the Suprime-Cam. The optical
distortion of the Suprime-Cam is axially symmetric with
respect to the optical axis and is well approximated by
the forth order polynomial function of the distance from
the optical axis (see eq. [8] of Miyazaki et al. 2002). As is
shown in Fig 21 of Miyazaki et al. (2002), the distortion
rapidly increases with the distance from the optical axis.

Adopting the forth order polynomial model given in
Miyazaki et al. (2002; their eq. [8]), we generate a mock
Suprime-Cam images of 10456× 8282 pixels, on which
Gaussian objects with θG =0.6 arcsec with the optical dis-
tortion artificially operated, are distributed in the manner
described in §2. In the left panel of Figure 7, the ellip-
ticity map of the distorted Gaussian objects is shown. As
is shown there, the Suprime-Cam’s optical distortion in-

duces a radial elongation in the object shapes because the
distortion becomes larger as the distance from the optical
axis increases. The RMS of the ellipticities as a function
of the distance from the optical axis is shown in Figure
8. At the central region where the distortion is smallest,
the RMS ellipticity is as small as one induced by the first
pixelization effect as expected. Whereas at the largest
distance it becomes one percent. Note that in this case
the first pixelization effect induces RMSs of e1 and e2 al-
most equally, and the turnover in e1 component seen at
θ ∼ 17 arcmin is an artifact due to the anisotropic sam-
pling (objects in the largest distance are located only at
the four corners, which preferentially have e2 component
as observed in Figure 8).

We correct for the optical distortion by resampling pix-
els with the 3rd order polynomial interpolation. The ellip-
ticity map after the correction is shown in the right panel
of Figure 7 from which one may visually realize that the
radial deformation induced by the optical distortion is cor-
rected successfully but artificial deformations due to the
second pixlization effect appear. The important point rec-
ognized in the plot is that the ellipses are preferentially
oriented to the directions parallel to the grids. This is
quantitatively demonstrated in Figure 8 in which one may
find that the RMS of the ellipticities after the correction
almost solely comes from e1 component. Note that the
RMS only weakly depends on the the distance from the
optical axis except for the most central region where the
optical distortion is negligible and thus the correction is as
well. The values of the RMS ( 〈e2〉1/2∼〈e1

2〉1/2∼4×10−3

and 〈e2
2〉1/2 ∼ 5× 10−4) are equivalent to that found in

the case of the rotation (Figure 5). These similarities sug-
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Fig. 8. RMSs of ellipticitis in object shapes as a function
of the distance from the optical axis. This is the result of
the mock Gaussian simulation with the FWHM of 0.6 arc-
sec. Filled circles and filled triangles are for before and after
distortion correction. The dotted and dashed lines are for e1

and e2 components, respectively, whereas the solid lines show
the sum of them.

gest that the RMS ellipticities induced by the second pix-
elization effect does not depend on resampling parameters
(e.g., displacements, rotation and anisotropic transforma-
tion) but solely depends on the ratio between the object
size and the pixel size. Although this could be a specific
feature of the Gaussian, it might be generally said that the
magnitude of the second pixelization effect most strongly
depends on the object size.

Notice that in a closer look at the left panel of Figure
7 one may observe partially mirror symmetric patterns
with respect to the x- and y-axis passing through the field
center. The reason of this is that although the optical
distortion and thus the correction for it are axially sym-
metric, resampling onto square pixels does not induce an
axially symmetric pattern but results in the partially mir-
ror symmetric pattern. Except for it, we do not observe
any obvious characteristic pattern.

5. Summary and Discussions

We have qualitatively examined ellipticities in object
shapes induced by the pixelization effects paying a special
attention to the periodic concentric-circle-shaped pattern
induced by resampling of pixels with rotation. Our major
findings are summarized as follows.

• Artificial ellipticities induced by the first pixeliza-
tion effect can be as large as 〈e2〉1/2 >∼ 10−2 if a
characteristic size of objects (e.g., the FWHM) is
smaller than twice of the pixel size. Whereas for ob-

jects with the characteristic size being larger than
three times of the pixel size, the RMS becomes neg-
ligibly small (〈e2〉1/2 <∼ 10−5).

• The second pixelization effect preferentially induces
the e1 component (parallel to the grids). The reason
of this is that pixels are square shaped and so the
pixelization effect is, in general, not axially symmet-
ric but has some special directions.

• The size (e.g., RMS of e) of the shape deformation
caused by the second pixelization effect depends on
the object size. It also strongly depends on the in-
terpolation scheme for resampling and on the grid
size of the output pixels. If we set an upper limit
of the RMS ellipticies by 〈e2〉1/2 < 5× 10−3 for ob-
jects with FWHM> 2.5 × lpixel (corresponding to
FWHM> 0.5 arcsec for the case of Suprime-Cam),
the interpolation schemes passing the above condi-
tion are (see Figure 5) the 5th order polynomial,
Lanczos3, Lanczos4 and sinc kernel (as far as among
ones considered in this paper). Adopting the grid
refinement makes a great improvement. Actually, if
one adopts twice finer grid for output pixels, even
the linear polynomial can pass the above condition.

• Resampling of a pixelized image with rotation in-
duces a periodic concentric-circle-shaped pattern of
artificial ellipticities in object shapes. The scale of
the pattern is related to the pixel size and the rota-
tion angle, φ, by Lpattern = lpixel/tanφ.

Before closing this paper, we would like to make a
comment on an impact of the second pixelization effect
on the actual weak lensing analysis using Suprime-cam
data presented in Miyazaki et al. (2007). Miyazaki et
al. (2007) carried out resampling adopting the 3rd order
polynomial interpolation scheme and combined typically
4 dithered images3, thus for the images with FWHM>∼ 0.6
arcsec (the typical PSF size), the RMS of ellipticities in-
duced by the second pixelization effect should be well
below 10−2. Whereas, the RMSs measured from stellar
images are about a few ×10−2, therefore we may safely
conclude that the second pixelization effect is suppressed
sufficiently, and is not a major source of the artificial el-
lipticities in object shapes.

We would like to thank Richard Massey for valuable
comments and Nick Kaiser for making the IMCAT soft-
ware available. We would like to thank the anonymous
referee for valuable and constructive comments on the ear-
lier manuscript which improve the paper. This research
was supported in part by the Grants–in–Aid from Monbu–
Kagakusho and Japan Society of Promotion of Science
(15340065 and 17740116). Numerical computations pre-
sented in this paper were carried out on computer sys-
3 Combining dithered images reduces the RMS ellipticities

roughly as ∝N−1/2 for N dithered images (Rhodes et al. 2007),
because an object falls onto a different sub-pixel position in dif-
ferent exposures as a consequence of dithered exposures which
results in different ellipticities with basically random orienta-
tions. Combining those images can mitigate the pixelization
effects.
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