サブアークセカンドの角分解能で探る星形成研究会@三鷹

2004.02.18

イントロダクション

1. 研究目的について
 2. 本研究の概要

研究目的 (Motivation) ★ 分子雲コアの進化過程と星形成の初期条件の理解 観測対象 ★ ボック・グロビュール (孤立分子雲コア) 近赤外線イメージング観測 : コアの密度構造 電波分子輝線マッピング観測: コアの速度構造 モデルとの比較 ● グロビュールの例 多数の分子雲コアの 物理的性質の決定

グロビュールについて

グロビュールの特徴
 孤立した分子雲コア
 シンプルな形・内部構造
 光学写真上で減光で見える(太陽系近傍に位置)
 小質量星を形成しているグロビュールもある
 これらの特徴は次のような研究に有利
 分子雲コアの内部構造(密度・運動)のモデリング
 分子雲コアの進化(初期状態〜重力収縮〜星形成)
 分子雲コアの化学進化、分子ガスのdepletion

観測(1) /観測諸元/

- 近赤外線イメージング
 - 望遠鏡: IRSF 1.4m鏡 @南アフリカ天文台
 - 検出器: SIRIUS (JHKs同時撮像, 1kX1k, 視野~7.8')
 - 期間 :約40夜 (July-Aug 2002, June-July 2003)
 - 天体数:グロビュール90天体
- 電波分子分光+マッピング
 - 望遠鏡:野辺山45m電波望遠鏡
 - 受信機:BEARS (25素子マルチビーム, 5X5), H22
 - 期間 :160時間 (Mar-Apr 2003, Jan-Feb 2004)
 - ライン: C18O (1-0), N2H+ (1-0), NH3
 - 天体数:グロビュール14天体

観測(2) /観測天体 10/90 sources/

Name	R.A. $(J2000)^{a}$	Dec. $(J2000)^{a}$	Distance (pc)	IRAS ^b	Other names	References ^c
CB 87	$17 \ 25 \ 05$	-24 07 19	160	No	Barnard 74, Lynds 81	1,2
CB 110	18 05 55	$-18 \ 25 \ 10$	180	No	Lynds 307	$1,\!3,\!4$
CB 131	$19\ 17\ 00$	$-18 \ 01 \ 52$	180	No	Barnard 93, Lynds 328	$1,\!3,\!4$
CB 134	$18 \ 22 \ 45$	$-01 \ 42 \ 40$	260	No		$1,\!5,\!A$
CB 161	18 53 56	$-07 \ 26 \ 29$	400	No	Barnard 118, Lynds 509	$1,\!6$
CB 184	$19 \ 31 \ 52$	$+16 \ 27 \ 14$	300	No ^d	Lynds 709	$1,\!3,\!4$
CB 188	$19\ 20\ 16$	$+11 \ 36 \ 15$	300	$\mathrm{Yes}^{\mathrm{e}}$	Lynds 673-1	$1,\!3,\!4$
FeSt $1-457$	$17 \ 35 \ 45$	$-25 \ 33 \ 11$	160	No		$1,\!3,\!4,\!B$
Lynds 495	$18 \ 38 \ 58$	$-06 \ 44 \ 00$	200	No		1,7,C
Lynds 498	$18 \ 40 \ 11$	$-06 \ 40 \ 45$	200	No		1,7,C

グロビュールの選出条件:

- (1) 視直径が5'未満で、シンプルな形状を持つこと。
- (2) 太陽系近傍(D<500pc)にあること。
- (3) 銀河面の近くに位置すること。
- (4) 北天からも観測できること。

^cReferences/Remarks on the cloud distance: (1) Dutra, C. M. & Bica, E. 2002, A&A, 383, 631; (2) Huard, T. L., Sandell, G., & Weintraub, D. A. 1999, ApJ, 526, 833; (3) Launhardt, T., & Henning, T. 1997, A&A, 326, 329; (4) Dame, T. M., Ungerechts, H., Cohen, R. S., De Geuss, E. J., Grenier, I. A., May, J., Murphy, D. C., Nyman, L. -Å., & Thaddeus, P. 1987, ApJ, 322, 706; (5) Straizys, V., Cernis, K., & Bartasiute, S. 1996, Baltic Astronomy 5, 125; (6) Leung, C. M., Kutner, M. L., & Mead, K. N. 1982, ApJ, 262, 583; (7) Schneider, S., & Elmegreen, B. G. 1979, ApJS, 41, 87; (A) Assumed to have save distance as Serpens molecular cloud.; (B) Assumed to have save distance as Barnard 83.; (C) Assumed to have save distance as GF 5 dark cloud filament.

^dIRAS 19116+1623 (Class II located at core boundary): Launhardt, R. 1996, Ph.D. thesis, Univ. of Jena

eIRAS 19179+1129 (Class I with outflow): Launhardt, R. 1996, Ph.D. thesis, Univ. of Jena; Yun, J. L., & Clemens, D. P. 1992, ApJ, 385, L21

- 1. 近赤外線観測結果
- 2. 電波観測結果

結果(1) /近赤外観測結果: JHKs合成画像/

Dark Cloud FeSt 1-457

Three Color Composite Image (Blue:J, Green:H, Red:Ks)

Simultaneous-3color InfraRed Imager SIRIUS

Field of View: 7 arcmin.

9

結果(1) /近赤外観測結果: JHKs合成画像/

- 1. 近赤外線観測結果
- 2. 電波観測結果

13

結果(2) /ミリ波ライン観測: ライン幅とTeffの測定/

Name	$\Delta V \; (\rm km/s)$	$T_{\rm eff}$ (K)	$\Delta V_{ m tot}$	$\Delta V_{ m nth}$	Molecular Line
CB 87	0.26	12.7	0.50	0.23	$C^{18}O(1-0)$
CB 110	0.50	22.0	0.66	0.48	$C^{18}O$ (1-0)
CB 131	0.57	25.8	0.71	0.27	$C^{18}O$ (1-0)
CB 134	0.27	12.9	0.50	0.24	$C^{18}O$ (1-0)
CB 161	0.31	14.1	0.53	0.28	$C^{18}O$ (1-0)
CB 184	0.39	17.0	0.58	0.37	$C^{18}O$ (1-0)
CB 188	0.48	21.0	0.64	0.46	$C^{18}O$ (1-0)
FeSt $1-457$	0.27	12.9	0.50	0.24	N_2H^+ (1-0)
Lynds 495	0.33	14.8	0.54	0.31	$C^{18}O$ (1-0)
Lynds 498	0.25	12.4	0.49	0.22	$C^{18}O$ (1-0)

・全天体が、ほぼサーマル・サポート

%ΔVth = 0.443 km/s

・Teff = Tth + Tnth (乱流サポート込みの実効的温度)

※Tth=10 Kと仮定

- 1. Bonnor-Ebertモデルについて
- 2. Bonnor-Ebert球の安定性
- 3. Bonnor-Ebert球でのフィッティング

17

4. グロビュールの力学的安定性

解析(1) /Bonnor-Ebertモデルについて/

Pressure-boundで静水圧平衡にある等温ガス球モデル
 (Bonnor 1956, Ebert 1955)。有限の半径。外側は外圧で押さえられる。

Name	θ_R (arcse	c) ξ_{max}	$ ho_{ m c}/ ho_{ m edge}$	Stability	В	onnor-Fl	pert球での	
CB 87	75 ± 2.2	$2.52{\pm}0.21$	2.3	Stable				
CB 110	$61{\pm}3.7$	13.9 ± 3.18	95	Unstable		ノイツト結果		
CB 131	$67 {\pm} 4.1$	$7.38{\pm}1.64$	20	Unstable		-		
CB 134	$56{\pm}3.0$	$19.9 {\pm} 5.60$	220	Unstable	×⊢	※Free Parameter: 視半径、中心密度、距離		
CB 161	$63{\pm}7.5$	$8.14{\pm}1.47$	25	Unstable	視			
CB 184	112 ± 20	$8.11 {\pm} 1.62$	25	Unstable	ЖFi	※Fit Error ~ 10 - 20% ※Teffは電波観測で求めた		
CB 188	$110{\pm}5.0$	$13.4{\pm}1.34$	87	Unstable				
FeSt $1-457$	$169{\pm}8.8$	$12.4{\pm}1.21$	72	Unstable	× 1			
Lynds 495	75 ± 8.5	$7.22{\pm}1.39$	19	Unstable	値	値を使用。		
Lynds 498	$80{\pm}3.8$	$4.97 {\pm} 0.45$	7.6	Stable				
				(2)			\mathbf{D} (\mathbf{U} 3)	
Name	$T_{\rm eff}$ (K)	Distance (pc)	R(AU) = r	l_{c} (cm ⁻³)	$n_{\rm edge}$	$M_{\rm BE}$ (M_{\odot})	$P_{\rm out}$ (K cm ⁻³)	
a a a a		(1)					- ext ()	
CB 87	12.7	169	12700	2.0×10^4	8.9×10 ³	0.83	13.8×10^4	
CB 87 CB 110	12.7 22.0	169 566	12700 34500	2.0×10^4 1.4×10^5	8.9×10^{3} 1.5×10^{3}	0.83 7.30	$\frac{13.8 \times 10^4}{4.0 \times 10^4}$	
CB 87 CB 110 CB 131	12.7 22.0 25.8	169 566 332	12700 34500 22200	$ \begin{array}{c} 2.0 \times 10^4 \\ 1.4 \times 10^5 \\ 1.2 \times 10^5 \end{array} $	8.9×10^{3} 1.5×10^{3} 5.9×10^{3}	0.83 7.30 5.67	$\frac{13.8 \times 10^4}{4.0 \times 10^4}$ $\frac{18.1 \times 10^4}{18.1 \times 10^4}$	
CB 87 CB 110 CB 131 CB 134	12.7 22.0 25.8 12.9	169 566 332 240	12700 34500 22200 13400	$\begin{array}{c} 2.0 \times 10^{4} \\ 1.4 \times 10^{5} \\ 1.2 \times 10^{5} \\ 1.2 \times 10^{6} \end{array}$	$ \frac{8.9 \times 10^{3}}{1.5 \times 10^{3}} \\ 5.9 \times 10^{3} \\ 5.3 \times 10^{3} $	$ \begin{array}{c} 0.83 \\ 7.30 \\ 5.67 \\ 1.56 \end{array} $	$\frac{13.8 \times 10^4}{4.0 \times 10^4}$ $\frac{18.1 \times 10^4}{8.0 \times 10^4}$	
CB 87 CB 110 CB 131 CB 134 CB 161	12.7 22.0 25.8 12.9 14.1	169 566 332 240 403	12700 34500 22200 13400 25400	$\begin{array}{c} 2.0 \times 10^{4} \\ 1.4 \times 10^{5} \\ 1.2 \times 10^{5} \\ 1.2 \times 10^{6} \\ 6.0 \times 10^{4} \end{array}$	8.9×10^{3} 1.5×10^{3} 5.9×10^{3} 5.3×10^{3} 2.4×10^{3}	$ \begin{array}{c} 0.83 \\ 7.30 \\ 5.67 \\ 1.56 \\ 3.56 \end{array} $	$\begin{array}{c} 13.8 \times 10^{4} \\ 4.0 \times 10^{4} \\ 18.1 \times 10^{4} \\ 8.0 \times 10^{4} \\ 4.0 \times 10^{4} \end{array}$	
CB 87 CB 110 CB 131 CB 134 CB 161 CB 184	$ \begin{array}{r} 12.7\\ 22.0\\ 25.8\\ 12.9\\ 14.1\\ 17.0\\ \end{array} $	169 566 332 240 403 364	12700 34500 22200 13400 25400 40800	$\begin{array}{c} 2.0 \times 10^{4} \\ 1.4 \times 10^{5} \\ 1.2 \times 10^{5} \\ 1.2 \times 10^{6} \\ 6.0 \times 10^{4} \\ 2.9 \times 10^{4} \end{array}$	8.9×10^{3} 1.5×10^{3} 5.9×10^{3} 5.3×10^{3} 2.4×10^{3} 1.1×10^{3}	$\begin{array}{c} 0.83 \\ \hline 0.83 \\ \hline 7.30 \\ \hline 5.67 \\ \hline 1.56 \\ \hline 3.56 \\ \hline 6.93 \end{array}$	$\begin{array}{c} 13.8 \times 10^{4} \\ 4.0 \times 10^{4} \\ 18.1 \times 10^{4} \\ 8.0 \times 10^{4} \\ 4.0 \times 10^{4} \\ 2.2 \times 10^{4} \end{array}$	
CB 87 CB 110 CB 131 CB 134 CB 161 CB 184 CB 188	$ \begin{array}{c} 12.7\\ 22.0\\ 25.8\\ 12.9\\ 14.1\\ 17.0\\ 21.0\\ \end{array} $	169 566 332 240 403 364 394	12700 34500 22200 13400 25400 40800 43300	$\begin{array}{c} 2.0 \times 10^{4} \\ 1.4 \times 10^{5} \\ 1.2 \times 10^{5} \\ 1.2 \times 10^{6} \\ 6.0 \times 10^{4} \\ 2.9 \times 10^{4} \\ 8.3 \times 10^{4} \end{array}$	8.9×10^{3} 1.5×10^{3} 5.9×10^{3} 5.3×10^{3} 2.4×10^{3} 1.1×10^{3} 0.9×10^{3}	$\begin{array}{c} 0.83 \\ \hline 0.83 \\ \hline 7.30 \\ 5.67 \\ \hline 1.56 \\ 3.56 \\ \hline 6.93 \\ 8.83 \end{array}$	$\begin{array}{c} 13.8 \times 10^{4} \\ 4.0 \times 10^{4} \\ 18.1 \times 10^{4} \\ 8.0 \times 10^{4} \\ 4.0 \times 10^{4} \\ 2.2 \times 10^{4} \\ 2.3 \times 10^{4} \end{array}$	
CB 87 CB 110 CB 131 CB 134 CB 161 CB 184 CB 188 FeSt 1-457	$ \begin{array}{c} 12.7\\ 22.0\\ 25.8\\ 12.9\\ 14.1\\ 17.0\\ 21.0\\ 12.9\\ \end{array} $	169 566 332 240 403 364 394 76	12700 34500 22200 13400 25400 40800 43300 12900	$\begin{array}{c} 2.0 \times 10^{4} \\ 1.4 \times 10^{5} \\ 1.2 \times 10^{5} \\ 1.2 \times 10^{6} \\ 6.0 \times 10^{4} \\ 2.9 \times 10^{4} \\ 8.3 \times 10^{4} \\ 5.0 \times 10^{5} \end{array}$	8.9×10^{3} 1.5×10^{3} 5.9×10^{3} 5.3×10^{3} 2.4×10^{3} 1.1×10^{3} 0.9×10^{3} 6.9×10^{3}	$\begin{array}{c} 0.83 \\ \hline 0.83 \\ \hline 7.30 \\ 5.67 \\ \hline 1.56 \\ 3.56 \\ \hline 6.93 \\ 8.83 \\ \hline 1.64 \end{array}$	$\begin{array}{c} 13.8 \times 10^{4} \\ 4.0 \times 10^{4} \\ 18.1 \times 10^{4} \\ 8.0 \times 10^{4} \\ 4.0 \times 10^{4} \\ 2.2 \times 10^{4} \\ 2.3 \times 10^{4} \\ 10.1 \times 10^{4} \end{array}$	
CB 87 CB 110 CB 131 CB 134 CB 161 CB 184 CB 188 FeSt 1-457 Lynds 495	$ \begin{array}{c} 12.7\\22.0\\25.8\\12.9\\14.1\\17.0\\21.0\\12.9\\14.8\end{array} $	$ \begin{array}{r} 169 \\ 566 \\ 332 \\ 240 \\ 403 \\ 364 \\ 394 \\ 76 \\ 370 \\ \end{array} $	12700 34500 22200 13400 25400 40800 43300 12900 27800	$\begin{array}{c} 2.0 \times 10^{4} \\ 1.4 \times 10^{5} \\ 1.2 \times 10^{5} \\ 1.2 \times 10^{6} \\ 6.0 \times 10^{4} \\ 2.9 \times 10^{4} \\ 8.3 \times 10^{4} \\ 5.0 \times 10^{5} \\ 4.1 \times 10^{4} \end{array}$	8.9×10^{3} 1.5×10^{3} 5.9×10^{3} 5.3×10^{3} 2.4×10^{3} 1.1×10^{3} 0.9×10^{3} 6.9×10^{3} 2.2×10^{3}	$\begin{array}{c} 0.83 \\ \hline 0.83 \\ \hline 7.30 \\ 5.67 \\ \hline 1.56 \\ 3.56 \\ \hline 6.93 \\ 8.83 \\ \hline 1.64 \\ 4.07 \end{array}$	$\begin{array}{c} 13.8 \times 10^{4} \\ 4.0 \times 10^{4} \\ 18.1 \times 10^{4} \\ 8.0 \times 10^{4} \\ 4.0 \times 10^{4} \\ 2.2 \times 10^{4} \\ 2.3 \times 10^{4} \\ 10.1 \times 10^{4} \\ 3.8 \times 10^{4} \end{array}$	
CB 87 CB 110 CB 131 CB 134 CB 161 CB 184 CB 188 FeSt 1-457 Lynds 495 Lynds 498	$ \begin{array}{c} 12.7\\22.0\\25.8\\12.9\\14.1\\17.0\\21.0\\12.9\\14.8\\12.4\end{array} $	169 566 332 240 403 364 394 76 370 225	12700 34500 22200 13400 25400 40800 43300 12900 27800 18000	$\begin{array}{c} 2.0 \times 10^{4} \\ 1.4 \times 10^{5} \\ 1.2 \times 10^{5} \\ 1.2 \times 10^{6} \\ 6.0 \times 10^{4} \\ 2.9 \times 10^{4} \\ 8.3 \times 10^{4} \\ 5.0 \times 10^{5} \\ 4.1 \times 10^{4} \\ 3.8 \times 10^{4} \end{array}$	8.9×10^{3} 1.5×10^{3} 5.9×10^{3} 5.3×10^{3} 2.4×10^{3} 1.1×10^{3} 0.9×10^{3} 6.9×10^{3} 2.2×10^{3} 5.1×10^{3}	$\begin{array}{c} 0.83 \\ \hline 0.83 \\ \hline 7.30 \\ 5.67 \\ \hline 1.56 \\ 3.56 \\ \hline 6.93 \\ 8.83 \\ \hline 1.64 \\ 4.07 \\ 2.00 \end{array}$	$\begin{array}{c} 13.8 \times 10^{4} \\ 4.0 \times 10^{4} \\ 18.1 \times 10^{4} \\ 8.0 \times 10^{4} \\ 4.0 \times 10^{4} \\ 2.2 \times 10^{4} \\ 2.3 \times 10^{4} \\ 10.1 \times 10^{4} \\ 3.8 \times 10^{4} \\ 7.2 \times 10^{4} \end{array}$	

議論(4) /グロビュールの密度構造と力学的安定性/

議論(2) /グロビュールの密度構造と力学的安定性/

議論(4) /グロビュールの密度構造と力学的安定性/

BE球フィット結果のカテゴリ別天体数

中心集中度(gmax值)	ξmax<6.5	ξmax~6.5	ξmax>>6.5
	(Stable)	(Critical or slightly unstable)	(Super critical)
天体数(Star-forming)	2 (0)	6 (0)	6 (3+?)

- ★ スターレス・グロビュールの典型的な密度構造は、クリティカル~やや 不安定なBonnor-Ebert球でよく説明できそうである。
- ★ Stable解のコアはわずか2/14天体。
- ★ Protostellar/Contractingフェイズのグロビュールは、高い中心集中度 (ξ_{max}>>6.5)のBonnor-Ebert球でベストフィット。

<mark>議論(5)</mark> /超音速乱流星形成シナリオ/

- まとめ
- ★ 分解能を考慮したBonnor-Ebert球で、グロビュール10天体をフィット →NIRでのサーベイ的研究は初。統計的研究への第一歩
- ★ サイズ、密度、温度、距離などがよく決まったWell defined sample増強
 →多くの派生的研究が可能に(e.g., 密度 vs ダストの性質, depletion効率など)
- ★ スターレス・グロビュールの典型的な密度構造は、クリティカル~やや不安定な Bonnor-Ebert球でフィットできる。
- ★ 星形成活動を示すグロビュールは、高い中心集中度 (ξ_{max}>>6.5)のBonnor-Ebert球でフィットできる。→スターレスコアとの観測的な違いは中心集中度
- ★ 安定なBonnor-Ebert平衡解のグロビュールは2天体(NIRでは初発見)。
- ★ グロビュールの速度構造(線幅分布、ピーク速度分布)は、Quiescent。
 → Turbulentシナリオには必ずしも該当しない。
- ★グロビュールの観測的性質は、Taurusのコアと類似 (サイズ、質量、Quiescentな速度構造) →臨界に近いThermalコアからの星形成⇔Orion