ALMA revolution on planet formation

Akimasa Kataoka (Heidelberg Universit

 \bigcirc

ALMA revolution

• High resolution studies - HL Tau, TW Hya, HD 97048

Surveys on Upper Sco, Lupus, and Chameleon

ALMA Polarization

High resolution studies

- Rings are common in dust:
 - Dust rings appear for any stages (HL Tau: <1-2 Myr, HD 97048: 3 Myr, TW Hya: 10 Myr)
 - Are there gaps also in gas?
 - Grain growth at rings/gaps?
 - Comparison with IR images?

Ring formation mechanisms

ALMA Partnership 2015

- Planet-inducing gaps (e.g., Kanagawa et al. 2015, see his talk)
- Enhanced growth at snowlines (Zhang et al. 2015)
- Sintering-induced fragmentation of dust grains at snowlines (Okuzumi et al. 2016, see his talk)
- MHD instabilities (e.g., Flock et al. 2015, see talk by H. Klahr)
- Secular gravitational instability (Takahashi and Inutsuka 2014, 2016, see his talk)

Gas gaps?

- Correlation between the dust and gas gaps
 - Is HCO⁺ really trace the gas?
 - Is there too much continuum subtraction?
 - Hsi-Wei Yen et al., 2016

Grain size variation in gaps

- Two-band, high resolution observation
- Spectral index is low at dust gaps : grain size is smaller at the gaps.

Tsukagoshi, Nomura, Muto et al., 2016 See also Nomura et al. 2016, Andrews et al. 2016

Comparison with IR obs.

Lopsided or rings?

What physical mechanism does make this difference?

Akimasa Kataoka (Heidelberg University), Japan-Germany Planet & Disk workshop, Ishigaki Island, Sep. 26-30, 2016

How to measure dust and gas mass?

formation Aevolves with Plane every pouts many Planet & Disk workshop, Ishigaki Island, Sep. 26-30, 2016

9 /25

Disk surveys

- Today's talk is based on the results of
 - Taurus (1-3Myr, SMA survey) by Andrews et al. 2013
 - Lupus (1-2 Myr) by Ansdell et al. 2016
 - Chameleon (2 Myr) by Pascucci et al. 2016
 - Upper Sco (5-11 Myr) by Barenfeld et al. 2016

Time evolution of dust mass

Akimasa Kataoka (Heidelberg University), Japan-Germany Planet & Disk workshop, Ishigaki Island, Sep. 26-30, 2016

Lupus survey

- 89 disks observed (96% complete)
- 62 continuum detections
- 35 ¹³CO detections
- 11 C¹⁸O detections
- 0.3" beam (50 AU)
- 0.3 Mearth of dust

Ansdell et al., 2016

Survey of Upper Sco

Barenfeld et al., 2016

- 106 disks observed
- continuum detections
 - 53 of 75 primordial disks
 - 5 of 31 debris/evolved disks
- ¹²CO detections
 - 26 of 76 primordial disks
 - 0 of 31 debris/evolved disks
- 0.34" beam (50 AU)
- 0.1 Mearth of dust

Stellar mass - dust mass relation

Pascucci et al., 2016

14/25

Dust mass of disks

- Lupus and Taurus (1-3 Myr) share the same dust mass range
- Lupus and Taurus (15 M_{earth}) has 3× higher mass than Upper Sco (5 M_{earth}, 5-11 Myr)

Gas-to-dust ratio

Lupus survey

- Gas-to-dust ratio varies from 1 to 100
- Typical g/d ratio is ~10 (cf. ISM ~ 100)
- Quick gas dissipation or CO depletion?

Ansdell et al., 2016

Gas-to-dust ratio

Lupus survey

- Gas-to-dust ratio varies from 1 to 100
- Typical g/d ratio is
 ~10 (cf. ISM ~ 100)
- Quick gas dissipation or CO depletion?

*g/d is affected by grain growth (Tsukamoto et al. 2016) See his talk

Ansdell et al., 2016

17/25

Gas mass measurement

*Thi et al. 2010, Gorti et al. 2011, Dutrey et al. 1996

λ (µm)

λ (μm)

λ (μm)

- HD line : good tracer of gas mass
- HD-measured gas mass > COmeasured gas mass
- CO freeze-out, photodissociation, or chemical depletion

Bergin et al. 2013, McClure et al. 2016

18/25

Macc(X-shooter) vs. M_{dust} (ALMA)

- Accretion rate from UV excess in VLT/X-Shooter
- g/d is assumed to be 100
- Consistent with the viscous accretion theory
- Transition disks have lower Macc.

Manara et al. 2016

mm-wave polarization of disks

- 1.Thermal emission from elongated dust grains aligned with magnetic field
 - \rightarrow a probe of the magnetic field structure
- 2.Self-scattering of thermal dust emission
 - \rightarrow measuring the grain size at midplane

Syntheti -0.020 -0.025 -0.030 -0.025 -0.030 -0.025 -0.030 -0.025 -0.030 -0.025 -0.030 -0.025 -0.030 -0.020 -0.025 -0.030

40 50 60 70 80 90 1080 **tions**

1. Thermal emission from elongated dust grains aligned with magnetic field

Synthetic Observations

2.Self-scattering of thermal dust emission

a [cm]

- Polarization is emitted only from locations where $a_{max} = 150 \mu m (\lambda = 870 \mu m)$
- In a disk with a planet, three polarization rings are expected.

Pohl, Kataoka, et al., 2016

Summary

• There are rings and lopsided disks.

Surveys show the disk evolution in Myr time scale

Barenfeld, et al. 2016, Andsell et al. 2016, Pascucci et al. 2016

ALMA polarization as a new tool of measuring grain growth

Akimasa Kataoka (Heidelberg University), Japan-Germany Planet & Disk workshop, Ishigaki Island, Sep. 26-30, 2016