Japanese


Fujimoto (2011)

Fujimoto & Sydora (2012)

Fujimoto & Sydora (2023)

Main Interest

Publications

  1. Fujimoto, K. and R. D. Sydora, The electron diffusion region dominated by electromagnetic turbulence in the reconnection current layer, Phys. Plasmas, 30, 022106, doi:10.1063/5.0129591, 2023.
    Selected for the journal cover
    Talk in the Plasma Physics Webinar series
  2. Fujimoto, K. and J. B. Cao, Non-adiabatic electron heating in the magnetic islands during magnetic reconnection, Geophys. Res. Lett., 48, e2021GL094431, doi:10.1029/2021GL094431, 2021.
  3. Li, W. Y., Y. V. Khotyaintsev, B. B. Tang, D. B. Graham, C. Norgren, A. Vaivads, M. Andre, A. Le, J. Egedal, K. Dokgo, K. Fujimoto, J. S. He, J. L. Burch, P.-A. Lindqvist, R. E. Ergun, R. B. Torbert, O. Le Contel, D. J. Gershman, B. L. Giles, B. Lavraud, S. Fuselier, F. Plaschke, W. Magnes, C. T. Russell, X. C. Guo, Q. M. Lu, and C. Wang, Upper-hybrid waves driven by meandering electrons around magnetic reconnection x line, Geophys. Res. Lett., 48, e2021GL093164, doi:10.1029/2021GL093164, 2021.
  4. Fujimoto, K. and R. D. Sydora, Electromagnetic turbulence in electron current layer to drive magnetic reconnection, Astrophys. J. Lett., 909, L15, doi:10.3847/2041-8213/abe877, 2021.
    Supplemental material: Animation (8.1M)
    Press release: http://sse.buaa.edu.cn/info/1072/4477.htm (in Chinese)
    Press release: https://www.ualberta.ca/physics/about-the-department/physics-news/...
  5. Fujimoto, K. and R. D. Sydora, Three-dimensional particle-in-cell simulation of magnetic reconnection: Plasma turbulence in the current layer, HPCI Res. Rep., 5, 37-43, 2020. Link
  6. Li, W. Y., D. B. Graham, Y. V. Khotyaintsev, A. Vaivads, M. Andre, K. Min, K. Liu, B. B. Tang, C. Wang, K. Fujimoto, C. Norgren, S. Toledo-Redondo, P.-A. Lindqvist, R. E. Ergun, R. B. Torbert, A. C. Rager, J. C. Dorelli, D. J. Gershman, B. L. Giles, B. Lavraud, F. Plaschke, W. Magnes, O. Le Contel, C. T. Russell, and J. L. Burch, Electron Bernstein waves driven by electron crescents near the electron diffusion region, Nat. Commun., 11, 141, doi:10.1038/s41467-019-13920-w, 2020.
  7. Fujimoto, K., Multi-scale kinetic simulation of magnetic reconnection with dynamically adaptive meshes, Front. Phys., 6, 119, doi:10.3389/fphy.2018.00119, 2018.
  8. Fujimoto, K., Bursty emission of whistler waves in association with plasmoid collision, Ann. Geophys., 35, 885-892, doi:10.5194/angeo-35-885-2017, 2017.
  9. Huang, S. Y., Z. G. Yuan, F. Sahraoui, H. S. Fu, Y. Pang, M. Zhou, K. Fujimoto, X. H. Deng, A. Retino, D. D. Wang, X. D. Yu, and H. M. Li, Occurrence rate of whistler waves in the magnetotail reconnection region, J. Geophys. Res., 122, 7188-7196, doi:10.1002/2016JA023670, 2017.
  10. Fujimoto, K. and R. D. Sydora, Linear theory of the current sheet shear instability, J. Geophys. Res., 122, 5418-5430, doi:10.1002/2017JA024079, 2017.
  11. Fujimoto, K., Three dimensional outflow jets generated in collisionless magnetic reconnection, Geophys. Res. Lett., 43, 10,557-10,564, doi:10.1002/2016GL070810, 2016.
    Supplemental materials: Video1 (3.1M), Video2 (2.8M)
  12. Huang, S. Y., H. S. Fu, Z. G. Yuan, A. Vaivads, Y. V. Khotyaintsev, A. Retino, M. Zhou, D. B. Graham, K. Fujimoto, F. Sahraoui, X. H. Deng, B. Ni, Y. Pang, S. Fu, D. D. Wang, and X. Zhou, Two types of whistler waves in the reconnection ion diffusion region, J. Geophys. Res., 121, 6639-6646, doi:10.1002/2016JA022650, 2016.
  13. Fujimoto, K., Characteristics of a current sheet shear mode in collisionless magnetic reconnection, J. Phys. Conf. Ser., 719, 012017, doi:10.1088/1742-6596/719/1/012017, 2016.
  14. Fujimoto, K. and M. Takamoto, Ion and electron dynamics generating the Hall current in the exhaust far downstream of the reconnection x-line, Phys. Plasmas, 23, 012903, doi:10.1063/1.4940322, 2016.
  15. Chen, Y., K. Fujimoto, C. Xiao, and H. Ji, Plasma waves around separatrix in collisionless magnetic reconnection with weak guide field, J. Geophys. Res., 120, 6309-6319, doi:10.1002/2015JA021267, 2015.
  16. Fujimoto, K., Wave activities in separatrix regions of magnetic reconnection, Geophys. Res. Lett., 41, 2721-2728, doi:10.1002/2014GL059893, 2014.
  17. Fujimoto, K., Dissipation mechanism in 3D collisionless magnetic reconnection, J. Phys. Conf. Ser., 511, 012012, doi:10.1088/1742-6596/511/1/012012, 2014.
  18. Fujimoto, K. and R. Sydora, Plasmoid-induced turbulence in collisionless magnetic reconnection, Phys. Rev. Lett., 109, 265004, doi:10.1103/PhysRevLett.109.265004, 2012.
    Supplemental materials: Video1 (2.1M), Video2 (2.4M)
    One of the figures was selected for the journal cover.
  19. Fujimoto, K., Dissipation mechanism in 3D magnetic reconnection, Phys. Plasmas, 18, 111206, doi:10.1063/1.3642609, 2011.
    One of the figures was selected for the journal cover.
  20. Fujimoto, K., A new electromagnetic particle-in-cell model with adaptive mesh refinement for high-performance parallel computation, J. Comput. Phys., 230, 8508-8526, doi:10.1016/j.jcp.2011.08.002, 2011.
  21. Fujimoto, K. and R. Sydora, Particle description of the electron diffusion region in collisionless magnetic reconnection, Phys. Plasmas, 16, 112309, doi:10.1063/1.3263694, 2009.
  22. Fujimoto, K., Fast magnetic reconnection in a kinked current sheet, Phys. Plasmas, 16, 042103, doi:10.1063/1.3106685, 2009.
  23. Fujimoto, K. and R. Sydora, Fast magnetic reconnection associated with kink modes, J. Plasma Fusion Res. Ser., 8, 212-216, 2009.
  24. Fujimoto, K. and R. Sydora, Whistler waves associated with magnetic reconnection, Geophys. Res. Lett., 35, L19112, doi:10.1029/2008GL035201, 2008.
  25. Fujimoto, K. and R. Sydora, Electromagnetic particle-in-cell simulations on magnetic reconnection with adaptive mesh refinement, Comput. Phys. Commun., 178, 915-923, doi:10.1016/j.cpc.2008.02.010, 2008.
  26. Fujimoto, K. and S. Machida, A generation mechanism of electrostatic waves and subsequent electron heating in the plasma sheet-lobe boundary region during magnetic reconnection, J. Geophys. Res., 111, A09216, doi:10.1029/2005JA011542, 2006.
  27. Fujimoto, K., Time evolution of the electron diffusion region and the reconnection rate in fully kinetic and large system, Phys. Plasmas, 13, 072904, doi:10.1063/1.2220534, 2006.
  28. Fujimoto, K. and S. Machida, Electromagnetic full particle code with adaptive mesh refinement technique: Application to the current sheet evolution, J. Comput. Phys., 214, 550-566, doi:10.1016/j.jcp.2005.10.003, 2006.
  29. Fujimoto, K. and S. Machida, Full particle simulation of the plasma sheet using adaptive mesh refinement (AMR) technique, Adv. Space Res., 37, 1348-1353, doi:10.1016/j.asr.2005.03.096, 2006.
  30. Fujimoto, K. and S. Machida, An electron heating mechanism in the outflow region from the X-type neutral line, J. Geophys. Res., 108, 1349, doi:10.1029/2002JA009810, 2003.
  31. Fujita, S., T. Tanaka, T. Kikuchi, K. Fujimoto, and M. Itonaga, A numerical simulation of the geomagnetic sudden commencement: 2. Plasma processes in the main impulse, J. Geophys. Res., 108, 1417, doi:10.1029/2002JA009763, 2003.
  32. Fujita, S., T. Tanaka, T. Kikuchi, K. Fujimoto, K. Hosokawa, and M. Itonaga, A numerical simulation of the geomagnetic sudden commencement: 1. Generation of the field-aligned current associated with the preliminary impulse, J. Geophys. Res., 108, 1416, doi:10.1029/2002JA009407, 2003.

Thesis


home